1
|
Bienvenu AL, Leray V, Guichon C, Bourget S, Chapuis C, Duréault A, Pavese P, Roux S, Kahale E, Chaabane W, Subtil F, Maucort-Boulch D, Talbot F, Dode X, Ghesquières H, Leboucher G. ANTIFON-CLIC®, a new clinical decision support system for the treatment of invasive aspergillosis: is it clinically relevant? ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:514-521. [PMID: 38000506 DOI: 10.1016/j.pharma.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Invasive aspergillosis (IA) is increasing especially in new groups of patients. Despite advances in management, morbidity and mortality related to IA remain high. Thus, Clinical Decision Support System (CDSS) dedicated to IA are needed to promote the optimal antifungal for each group of patients. PATIENTS AND METHODS This was a retrospective multicenter cohort study involving intensive care units and medical units. Adult patients who received caspofungin, isavuconazole, itraconazole, liposomal amphotericin B, posaconazole, or voriconazole, for the treatment of IA were eligible for enrollment. The primary objective was the concordance between the clinician's prescription and the prescription recommended by the CDSS. The secondary objective was the concordance according to different hospitals, departments, and indications. RESULTS Eighty-eight patients (n=88) from three medical hospitals were included. The overall concordance was 97% (85/88) including 100% (41/41) for center A, 92% (23/25) for center B, and 95% (21/22) for center C. There was no significant difference in concordance among the hospitals (P=0.973), the departments (P=1.000), and the indications (P=0.799). The concordance was 70% (7/10) for isavuconazole due to its use as an empirical treatment and 100% (78/78) for the other antifungals. DISCUSSION The concordance rate was high whatever the hospital, the department, and the indication. The only discrepancy was attributed to the use of isavuconazole as an empirical treatment which is a therapeutic option not included in the CDSS. CONCLUSIONS This new CDSS dedicated to IA is meeting the clinical practice. Its implementation in routine will help to support antifungal stewardship.
Collapse
Affiliation(s)
- A-L Bienvenu
- Service pharmacie, groupement hospitalier nord, hospices civils de Lyon, Lyon, France; Univ Lyon, Malaria Research Unit, SMITh, ICBMS UMR 5246, Lyon, France.
| | - V Leray
- Service d'anesthésie-réanimation, groupement hospitalier centre, hospices civils de Lyon, Lyon, France
| | - C Guichon
- Service d'anesthésie-réanimation, groupement hospitalier nord, Hospices civils de Lyon, Lyon, France
| | - S Bourget
- Service pharmacie, CH de Valence, Valence, France
| | - C Chapuis
- Service de pharmacie, CHU de Grenoble, Grenoble-Alpes, France
| | - A Duréault
- Service des maladies infectieuses, centre hospitalier de Valence, Valence, France
| | - P Pavese
- Service des maladies infectieuses, CHU de Grenoble, Grenoble-Alpes, France
| | - S Roux
- Service des maladies infectieuses et tropicales, hospices civils de Lyon, Lyon, France
| | - E Kahale
- Direction de l'innovation, hospices civils de Lyon, Lyon, France
| | - W Chaabane
- Direction des services numériques, hospices civils de Lyon, Lyon, France
| | - F Subtil
- Service de biostatistique-bioinformatique, hospices civils de Lyon, Lyon, France
| | - D Maucort-Boulch
- Service de biostatistique-bioinformatique, hospices civils de Lyon, Lyon, France
| | - F Talbot
- Direction des services numériques, hospices civils de Lyon, Lyon, France
| | - X Dode
- Service pharmacie, groupement hospitalier est, hospices civils de Lyon, Lyon, France
| | - H Ghesquières
- Service d'hématologie, groupement hospitalier sud, hospices civils de Lyon, Lyon, France
| | - G Leboucher
- Service pharmacie, groupement hospitalier nord, hospices civils de Lyon, Lyon, France
| |
Collapse
|
2
|
Raposo Puglia D, Raposo Puglia JÁ, García-Cabrera E, Morales F, Camacho-Vega JC, Vilches-Arenas Á. Risk Factors and Environmental Preventive Actions for Aspergillosis in Patients with Hematological Malignancies. Clin Pract 2024; 14:280-292. [PMID: 38391408 PMCID: PMC10888107 DOI: 10.3390/clinpract14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: Aspergillus spp. is a widely distributed filamentous fungus in the environment due to its high sporulation capacity. Currently, invasive aspergillosis (IA) is the most common invasive fungal infection in patients with hematologic malignancies, with high rates of mortality and morbidity. The multifactorial nature of the disease requires appropriate risk stratification to enable the most appropriate preventive measures to be adapted and implemented according to the characteristics of the patient. In this sense, the present research aims to identify recent risk factors and environmental control measures against invasive aspergillosis to establish preventive actions to reduce the incidence of invasive aspergillosis in hospitals. (2) Methods: We conducted a qualitative systematic review of the scientific literature on environmental risk factors and preventive measures for invasive aspergillosis in patients with hematologic malignancies. The Medline, Cochrane, and Scopus databases were consulted, following the PRISMA and STROBE guidelines. (3) Results: Adequate implementation of environmental control measures is presented as the most efficient intervention in terms of prevention to decrease the incidence of invasive aspergillosis in hospitals. Neutropenia, fungal contamination, insufficient environmental control measures in hospital and home settings, length of hospital stay, and anemia, are identified as independent risk factors. We show that HEPA, LAF, and Plasmair® systems are suitable methods to reduce the concentration of airborne fungal spores. Antifungal prophylaxis did not significantly influence IA reduction in our study. (4) Conclusions: Proper professional training and environmental control measures in hospitals are essential for the prevention of invasive aspergillosis. We should optimize risk stratification for patients with hematologic malignancies. Antifungal prophylaxis should be complementary to environmental control measures and should never be substituted for the latter. Studies should also be undertaken to evaluate the efficiency of environmental control measures against IA at patients' homes.
Collapse
Affiliation(s)
- Daniel Raposo Puglia
- Department of General and Digestive Surgery, Hospital Universitario Jerez de la Frontera, Ronda de Circunvalación s/n, 11407 Jerez de la Frontera, Spain
| | - José Ángel Raposo Puglia
- Department of Hematology, Hospital Universitario Puerta del Mar, Ana de Viya, 21, 11009 Cádiz, Spain
| | - Emilio García-Cabrera
- Preventive Medicine and Public Health Department, Faculty of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Fátima Morales
- Preventive Medicine and Public Health Department, Faculty of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Juan Carlos Camacho-Vega
- Department of Building Constructions II, Higher Technical School of Building Engineering, University of Seville, Avda. de la Reina Mercedes, 4A, 41012 Seville, Spain
- Occupational Risk Prevention Unit, Virgen Macarena Hospital, Avda. Dr. Fedriani 3, 41009 Seville, Spain
| | - Ángel Vilches-Arenas
- Preventive Medicine and Public Health Department, Faculty of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Department of Preventive Medicine, Virgen Macarena Hospital, Avda. Dr. Fedriani 3, 41009 Seville, Spain
| |
Collapse
|
3
|
Ledoux MP, Herbrecht R. Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:jof9020131. [PMID: 36836246 PMCID: PMC9962768 DOI: 10.3390/jof9020131] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Invasive pulmonary aspergillosis is growing in incidence, as patients at risk are growing in diversity. Outside the classical context of neutropenia, new risk factors are emerging or newly identified, such as new anticancer drugs, viral pneumonias and hepatic dysfunctions. Clinical signs remain unspecific in these populations and the diagnostic work-up has considerably expanded. Computed tomography is key to assess the pulmonary lesions of aspergillosis, whose various features must be acknowledged. Positron-emission tomography can bring additional information for diagnosis and follow-up. The mycological argument for diagnosis is rarely fully conclusive, as biopsy from a sterile site is challenging in most clinical contexts. In patients with a risk and suggestive radiological findings, probable invasive aspergillosis is diagnosed through blood and bronchoalveolar lavage fluid samples by detecting galactomannan or DNA, or by direct microscopy and culture for the latter. Diagnosis is considered possible with mold infection in lack of mycological criterion. Nevertheless, the therapeutic decision should not be hindered by these research-oriented categories, that have been completed by better adapted ones in specific settings. Survival has been improved over the past decades with the development of relevant antifungals, including lipid formulations of amphotericin B and new azoles. New antifungals, including first-in-class molecules, are awaited.
Collapse
|
4
|
Rob F, Školoudík L, Chrobok V, Dědková J, Kašparová P, Podrazilová L. Invasive aspergillus infection of middle ear in a patient treated with secukinumab, methotrexate and corticosteroids for psoriasis and psoriatic arthritis. J DERMATOL TREAT 2022; 33:3063-3065. [PMID: 35856655 DOI: 10.1080/09546634.2022.2104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mucocutaneous mycotic infections are common complications in patients on IL-17 inhibitor therapy. We report a case of a 33-year-old male with severe psoriasis and psoriatic arthritis on secukinumab combined with methotrexate and prednisone with swelling, otorrhoea and pain of the right ear and external auditory canal. Because of progressive hypacusis, a surgical solution was chosen. Tissue samples taken during surgery revealed the presence of Aspergillus fumigatus. Aspergillosis should be suspected in prolonged otorrhoea, especially in immunocompromised patients. Without intervention, the disease could be fatal.
Collapse
Affiliation(s)
- Filip Rob
- Department of Dermatovenereology, Second Faculty of Medicine, Charles University, Bulovka University Hospital, Prague, Czech Republic
| | - Lukáš Školoudík
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Hradec Králové, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Viktor Chrobok
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Hradec Králové, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jana Dědková
- Department of Radiology, University Hospital Hradec Králové, Czech Republic
| | - Petra Kašparová
- The Fingerland Department of Pathology, University Hospital Hradec Králové, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | | |
Collapse
|
5
|
Witkowska AB, Cowley S, Dempsey P, Stack J. Multidisciplinary approach to anti-MDA5 antibody-positive dermatomyositis associated with rapidly progressive interstitial lung disease. BMJ Case Rep 2022; 15:e246192. [PMID: 35236677 PMCID: PMC8895894 DOI: 10.1136/bcr-2021-246192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/16/2022] Open
Abstract
A man in his 40s was referred to our centre with rapidly progressive interstitial lung disease for lung transplant evaluation. Three months prior to his presentation he had developed periorbital oedema and discolouration, papules over the dorsal aspect of his metacarpophalangeal (MCP) joints and mucocutaneous ulcerations over the dorsum and palmar aspects of his MCPs. He had also been experiencing progressive shortness of breath. Based on the characteristic appearance of the cutaneous lesions, lack of muscle weakness on clinical examination, rapid progression of the interstitial lung disease together with presence of melanoma differentiation-associated gene 5 (MDA5) antibodies a diagnosis of anti-MDA5 dermatomyositis was made. Prompt treatment was initiated with aggressive combined immunomodulatory therapy that resulted in significant improvement in symptoms.
Collapse
Affiliation(s)
| | - Sharon Cowley
- Rheumatology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Philip Dempsey
- Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - John Stack
- Rheumatology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Zoran T, Seelbinder B, White PL, Price JS, Kraus S, Kurzai O, Linde J, Häder A, Loeffler C, Grigoleit GU, Einsele H, Panagiotou G, Loeffler J, Schäuble S. Molecular Profiling Reveals Characteristic and Decisive Signatures in Patients after Allogeneic Stem Cell Transplantation Suffering from Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2022; 8:jof8020171. [PMID: 35205926 PMCID: PMC8880021 DOI: 10.3390/jof8020171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Despite available diagnostic tests and recent advances, diagnosis of pulmonary invasive aspergillosis (IPA) remains challenging. We performed a longitudinal case-control pilot study to identify host-specific, novel, and immune-relevant molecular candidates indicating IPA in patients post allogeneic stem cell transplantation (alloSCT). Supported by differential gene expression analysis of six relevant in vitro studies, we conducted RNA sequencing of three alloSCT patients categorized as probable IPA cases and their matched controls without Aspergillus infection (66 samples in total). We additionally performed immunoassay analysis for all patient samples to gain a multi-omics perspective. Profiling analysis suggested LGALS2, MMP1, IL-8, and caspase-3 as potential host molecular candidates indicating IPA in investigated alloSCT patients. MMP1, IL-8, and caspase-3 were evaluated further in alloSCT patients for their potential to differentiate possible IPA cases and patients suffering from COVID-19-associated pulmonary aspergillosis (CAPA) and appropriate control patients. Possible IPA cases showed differences in IL-8 and caspase-3 serum levels compared with matched controls. Furthermore, we observed significant differences in IL-8 and caspase-3 levels among CAPA patients compared with control patients. With our conceptual work, we demonstrate the potential value of considering the human immune response during Aspergillus infection to identify immune-relevant molecular candidates indicating IPA in alloSCT patients. These human host candidates together with already established fungal biomarkers might improve the accuracy of IPA diagnostic tools.
Collapse
Affiliation(s)
- Tamara Zoran
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
| | - Philip Lewis White
- Public Health Wales, Microbiology Cardiff, UHW, Cardiff CF14 4XW, UK; (P.L.W.); (J.S.P.)
| | - Jessica Sarah Price
- Public Health Wales, Microbiology Cardiff, UHW, Cardiff CF14 4XW, UK; (P.L.W.); (J.S.P.)
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (O.K.); (A.H.)
- Institute for Hygiene and Microbiology, Julius Maximilians University of Wuerzburg, Josef-Schneider-Straße 2/E1, 97080 Wuerzburg, Germany
| | - Joerg Linde
- Friedrich—Loeffler Institute, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany;
| | - Antje Häder
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (O.K.); (A.H.)
| | - Claudia Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Goetz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
- Correspondence: (J.L.); (S.S.)
| | - Sascha Schäuble
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
- Correspondence: (J.L.); (S.S.)
| |
Collapse
|
7
|
Witting C, Quaggin-Smith J, Mylvaganam R, Peigh G, Angarone M, Flaherty JD. Invasive pulmonary aspergillosis after treatment with tocilizumab in a patient with COVID-19 ARDS: a case report. Diagn Microbiol Infect Dis 2021; 99:115272. [PMID: 33388572 PMCID: PMC7677089 DOI: 10.1016/j.diagmicrobio.2020.115272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/16/2022]
Abstract
Tocilizumab, an interleukin-6 receptor antagonist, has been used to treat critically ill patients with coronavirus disease-2019. We present the case of a previously immunocompetent man with coronavirus disease-2019 who developed invasive pulmonary aspergillosis after treatment with tocilizumab, illustrating the importance of considering opportunistic infections when providing immune modulating therapy.
Collapse
Affiliation(s)
- Celeste Witting
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jessica Quaggin-Smith
- Department of Internal Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Ruben Mylvaganam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Graham Peigh
- Department of Internal Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Michael Angarone
- Division of Infectious Disease, Department of Internal Medicine, Northwestern Memorial Hospital, Chicago, IL, USA
| | - James D Flaherty
- Division of Cardiology, Department of Internal Medicine, Northwestern Memorial Hospital, Chicago, IL, USA.
| |
Collapse
|
8
|
Recent Advances and Novel Approaches in Laboratory-Based Diagnostic Mycology. J Fungi (Basel) 2021; 7:jof7010041. [PMID: 33440757 PMCID: PMC7827937 DOI: 10.3390/jof7010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
What was once just culture and microscopy the field of diagnostic mycology has significantly advanced in recent years and continues to incorporate novel assays and strategies to meet the changes in clinical demand. The emergence of widespread resistance to antifungal therapy has led to the development of a range of molecular tests that target mutations associated with phenotypic resistance, to complement classical susceptibility testing and initial applications of next-generation sequencing are being described. Lateral flow assays provide rapid results, with simplicity allowing the test to be performed outside specialist centres, potentially as point-of-care tests. Mycology has responded positively to an ever-diversifying patient population by rapidly identifying risk and developing diagnostic strategies to improve patient management. Nowadays, the diagnostic repertoire of the mycology laboratory employs classical, molecular and serological tests and should be keen to embrace diagnostic advancements that can improve diagnosis in this notoriously difficult field.
Collapse
|
9
|
Zoran T, Weber M, Springer J, White PL, Bauer J, Schober A, Löffler C, Seelbinder B, Hünniger K, Kurzai O, Scherag A, Schäuble S, Morton CO, Einsele H, Linde J, Löffler J. Treatment with etanercept and low monocyte concentration contribute to the risk of invasive aspergillosis in patients post allogeneic stem cell transplantation. Sci Rep 2019; 9:17231. [PMID: 31754120 PMCID: PMC6872713 DOI: 10.1038/s41598-019-53504-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening complication among allogeneic hematopoietic stem cell transplant (alloSCT) recipients. Despite well known risk factors and different available assays, diagnosis of invasive aspergillosis remains challenging. 103 clinical variables from patients with hematological malignancies and subsequent alloSCT were collected. Associations between collected variables and patients with (n = 36) and without IA (n = 36) were investigated by applying univariate and multivariable logistic regression. The predictive power of the final model was tested in an independent patient cohort (23 IA cases and 25 control patients). Findings were investigated further by in vitro studies, which analysed the effect of etanercept on A. fumigatus-stimulated macrophages at the gene expression and cytokine secretion. Additionally, the release of C-X-C motif chemokine ligand 10 (CXCL10) in patient sera was studied. Low monocyte concentration (p = 4.8 × 10−06), severe GvHD of the gut (grade 2–4) (p = 1.08 × 10−02) and etanercept treatment of GvHD (p = 3.5 × 10−03) were significantly associated with IA. Our studies showed that etanercept lowers CXCL10 concentrations in vitro and ex vivo and down-regulates genes involved in immune responses and TNF-alpha signaling. Our study offers clinicians new information regarding risk factors for IA including low monocyte counts and administration of etanercept. After necessary validation, such information may be used for decision making regarding antifungal prophylaxis or closely monitoring patients at risk.
Collapse
Affiliation(s)
- Tamara Zoran
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany.,Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Michael Weber
- Friedrich Löffler Institute, Institute of Molecular Pathogenesis, Jena, Germany.,Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Jan Springer
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany
| | | | - Joachim Bauer
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany
| | - Annika Schober
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany
| | - Claudia Löffler
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany
| | - Bastian Seelbinder
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, University Hospital, Jena, Germany
| | - Sascha Schäuble
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - C Oliver Morton
- Western Sydney University, School of Science and Health, Campbelltown, NSW, 2560, Australia
| | - Hermann Einsele
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany
| | - Jörg Linde
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Friedrich Löffler Institute, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Jürgen Löffler
- University Hospital Würzburg, Medical Hospital II, WÜ4i, Würzburg, Germany.
| |
Collapse
|
10
|
Invasive Aspergillosis in Pediatric Leukemia Patients: Prevention and Treatment. J Fungi (Basel) 2019; 5:jof5010014. [PMID: 30754630 PMCID: PMC6463058 DOI: 10.3390/jof5010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022] Open
Abstract
The purpose of this article is to review and update the strategies for prevention and treatment of invasive aspergillosis (IA) in pediatric patients with leukemia and in patients with hematopoietic stem cell transplantation. The major risk factors associated with IA will be described since their recognition constitutes the first step of prevention. The latter is further analyzed into chemoprophylaxis and non-pharmacologic approaches. Triazoles are the mainstay of anti-fungal prophylaxis while the other measures revolve around reducing exposure to mold spores. Three levels of treatment have been identified: (a) empiric, (b) pre-emptive, and (c) targeted treatment. Empiric is initiated in febrile neutropenic patients and uses mainly caspofungin and liposomal amphotericin B (LAMB). Pre-emptive is a diagnostic driven approach attempting to reduce unnecessary use of anti-fungals. Treatment targeted at proven or probable IA is age-dependent, with voriconazole and LAMB being the cornerstones in >2yrs and <2yrs age groups, respectively.
Collapse
|
11
|
Şeyhoğlu E, Erden A, Kılıç L, Karadağ Ö, Akdağlı SA, Akdoğan A, Kalyoncu U. Pulmonary aspergillosis after treatment with infliximab in Still's disease and a literature review of Still's disease and pulmonary aspergillosis. Eur J Rheumatol 2018; 5:75-78. [PMID: 29657880 DOI: 10.5152/eurjrheum.2016.15081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of anti-tumor necrosis factor alpha (anti-TNF-α) agents has increased during the past decade in rheumatology practice. Opportunistic infections have been reported with anti-TNF-α agents in clinical trials and post-marketing usage. Aspergillus infection is a rare opportunistic infection that is associated with immunosuppression, and there are reported cases of pulmonary aspergillosis in various rheumatic diseases treated with anti-TNF-α agents. Here, we present the first case of pulmonary aspergillosis associated with infliximab treatment in a patient with Still's disease.
Collapse
Affiliation(s)
- Emrah Şeyhoğlu
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Abdülsamet Erden
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Levent Kılıç
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ömer Karadağ
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Sevtap Arıkan Akdağlı
- Department of Medical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ali Akdoğan
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Umut Kalyoncu
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Abstract
Infection is a major complication of patients with hematological malignancies. Prophylaxis is a key element in the management of these patients, and is composed by two main components: infection control measures and antimicrobial chemoprophylaxis. Infection control measures are safe, but not always effective. Antimicrobial prophylaxis is usually effective but may increase resistance rates, toxicity, and cost. Therefore, a careful evaluation of the actual risk for infection, the pathogens that predominate in a particular setting, and the periods at risk are important in order to define the most appropriate strategy. In this chapter we review the most important parameters to assess the risk on an individual basis, and the evidences and recommendations supporting infection control measures and antimicrobial prophylaxis against bacteria, fungi, viruses, and parasites.
Collapse
|
13
|
Mellinghoff SC, Panse J, Alakel N, Behre G, Buchheidt D, Christopeit M, Hasenkamp J, Kiehl M, Koldehoff M, Krause SW, Lehners N, von Lilienfeld-Toal M, Löhnert AY, Maschmeyer G, Teschner D, Ullmann AJ, Penack O, Ruhnke M, Mayer K, Ostermann H, Wolf HH, Cornely OA. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol 2017; 97:197-207. [PMID: 29218389 PMCID: PMC5754425 DOI: 10.1007/s00277-017-3196-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Immunocompromised patients are at high risk of invasive fungal infections (IFI), in particular those with haematological malignancies undergoing remission-induction chemotherapy for acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS) and recipients of allogeneic haematopoietic stem cell transplants (HSCT). Despite the development of new treatment options in the past decades, IFI remains a concern due to substantial morbidity and mortality in these patient populations. In addition, the increasing use of new immune modulating drugs in cancer therapy has opened an entirely new spectrum of at risk periods. Since the last edition of antifungal prophylaxis recommendations of the German Society for Haematology and Medical Oncology in 2014, seven clinical trials regarding antifungal prophylaxis in patients with haematological malignancies have been published, comprising 1227 patients. This update assesses the impact of this additional evidence and effective revisions. Our key recommendations are the following: prophylaxis should be performed with posaconazole delayed release tablets during remission induction chemotherapy for AML and MDS (AI). Posaconazole iv can be used when the oral route is contraindicated or not feasible. Intravenous liposomal amphotericin B did not significantly decrease IFI rates in acute lymphoblastic leukaemia (ALL) patients during induction chemotherapy, and there is poor evidence to recommend it for prophylaxis in these patients (CI). Despite substantial risk of IFI, we cannot provide a stronger recommendation for these patients. There is poor evidence regarding voriconazole prophylaxis in patients with neutropenia (CII). Therapeutic drug monitoring TDM should be performed within 2 to 5 days of initiating voriconazole prophylaxis and should be repeated in case of suspicious adverse events or of dose changes of interacting drugs (BIItu). General TDM during posaconazole prophylaxis is not recommended (CIItu), but may be helpful in cases of clinical failure such as breakthrough IFI for verification of compliance or absorption.
Collapse
Affiliation(s)
- Sibylle C Mellinghoff
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Jens Panse
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Nael Alakel
- Department I of Internal Medicine, Haematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Gerhard Behre
- Division of Haematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Dieter Buchheidt
- Department of Internal Medicine-Haematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Justin Hasenkamp
- Clinic for Haematology and Medical Oncology with Department for Stem Cell Transplantation, University Medicine Göttingen, Göttingen, Germany
| | - Michael Kiehl
- Department I for Internal Medicine, Klinikum Frankfurt (Oder), Frankfurt (Oder), Germany
| | - Michael Koldehoff
- Department of Bone Marrow Transplantation, West German Cancer Centre, University Hospital of Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Stefan W Krause
- Department V for Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Nicola Lehners
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Annika Y Löhnert
- Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Georg Maschmeyer
- Department of Haematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Daniel Teschner
- Department of Haematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrew J Ullmann
- Department II of Internal Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Olaf Penack
- Department for Haematology, Oncology and Tumour immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ruhnke
- Department of Haematology and Oncology, Paracelsus-Kliniken Osnabrück, Osnabrück, Germany
| | - Karin Mayer
- Department III of Internal Medicine, University Hospital Bonn, Bonn, Germany
| | - Helmut Ostermann
- Department of Haematology and Oncology, University of Munich, Munich, Germany
| | - Hans-H Wolf
- Department IV of Internal Medicine, University Hospital Halle, Halle, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany.,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Paulovičová E, Paulovičová L, Hrubiško M, Krylov VB, Argunov DA, Nifantiev NE. Immunobiological Activity of Synthetically Prepared Immunodominant Galactomannosides Structurally Mimicking Aspergillus Galactomannan. Front Immunol 2017; 8:1273. [PMID: 29081774 PMCID: PMC5645502 DOI: 10.3389/fimmu.2017.01273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
The study is oriented at the in vitro evaluation of the immunobiological activity and efficacy of synthetically prepared isomeric pentasaccharides representing fragments of Aspergillus fumigatus cell-wall galactomannan and containing β-(1→5)-linked tetragalactofuranoside chain attached to O-6 (GM-1) or O-3 (GM-2) of a spacer-armed mannopyranoside residue. These compounds were studied as biotinylated conjugates which both demonstrated immunomodulatory activities on the RAW 264.7 cell line murine macrophages as in vitro innate immunity cell model. Immunobiological studies revealed time- and concentration-dependent efficient immunomodulation. The proliferation of RAW 264.7 macrophages was induced at higher concentration (100 µg/mL) of studied glycoconjugates and longer exposure (48 h), with more pronounced efficacy for GM-1. The increase of proliferation followed the previous increase of IL-2 production. The cytokine profile of the macrophages treated with the glycoconjugates was predominantly pro-inflammatory Th1 type with significant increase of TNFα, IL-6, and IL-12 release for both glycoconjugates. The RAW 264.7 macrophages production of free radicals was not significantly affected by glycoconjugates stimulation. The phagocytic activity of RAW 264.7 cells was reduced following GM-1 treatment and was significantly increased after 24 h stimulation with GM-2, contrary to 48 h stimulation. Moreover, the synthetically prepared galactomannoside derivatives have been evaluated as efficient serodiagnostic antigens recognized by specific Ig isotypes, and significant presence of specific IgM antibodies in serum of patients suffering from vulvovaginitis was observed.
Collapse
Affiliation(s)
- Ema Paulovičová
- Cell Culture Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Hrubiško
- Department of Clinical Immunology and Allergy, Oncology Institute of St. Elisabeth, Bratislava, Slovakia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Kyriakidis I, Tragiannidis A, Zündorf I, Groll AH. Invasive fungal infections in paediatric patients treated with macromolecular immunomodulators other than tumour necrosis alpha inhibitors. Mycoses 2017; 60:493-507. [DOI: 10.1111/myc.12621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Ioannis Kyriakidis
- 2nd Department of Pediatrics; Aristotle University of Thessaloniki; AHEPA University General Hospital; Thessaloniki Greece
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics; Aristotle University of Thessaloniki; AHEPA University General Hospital; Thessaloniki Greece
| | - Ilse Zündorf
- Institute of Pharmaceutical Biology; Goethe-University of Frankfurt; Frankfurt am Main Germany
| | - Andreas H. Groll
- Infectious Disease Research Program; Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology; University Childrens Hospital; Muenster Germany
| |
Collapse
|
16
|
Douglas AP, Slavin MA. Risk factors and prophylaxis against invasive fungal disease for haematology and stem cell transplant recipients: an evolving field. Expert Rev Anti Infect Ther 2016; 14:1165-1177. [PMID: 27710140 DOI: 10.1080/14787210.2016.1245613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Due to increasing intensity and complexity of therapies and longer survivorship, many patients with haematologic malignancy (HM) are at risk of invasive fungal disease (IFD). Mortality from IFD is high and treatment of an episode of IFD results in an excess length of hospital stay and costs and delays delivery of curative therapy of the underlying haematologic condition. Therefore, prevention and early recognition and treatment of IFD are crucial. Areas covered: Risk factors particular to certain HMs and haematopoietic stem cell transplantation, as well as those risk factors universal to all HM groups are examined. Expert commentary: Risk stratification identifies those patients who would benefit most from mould active versus yeast active prophylaxis and those who can be safely managed with monitoring and clinically driven interventions for IFD. This approach aids in antifungal stewardship.
Collapse
Affiliation(s)
- Abby P Douglas
- a Department of Infectious Diseases , Peter MacCallum Cancer Centre , Melbourne , VIC , Australia
| | - Monica A Slavin
- a Department of Infectious Diseases , Peter MacCallum Cancer Centre , Melbourne , VIC , Australia.,b Victorian Infectious Diseases Service , Royal Melbourne Hospital , Melbourne , VIC , Australia.,c Department of Medicine , University of Melbourne , Melbourne , VIC , Australia
| |
Collapse
|
17
|
Tragiannidis A, Kyriakidis I, Zündorf I, Groll AH. Invasive fungal infections in pediatric patients treated with tumor necrosis alpha (TNF-α) inhibitors. Mycoses 2016; 60:222-229. [DOI: 10.1111/myc.12576] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Athanasios Tragiannidis
- Second Department of Pediatrics; AHEPA University General Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Ioannis Kyriakidis
- Second Department of Pediatrics; AHEPA University General Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Ilse Zündorf
- Institute of Pharmaceutical Biology; Goethe-University of Frankfurt; Frankfurt am Main Germany
| | - Andreas H. Groll
- Department of Pediatric Hematology and Oncology; Center for Bone Marrow Transplantation; Infectious Disease Research Program; University Childrens Hospital; Muenster Germany
| |
Collapse
|
18
|
|
19
|
Wiernik PH, Goldman JM, Dutcher JP, Kyle RA. Prevention of Infections in Patients with Hematological Malignancies. NEOPLASTIC DISEASES OF THE BLOOD 2013. [PMCID: PMC7121527 DOI: 10.1007/978-1-4614-3764-2_51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Infection is a frequent complication and a leading cause of morbidity and mortality in patients with hematological malignancies. Problems associated with the management of infections in these patients include difficulties in early diagnosis because the clinical signs of infection are subtle, the low performance of diagnostic tests, and suboptimal response to treatment because recovery of host defenses is a key factor for resolution of infection. Preventing these infections relies on infection control measures and antimicrobial chemoprophylaxis. While infection control measures are safe (but not always effective), the use of antimicrobial agents for prophylaxis of infection is not devoid of problems. Its wide use may increase the possibility of the development of resistance, select for resistant organisms, and increase toxicity and cost. Therefore, any attempt to administer an antimicrobial agent should be accompanied by a reflection of the potential benefits and risks of prophylaxis.
Collapse
Affiliation(s)
- Peter H. Wiernik
- Beth Israel Hospital, Cancer Center, St. Lukes-Roosevelt Hospital Center, 10th Avenue 1000, New York, 10019 New York USA
| | - John M. Goldman
- , Department of Hematology, Imperial College of London, Du Cane Road 150, London, W12 0NN United Kingdom
| | - Janice P. Dutcher
- Continuum Cancer Centers, Department of Medicine, St. Luke's-Roosevelt Hospital Center, 10th Avenue 1000, New York, 10019 New York USA
| | - Robert A. Kyle
- , Division of Hematology, Mayo Clinic, First Street SW. 200, Rochester, 55905 Minnesota USA
| |
Collapse
|
20
|
|
21
|
Tragiannidis A, Roilides E, Walsh TJ, Groll AH. Invasive Aspergillosis in Children With Acquired Immunodeficiencies. Clin Infect Dis 2011; 54:258-67. [DOI: 10.1093/cid/cir786] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|