1
|
Xiang T, Yang R, Li L, Lin H, Kai G. Research progress and application of pectin: A review. J Food Sci 2024. [PMID: 39394044 DOI: 10.1111/1750-3841.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pectin, an acidic polysaccharide, is naturally present primarily in the cell walls and inner layers of higher plants. Pectin is extensively used in food, pharmaceutical, cosmetic, and other industries owing to its exceptional attributes encompassing superior gelation, emulsification, antioxidant activity, stability, biocompatibility, and nontoxicity. Due to the increasing demand for pectin, there is a short supply in the domestic pectin market. Currently, the domestic production of pectin is heavily reliant on imports, thus emphasizing the urgent need to enhance its local manufacturing capabilities. Due to the diverse sources of pectin and variations in extraction and purification methods, its content, physicochemical properties, and biological activity are influenced, consequently impacting the market application of pectin. Therefore, this paper comprehensively reviews the extraction and purification process of pectin, in vivo metabolism, and biological activities (including antitumor, immunomodulatory, anti-inflammatory, antioxidant, hypoglycemic and hypolipidemic effects, antimicrobial properties, accelerated wound healing potential, promotion of gastrointestinal peristalsis, and alleviation of constipation as well as cholesterol-lowering effect). Furthermore, it explores the diverse applications of pectin in food science, biomedicine, and other interdisciplinary fields. This review serves as a valuable resource for enhancing the efficiency of pectin content improvement and exploring the potential value and application of pectin in a more scholarly and scientifically rigorous manner.
Collapse
Affiliation(s)
- Tingting Xiang
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Poursadegh H, Amini-Fazl MS, Javanbakht S, Kazeminava F. Magnetic nanocomposite through coating mannose-functionalized metal-organic framework with biopolymeric pectin hydrogel beads: A potential targeted anticancer oral delivery system. Int J Biol Macromol 2024; 254:127702. [PMID: 37956806 DOI: 10.1016/j.ijbiomac.2023.127702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
This study designed magnetic nanocomposite hydrogel beads for a potential targeted anticancer oral delivery system. To end this, nanohybrids of Fe3O4/MIL-88(Fe) (FM) were synthesized through in-situ method by the treatment of terephthalic acid (TPA) and (Fe(NO3)3·9H2O) in the presence of Fe3O4 nanoparticles. They were then modified with mannose sugar as an anticancer receptor to achieve a targeted drug delivery system. After loading methotrexate (MTX), they were coated with pH-sensitive pectin hydrogel beads in the presence of a calcium chloride crosslinker for possible transferring the nanohybrids to the intestine through the acidic environment of the digestive system. The results of different analysis techniques showed that the materials were properly synthesized, coated, and loaded. The designed magnetic nanocomposite hydrogel beads showed pH-sensitive swelling and drug release rate, protecting MTX from the acidic environment of the stomach. MTT test revealed a good cytotoxicity toward colon cancer HT29 cell lines. Remarkably, the functionalization of MTX-loaded FM nanohybrids with mannose (MTX-MFM) enhanced their anticancer properties up to about 20 %. The results recommended that the prepared novel magnetic nanocomposite hydrogel beads have a good potential to be used as a targeted anticancer oral delivery system.
Collapse
Affiliation(s)
- Hossein Poursadegh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Siamak Javanbakht
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Mishra P, Badiyani VM, Jain S, Subramanian S, Maharaj SV, Kumar A, Singh BN. Prebiotics: Ignored player in the fight against cancer. Cancer Rep (Hoboken) 2023; 6:e1870. [PMID: 37458148 PMCID: PMC10644333 DOI: 10.1002/cnr2.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Prebiotics is a relatively neglected area in cancer research, despite evidence suggesting that it plays a key role in suppressing tumour growth and improving immune function. RECENT FINDINGS Including prebiotics in the diet has been shown to strengthen the immune system and can better slow down or prevent the growth of tumours. It has also been strongly indicated in various scientific studies that prebiotics can contribute to the sustenance of a healthy microbiome, which in turn plays an important role in increasing the effectiveness and reducing the side effects of cancer treatments. CONCLUSION In the present review article we highlight the mechanisms by which prebiotics like inulin, fructooligosaccharide (FOS), β-glucan, pectin, and xylooligosaccharide (XOS) function. Furthermore, the beneficial effect of incorporating prebiotics during cancer therapy to improvise gut health and prevent/reverse the damage caused to patients due to chemotherapy has also been elaborated.
Collapse
Affiliation(s)
- Parichita Mishra
- Department of Ageing Research, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Vidhi Manish Badiyani
- Department of Ageing Research, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Sakshi Jain
- Biotechnology and Bioinformatics AreaNIIT UniversityNeemranaRajasthanIndia
| | - Sruti Subramanian
- Biotechnology and Bioinformatics AreaNIIT UniversityNeemranaRajasthanIndia
| | | | - Ashwini Kumar
- Biotechnology and Bioinformatics AreaNIIT UniversityNeemranaRajasthanIndia
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
5
|
Kobryń J, Zięba T, Rzepczyńska M, Musiał W. The interactions of model cationic drug with newly synthesized starch derivatives. ADMET AND DMPK 2023; 11:387-407. [PMID: 37829319 PMCID: PMC10567071 DOI: 10.5599/admet.1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Background and purpose The aim of the work was to compare the interactions of three newly synthesized non-toxic starch derivatives, with varied anionic and non-ionic functional groups with methylene blue (MB) as a model cationic drug, and selection of starch derivative with highest affinity to the MB. Experimental approach The native potato starch (SN), modified via acetylation (SM1), esterification and crosslinking (SM2) and crosslinking (SM3), was evaluated in MB adsorption studies and assessed by FTIR, PXRD, and DSC. Key results The adsorption of MB on SM2 and SM3 matched the BET isotherm model, which confirmed physisorption on the low-porous surface. In the case of SM1, adsorption took place via electrostatic attraction between the heterogeneous adsorbent surface and the adsorbate, as demonstrated by the Freundlich plot. The FTIR confirmed vibrations assigned to N=C stretching bonds at 1600 cm-1 in the case of MB adsorbed on the SN and SM2. The most intense PXRD peaks belonged to SN and the least to SM2. In the DSC study, the thermal stability via ΔT was assessed, with SM2 of lowest ΔT value (179.8 °C). Conclusion SM2 presented the best adsorption capacity, followed by SM3 and the weakest SM1. The interactions were confirmed in the adsorption studies and may reflect applications of the modified starches as drug carriers. In the FTIR study, a probable interaction between the OH- groups of SM2 and N+ of MB was revealed. The most amorphous structure was shown for SM2, which was correlated with the lowest thermal stability provided by the DSC study.
Collapse
Affiliation(s)
- Justyna Kobryń
- Department of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Magdalena Rzepczyńska
- Department of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
6
|
Feng M, Dai X, Yang C, Zhang Y, Tian Y, Qu Q, Sheng M, Li Z, Peng X, Cen S, Shi X. Unification of medicines and excipients: The roles of natural excipients for promoting drug delivery. Expert Opin Drug Deliv 2023; 20:597-620. [PMID: 37150753 DOI: 10.1080/17425247.2023.2210835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Drug delivery systems (DDSs) formed by natural active compounds be instrumental in developing new green excipients and novel DDS from natural active compounds (NACs). 'Unification of medicines and excipients'(UME), the special inherent nature of the natural active compounds, provides the inspiration and conduction to achieve this goal. AREAS COVERED This review summarizes the typical types of NACs from herbal medicine, such as saponins, flavonoids, polysaccharides, etc. that act as excipients and their main application in DDS. The comparison of the drug delivery systems formed by NACs and common materials and the primary formation mechanisms of these NACs are also introduced to provide a deepened understanding of their performance in DDS. EXPERT OPINION Many natural bioactive compounds, such as saponins, polysaccharides, etc. have been used in DDS. Diversity of structure and pharmacological effects of NACs turn out the unique advantages in improving the performance of DDSs like targeting ability, adhesion, encapsulation efficiency(EE), etc. and enhancing the bioavailability of loaded drugs.
Collapse
Affiliation(s)
- Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Cuiting Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
7
|
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, Ghorbani E, Ferns GA, Manoochehri H, Menbari S, Sheykhhasan M, Tanzadehpanah H. Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer. Curr Pharm Des 2023; 29:3018-3039. [PMID: 37990895 DOI: 10.2174/0113816128274742231103063738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Mansourian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaho Menbari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Sheykhhasan
- Qom University of Medical Science and Health Services Mesenchymal Stem Cells Qom Iran
- Department of Mesenchymal Stem Cells, Qom University of Medical Science and Health Services, Qom, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Kedir WM, Deresa EM, Diriba TF. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon 2022; 8:e10654. [PMID: 36164543 PMCID: PMC9508417 DOI: 10.1016/j.heliyon.2022.e10654] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 10/27/2022] Open
Abstract
Due to their natural availability, biocompatibility, biodegradability, nontoxicity, flexibility, as well as improved structural and functional characteristics, pectin and pectin-based nanocomposites have become an interesting area of numerous researchers. Pectin is a polysaccharide that comes from plants and is used in a variety of products. The significance of pectin polysaccharide and its modified nanocomposites in a number of applications has been shown in numerous reviews. On their uses in pharmaceutical and medication delivery, there are, however, few review publications. The majority of papers on pectin polysaccharide do not structure their explanations of drug distribution and medicinal application. The biological application of pectin nanocomposite is also explained in this review, along with a recent publication. As a result, the goal of this review was in-depth analysis to summarize biological application of pectin and its modified nanocomposites. Due to their exceptional physicochemical and biological characteristics, pectin and its nanocomposites are remarkable materials for medicinal applications. In addition to enhancing the immune system, controlling blood cholesterol, and other things, they have been shown to have anticancer, antidiabetic, antioxidant, anti-inflammatory, immunomodulatory, and antibacterial properties. Because of their biocompatibility and properties that allow for regulated release, they have also received a lot of interest as drug carriers in targeted drug delivery systems. They have been used to administer medications to treat cancer, inflammation, pain, Alzheimer's, bacteria, and relax muscles. This review found that pectin and its derivatives have better drug delivery efficiency and are viable candidates for a wide range of medicinal applications. It has been advised to conduct further research on the subject of toxicity in order to produce commercial formulations that can serve as both therapeutic agents and drug carriers.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mattu University, Mattu, Ethiopia
| | - Ebisa Mirete Deresa
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Tamiru Fayisa Diriba
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
9
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
10
|
Kohan Hoosh Nejad A, Ahmad Panahi H, Keshmirizadeh E, Torabi Fard N. Fabrication of a pH-responsive drug delivery system based on the super-paramagnetic metal-organic framework for targeted delivery of oxaliplatin. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2082424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Niloufar Torabi Fard
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Gas K, Sawicki M. In Situ Compensation Method for Precise Integral SQUID Magnetometry of Miniscule Biological, Chemical, and Powder Specimens Requiring the Use of Capsules. MATERIALS 2022; 15:ma15020495. [PMID: 35057212 PMCID: PMC8780521 DOI: 10.3390/ma15020495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/25/2023]
Abstract
Steadily growing interest in magnetic characterization of organic compounds for therapeutic purposes or of other irregularly shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in the single milligram range as they are outweighed by the capsules and are subject to large alignment errors. We present here a completely new experimental methodology that permits 30-fold in situ reduction of the signal of capsules by substantially restoring the symmetry of the sample holder that is otherwise broken by the presence of the capsule. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as approximately a 1 mg object, effectively opening the window for precise magnetometry of single milligram specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers; however, it can be easily incorporated in any magnetometer that can accommodate straw sample holders (i.e., the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating the need for elaborate raw data manipulations.
Collapse
|
12
|
Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
14
|
Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26:750-764. [PMID: 34154500 DOI: 10.1080/10837450.2021.1944205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study is, preparing various dendrimeric formulations of oxaliplatin and investigating their properties. First of all, the solubility enhancement capabilities of polyamidoamine (PAMAM) G3.5 and PAMAM G4.5 dendrimers were investigated. The results showed that oxaliplatin solubility mostly increasing linearly with dendrimer concentration. Additionally, the increase was more notable in PAMAM G4.5 dendrimers. Then, drug-dendrimer complexes were prepared in different mediums, since the medium used can affect the amount of drug-loaded to dendrimers. Prepared complexes were examined for loading capacity and loading efficiency. It was found that PAMAM G4.5 dendrimers can complex with 2- to 5-fold more oxaliplatin than PAMAM G3.5. Finally, oxaliplatin was modified to a platinum (IV) compound to prepare chemical drug-dendrimer conjugates. Ester bonds were established by Steglich esterification through the hydroxyl group of modified oxaliplatin and the carboxyl groups of the dendrimers. The formulations were characterized by UV, IR, NMR spectroscopy, and dynamic light scattering techniques. PAMAM G3.5 conjugate was further evaluated for the cytotoxicity test. The IC50 value of PAMAM G3.5 conjugate was found as 0.72 µM. For unmodified oxaliplatin, this value was 14.03 µM. As a result, a dendrimer-based drug delivery system that has been found promising for further improvement has been developed successfully.
Collapse
Affiliation(s)
- Hakan Nazlı
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| | - Gülşah Gedik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| |
Collapse
|
15
|
Işıklan N, Polat S. Synthesis and characterization of thermo/pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) coated magnetic nanoparticles. Int J Biol Macromol 2020; 164:4499-4515. [PMID: 32898537 DOI: 10.1016/j.ijbiomac.2020.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Herein, thermo- and pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) copolymer-coated magnetic nanoparticles were synthesized via a green and rapid synthetic approach based on microwave irradiation. Firstly, a novel thermo- and pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) copolymer (Pec-g-PolyDMAEMA) was synthesized and then, Pec-g-PolyDMAEMA based magnetic nanoparticles (Pec-g-PolyDMAEMA@Fe3O4) were produced via microwave-assisted co-precipitation method. The thermo/pH/magnetic field multi-sensitive hybrid nanoparticle was characterized by techniques like TEM, VSM, FT-IR, and TGA/DSC. In vitro release studies of 5-Fluorouracil (FL) were carried out by altering the temperature (37 and 44°C), pH (5.5 and 7.4) and presence of an AMF. The FL release of Pec-g-PolyDMAEMA@Fe3O4@FL exhibited pH-sensitive behavior. They showed thermo/pH-sensitive FL release features with the greatest release of FL at 37°C (56%) than at 44°C (40%) and at pH of 7.4 (63%) than at pH of 5.5 (45%) within 48h. The FL release was also significantly increased (100%) with the presence of a 50 mT magnetic field. These results indicate that the developed Pec-g-PolyDMAEMA@Fe3O4 nanoparticles are promising in the application of multi-stimuli-sensitive delivery of drugs.
Collapse
Affiliation(s)
- Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| | - Sevim Polat
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey
| |
Collapse
|
16
|
Rehman A, Jafari SM, Tong Q, Riaz T, Assadpour E, Aadil RM, Niazi S, Khan IM, Shehzad Q, Ali A, Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020; 284:102251. [PMID: 32949812 DOI: 10.1016/j.cis.2020.102251] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China.
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Sohail Khan
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
17
|
Increasing the effectiveness of oxaliplatin using colloidal immunoglobulin G nanoparticles: Synthesis, cytotoxicity, interaction, and release studies. Colloids Surf B Biointerfaces 2020; 195:111255. [PMID: 32683237 DOI: 10.1016/j.colsurfb.2020.111255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/13/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
A novel biomacromolecule was prepared for a stabilizer sustained anticancer drug release system. Colloidal immunoglobulin G (IgG) nanoparticles (IgGNP) were synthesized and then characterized using FT-IR, SEM, zeta sizer, and AFM. Moreover, the formation of spherical shape IgGNP with an appropriate average size (144.56 ± 2 nm) and a narrow distribution for the drug release was confirmed. Also, the conjugation of oxaliplatin (OX) to IgGNP (OX@IgGNP) was demonstrated via the combination of spectroscopy and physical analyses. In this regard, the interaction was spantaneous with static quenching mechanism. OX caused well dispersity with no agglomeration on IgGNP with an average size of 142.31 ± 4 nm. Furthermore, the encapsulation efficiency (%EE) and drug loading (%DL) percentages were determined. Accordingly, the release behavior indicated that OX was sustained from IgGNP more than IgG (approximately 150 h) and the highest release amount of OX (100 %) was obtained at acidic medium (pH 5.5). Notably, the kinetic model was zero order and release mechanism followed by diffusion and Fick's model at neutral medium and combination of diffusion and swelling controlled and non-Fickian model at acidic medium. In addition, the anticancer effect of OX@IgGNP was evaluated on the human breast cancer cell lines, MCF-7 using MTT assay and DAPI staining that showed a remarkable efficacy, while the cytotoxicity in human fibroblast cell lines, HFFF2 has decreased. In this study, gene expression was investigated using real time PCR, which verified IgGNP induced programmed cell death in MCF-7 breast cancer cell more effectively than free OX. Subsequently, a novel nano scale biological macromolecule can be introduced as a sustained and prolonged anticancer drug release.
Collapse
|
18
|
Do VMH, Bach LG, Tran DHN, Cao VD, Nguyen TNQ, Hoang DT, Ngo VC, Nguyen DH, Thi TTH. Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer Eases Drug Delivery of Oxaliplatin. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0047-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019; 11:E395. [PMID: 31390773 PMCID: PMC6723246 DOI: 10.3390/pharmaceutics11080395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa-BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Guillermo Iglesias
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain.
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain.
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| |
Collapse
|
20
|
Servais AB, Kienzle A, Ysasi AB, Valenzuela CD, Wagner WL, Tsuda A, Ackermann M, Mentzer SJ. Structural heteropolysaccharides as air-tight sealants of the human pleura. J Biomed Mater Res B Appl Biomater 2019; 107:799-806. [PMID: 30253044 PMCID: PMC6408304 DOI: 10.1002/jbm.b.34175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023]
Abstract
Pulmonary "air leaks," typically the result of pleural injury caused by lung surgery or chest trauma, result in the accumulation of air in the pleural space (pneumothorax). Air leaks are a major source of morbidity and prolonged hospitalization after pulmonary surgery. Previous work has demonstrated structural heteropolysaccharide (pectin) binding to the mouse pleural glycocalyx. The similar lectin-binding characteristics and ultrastructural features of the human and mouse pleural glycocalyx suggested the potential application of these polymers in humans. To investigate the utility of pectin-based polymers, we developed a simulacrum using freshly obtained human pleura. Pressure-decay leak testing was performed with an inflation maneuver that involved a 3 s ramp to a 3 s plateau pressure; the inflation was completely abrogated after needle perforation of the pleura. Using nonbiologic materials, pressure-decay leak testing demonstrated an exponential decay with a plateau phase in materials with a Young's modulus less than 5. In human pleural testing, the simulacrum was used to test the sealant function of four mixtures of pectin-based polymers. A 50% high-methoxyl pectin and 50% carboxymethylcellulose mixture demonstrated no sealant failures at transpleural pressures of 60 cmH2 O. In contrast, pectin mixtures containing 50% low-methoxyl pectin, 50% amidated low-methoxyl pectins, or 100% carboxymethylcellulose demonstrated frequent sealant failures at transpleural pressures of 40-50 cmH2 O (p < 0.001). Inhibition of sealant adhesion with enzyme treatment, dessication and 4°C cooling suggested an adhesion mechanism dependent upon polysaccharide interpenetration. We conclude that pectin-based heteropolysaccharides are a promising air-tight sealant of human pleural injuries. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 799-806, 2019.
Collapse
Affiliation(s)
- Andrew B. Servais
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Arne Kienzle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Alexandra B. Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
21
|
Additive-Free Rice Starch-Assisted Synthesis of Spherical Nanostructured Hematite for Degradation of Dye Contaminant. NANOMATERIALS 2018; 8:nano8090702. [PMID: 30205567 PMCID: PMC6163276 DOI: 10.3390/nano8090702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Nanostructured hematite materials for advanced applications are conventionally prepared with the presence of additives, tainting its purity with remnants of copolymer surfactants, active chelating molecules, stabilizing agents, or co-precipitating salts. Thus, preparing nanostructured hematite via additive-free and green synthesis methods remains a huge hurdle. This study presents an environmentally friendly and facile synthesis of spherical nanostructured hematite (Sp-HNP) using rice starch-assisted synthesis. The physicochemical properties of the Sp-HNP were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DR UV-Vis), and nitrogen adsorption–desorption analysis. The Sp-HNP showed a well-crystallized structure of pure rhombohedral phase, having a spherical-shaped morphology from 24 to 48 nm, and a surface area of 20.04 m2/g. Moreover, the Sp-HNP exhibited enhanced photocatalytic degradation of methylene blue dye, owing to the large surface-to-volume ratio. The current work has provided a sustainable synthesis route to produce spherical nanostructured hematite without the use of any hazardous agents or toxic additives, in agreement with the principles of green chemistry for the degradation of dye contaminant.
Collapse
|
22
|
Liu Y, Liu K, Li X, Xiao S, Zheng D, Zhu P, Li C, Liu J, He J, Lei J, Wang L. A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 86:28-41. [PMID: 29525094 DOI: 10.1016/j.msec.2017.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022]
Abstract
The application of non-toxic carriers to increase drug loading, multi-drug delivery, and extremely small size of nano-drugs to construct a tremendous transmission system is the goal for all researchers to be pursued. The proposal of natural pectin nano-platform for delivery of multiple drugs is critical for biomedical research, especially a particle size of below 100nm with high yield. Here we design a new core-shell structure pectin-eight-arm polyethylene glycol-ursolic acid/hydrooxycampothecin nanoparticle (Pec-8PUH NPs) through a special self-assembly method for stabilizing and dispersing particles, improving water-solubility, and achieving drug controlled release. The obtained Pec-8PUH NPs possessed appropriate size (~91nm), drug-loaded efficiency and encapsulation efficiency through the regulation of eight-arm polyethylene glycol. In addition, Pec-8PUH NPs could enhance cell cytotoxicity, shorten blood retention time (7.3-fold UA, 7.2-fold HCPT) and more effective cellular uptake than free drugs, which exhibited an obvious synergistic effect of UA and HCPT by the co-delivery. 4T1 tumor-bearing mice also showed a higher survival rate than free UA and free HCPT. The result further shows that this novel drug delivery system has a promising potential for anti-cancer combination therapy.
Collapse
Affiliation(s)
- Yanxue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaomin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Shangzhen Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Pengbo Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Chunxiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
23
|
Liu Y, Zheng D, Ma Y, Dai J, Li C, Xiao S, Liu K, Liu J, Wang L, Lei J, He J. Self-Assembled Nanoparticles Platform Based on Pectin-Dihydroartemisinin Conjugates for Codelivery of Anticancer Drugs. ACS Biomater Sci Eng 2018; 4:1641-1650. [PMID: 33445320 DOI: 10.1021/acsbiomaterials.7b00842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural pectin is an important carrier for delivering drugs in biomedical research, however, there are only a few reports on the preparation of pectin nanoparticles, especially a particle size of below 100 nm with high yield. Here we design pectin-dihydroartemisinin/hydrooxycampothecin nanoparticles (PDC-H NPs) through a self-assembly method. The prepared PDC-H NPs contained hydrophilic part of pectin and hydrophobic anticancer drugs of dihydroartemisinin and hydroxycamptothecin, which could increase drug loading, improve water solubility, and achieve controlled release of drugs. The results indicated that the particle size of PDC-H NPs was about 70 nm, drug-loaded efficiency of DHA was 20.33 wt %, and encapsulation efficiency of HCPT was 14.11 wt %. PDC-H NPs exhibited a higher cytotoxicity, the blood retention time of PDC-H NPs was 4.8-fold longer than DHA and was 6.8-fold longer than HCPT. In addition, effective cellular uptake exhibited an obvious synergistic effect compared with DHA and HCPT. 4T1 tumor-bearing mice also showed a higher survival rate than free DHA and free HCPT. The result show that the self-assembled PDC-H NPs is a promising anticancer drug for codelivery.
Collapse
Affiliation(s)
- Yanxue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Yunyun Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Juan Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chunxiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Shangzhen Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
24
|
Bayón B, Berti IR, Gagneten AM, Castro GR. Biopolymers from Wastes to High-Value Products in Biomedicine. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7431-8_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int J Biol Macromol 2017; 101:254-272. [DOI: 10.1016/j.ijbiomac.2017.03.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
|
26
|
El-Kassas HY, Ghobrial MG. Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against "Oscillatoria simplicissima". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7837-7849. [PMID: 28132190 DOI: 10.1007/s11356-017-8362-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
This study aims at controlling of the cyanobacteria Oscillatoria simplicissima, those that produce neurotoxins and have negative impacts on the aquatic organisms, using biosynthesized metal nanoparticles (NPs). Silver-NPs (Ag-NPs) have been successfully biosynthesized using Nannochloropsis oculata and Tetraselmis tetrathele cultures. Also, Ag-NPs and iron oxide-NPs (Fe3O4-NPs) were synthesized by Halophila stipulacea aqueous extract. The structural composition of the different biosynthesized NPs was studied. The algae cultures and the extract were used as reductants of AgNO3, and brown colors due to Ag-NP biosynthesis were observed. Silver signals were recorded in their corresponding EDX spectra. FTIR analyses showed that proteins in N. oculata and T. tetrathele cultures reduced AgNO3, and aromatic compounds stabilized the biogenic Ag-NPs. H. stipulacea extract contains proteins and polyphenols that could be in charge for the reduction of silver and iron ions into nanoparticles and polysaccharides which stabilized the biosynthesized Ag-NPs and Fe3O4-NPs. The Ag-NPs biosynthesized by T. tetrathele cultures and H. stipulacea aqueous extract exerted outstanding negative impacts on O. simplicissima (optical density and total chlorophyll) and the Ag-NPs biosynthesized using N. oculata culture exerted the moderate performance. The study results suggest that the bioactive compounds present in the FTIR profiles of the Ag-NPs and or ionic silver may be the main contributors in their anti-algal effects. A trial to use the biosynthesized Fe3O4-NPs using H. stipulacea aqueous extract to separate Ag-NPs was successfully carried out. Since the synthesis and applications of nanomaterials is a hot subject of research, the study outcomes not only provide a green approach for the synthesis of metal-NPs but also open the way for more nanoparticle applications.
Collapse
Affiliation(s)
- Hala Y El-Kassas
- Hydrobiology Department, Marine Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt.
| | - Mary G Ghobrial
- Hydrobiology Department, Marine Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
27
|
Waifalkar P, Parit S, Chougale A, Sahoo SC, Patil P, Patil P. Immobilization of invertase on chitosan coated γ-Fe 2 O 3 magnetic nanoparticles to facilitate magnetic separation. J Colloid Interface Sci 2016; 482:159-164. [DOI: 10.1016/j.jcis.2016.07.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
|
28
|
Munaweera I, Shi Y, Koneru B, Saez R, Aliev A, Di Pasqua AJ, Balkus KJ. Chemoradiotherapeutic Magnetic Nanoparticles for Targeted Treatment of Nonsmall Cell Lung Cancer. Mol Pharm 2015; 12:3588-96. [PMID: 26325115 DOI: 10.1021/acs.molpharmaceut.5b00304] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States and approximately 85% of all lung cancers are classified as nonsmall cell (NSCLC). We here use an innovative approach that may ultimately allow for the clinician to target tumors and aggressively reduce tumor burden in patients with NSCLC. In this study, a platinum (Pt)-based chemotherapeutic (cisplatin, carboplatin, or oxaliplatin) and holmium-165 (Ho), which can be neutron-activated to produce the holmium-166 radionuclide, have been incorporated together in a garnet magnetic nanoparticle (HoIG-Pt) for selective delivery to tumors using an external magnet. The synthesized magnetic HoIG nanoparticles were characterized using PXRD, TEM, ICP-MS, and neutron-activation. Platinum(II) drugs were incorporated onto HoIG, and these were characterized using FTIR, EDX, ICP-MS, and zeta potential measurements, and in vitro and in vivo studies were performed using a HoIG-platinum system. Results indicate that neutron-activated (166)HoIG-cisplatin is more toxic toward NSCLC A549 cells than is blank (166)HoIG and free cisplatin, and that when an external magnetic field is applied in vivo, higher tumor to liver ratios of Ho are observed than when no magnet is applied, suggesting that magnetic targeting is achieved using this system. Furthermore, an efficacy study demonstrated the inhibition of tumor growth by chemoradiotherapeutic magnetic nanoparticles, compared to no treatment controls.
Collapse
Affiliation(s)
- Imalka Munaweera
- Department of Chemistry, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Yi Shi
- Depatment of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center , 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Bhuvaneswari Koneru
- Depatment of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center , 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Ruben Saez
- Texas Health Research and Education Institute , Plano, Texas 75093, United States
| | - Ali Aliev
- Department of Chemistry, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Anthony J Di Pasqua
- Depatment of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center , 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Kenneth J Balkus
- Department of Chemistry, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
29
|
Ninan N, Muthiah M, Park IK, Wong TW, Thomas S, Grohens Y. Natural Polymer/Inorganic Material Based Hybrid Scaffolds for Skin Wound Healing. POLYM REV 2015. [DOI: 10.1080/15583724.2015.1019135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Kura AU, Hussein MZ, Fakurazi S, Arulselvan P. Layered double hydroxide nanocomposite for drug delivery systems; bio-distribution, toxicity and drug activity enhancement. Chem Cent J 2014; 8:47. [PMID: 25177361 PMCID: PMC4149231 DOI: 10.1186/s13065-014-0047-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/21/2014] [Indexed: 01/24/2023] Open
Abstract
The production of layered double hydroxide(LDH) nanocomposite as an alternative drug delivery system against various ailments is on the increase. Their toxicity potential is usually dose and time dependent with particle sizes, shapes and surface charge playing some role both in the in vitro and in vivo studies. The reticular endothelial system of especially the liver and spleen were shown to sequestrate most of these nanocomposite, especially those with sizes greater than 50 nm. The intracellular drug delivery by these particles is mainly via endocytotic pathways aided by the surface charges in most cases. However, structural modification of these nanocomposite via coating using different types of material may lower the toxicity where present. More importantly, the coating may serve as targeting ligand hence, directing drug distribution and leading to proper drug delivery to specific area of need; it equally decreases the unwanted nanocomposite accumulation in especially the liver and spleen. These nanocomposite have the advantage of wider bio-distribution irrespective of route of administration, excellent targeted delivery potential with ease of synthetic modification including coating.
Collapse
Affiliation(s)
- Aminu Umar Kura
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Selangor, Malaysia ; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Selangor, Malaysia
| |
Collapse
|
31
|
Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin. INT J POLYM SCI 2014. [DOI: 10.1155/2014/340121] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Curcumin was loaded onto starch nanoparticles by usingin situnanoprecipitation method and water-in-oil microemulsion system. Curcumin loaded starch nanoparticles exhibited enhanced solubility in aqueous solution as compared to free curcumin. Effects of formulation parameters such as types of reaction medium, types of surfactant, surfactant concentrations, oil/ethanol ratios, loading time, and initial curcumin concentration were found to affect the particle size and loading efficiency (LF) of the curcumin loaded starch nanoparticles. Under optimum conditions, curcumin loaded starch nanoparticles with mean particles size of 87 nm and maximum loading efficiency of 78% were achieved. Curcumin was observed to release out from starch nanoparticles in a sustained way under physiological pH over a period of 10 days.
Collapse
|
32
|
Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 2013; 98:877-85. [PMID: 23987424 DOI: 10.1016/j.carbpol.2013.06.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 02/01/2023]
Abstract
Highly porous three-dimensional scaffolds made of biopolymers are of great interest in tissue engineering applications. A novel scaffold composed of pectin, carboxymethyl cellulose (CMC) and microfibrillated cellulose (MFC) were synthesised using lyophilisation technique. The optimised scaffold with 0.1% MFC, C(0.1%), showed highest compression modulus (~3.987 MPa) and glass transition temperature (~103 °C). The pore size for the control scaffold, C(0%), was in the range of 30-300 μm while it was significantly reduced to 10-250 μm in case of C(0.1%). Using micro computed tomography, the porosity of C(0.1%) was estimated to be 88%. C(0.1%) showed excellent thermal stability and lower degradation rate compared to C(0%). The prepared samples were also characterised using XRD and FTIR. C(0.1%) showed controlled water uptake ability and in vitro degradation in PBS. It exhibited highest cell viability on NIH3T3 fibroblast cell line. These results suggest that these biocompatible composite scaffolds can be used for tissue engineering applications.
Collapse
Affiliation(s)
- Neethu Ninan
- Université de Bretagne Sud, Laboratoire Ingénierie des Matériaux de Bretagne, BP 92116, 56321 Lorient Cedex, France.
| | | | | | | | | | | |
Collapse
|
33
|
Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 2013; 17:175-88. [DOI: 10.1016/j.cbpa.2013.01.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
|