1
|
Cai SH, Wang B, Zhang J, Guo J, Hu B. Wearable sampling of proteins from human exhaled aerosols for nano-liquid chromatography-tandem mass spectrometry analysis: A pilot study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9737. [PMID: 38533583 DOI: 10.1002/rcm.9737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
RATIONALE Human exhaled breath usually contains unique proteins that may provide clues to characterize individual physiological activities and many diseases. However, the concentration of exhaled proteins in exhaled breath is extremely low and usually does not reach the detection limits of all online breath mass spectrometry instruments. Therefore, developing a new breath sampler for collecting and characterizing exhaled proteins is important. METHODS In this study, a new mask-based wearable sampler was developed by fixing metal materials into the inner surface of the KN95 mask. Human exhaled proteins could be directly adsorbed onto the metal material while wearing the mask. After sampling, the collected proteins were eluted, digested, and identified using nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). RESULTS The adsorption of exhaled proteins was evaluated, showing that modified gold foil is an effective material for collecting exhaled proteins. Various endogenous proteins were successfully identified from exhaled breath, many of which can be potential biomarkers for disease diagnosis. CONCLUSIONS By coupling the newly developed mask sampler with nano-LC-MS/MS, human exhaled proteins were successfully collected and identified. Our results show that the mask sampler is wearable, simple, and convenient, and the method is noninvasive for investigating disease diagnosis and human health.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Baixue Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jiubiao Guo
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Gade IL, Riddersholm SJ, Stilling-Vinther T, Brøndum RF, Bennike TB, Honoré B. A clinical proteomics study of exhaled breath condensate and biomarkers for pulmonary embolism. J Breath Res 2023; 18:016007. [PMID: 37939397 DOI: 10.1088/1752-7163/ad0aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Pulmonary embolism (PE) can be a diagnostic challenge. Current diagnostic markers for PE are unspecific and new diagnostic tools are needed. The air we exhale is a possible new source for biomarkers which can be tapped into by analysing the exhaled breath condensate (EBC). We analysed the EBC from patients with PE and controls to investigate if the EBC is a useful source for new diagnostic biomarkers of PE. We collected and analysed EBC samples from patients with suspected PE and controls matched on age and sex. Patients in whom PE was ruled out after diagnostic work-up were included in the control group to increase the sensitivity and generalizability of the identified markers. EBC samples were collected using an RTube™. The protein composition of the EBCs were analysed using data dependent label-free quantitative nano liquid chromatography-tandem mass spectrometry. EBC samples from 28 patients with confirmed PE, and 49 controls were analysed. A total of 928 EBC proteins were identified in the 77 EBC samples. As expected, a low protein concentration was determined which resulted in many proteins with unmeasurable levels in several samples. The levels of HSPA5, PEBP1 and SFTPA2 were higher and levels of POF1B, EPPK1, PSMA4, ALDOA, and CFL1 were lower in PE compared with controls. In conclusion, the human EBC contained a variety of endogenous proteins and may be a source for new diagnostic markers of PE and other diseases.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Hematology and Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | | | | | - Rasmus Froberg Brøndum
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, 9260 Gistrup, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Xu F, Zhou J, Yang H, Chen L, Zhong J, Peng Y, Wu K, Wang Y, Fan H, Yang X, Zhao Y. Recent advances in exhaled breath sample preparation technologies for drug of abuse detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Xie X, Yu Z, Huang A, Lai G, Liu D, Zou S. Role of Smooth Muscle Cells Regulated by Vitamin D in Bronchial Asthma Airway Remodeling and Efficacy of Nanomedicine on Bronchial Asthma. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed to analyze the therapeutic effect of nanomedicine on bronchial asthma and the effect of vitamin 1,25-(OH)2D3 on airway remodeling. The four groups of Z1 (1,25-(OH)2D3+RNPEG-ABT-199), Z2 (RNPEG-ABT-199), Z3 (ABT-199), and Z4
(normal Control) were designed in this study. The prepared acid-responsive mitochondrial targeting nanomedicine (RNPEG-ABT-199) and non-responsive mitochondrial targeting nanomedicine (PEG-ABT-199) were applied to the treatment of asthma mouse models. The results showed the PU value of caspase-3
in Z4 was lower than Z1, Z2, and Z3 groups; and in Z3 was higher than Z1 and Z2 groups. IL-4, IL-5, and TNF-α levels in Z3 were obviously higher than Z1, Z2, and Z4 groups, while those in the Z1 were obviously lower than the Z2 and Z4 groups; the proliferation activity of airway
smooth muscle cells (ASMCs) of Z3 was obviously higher than the Z1, Z2, and Z4 groups, and that of the Z1 was obviously lower than the Z2 group. In short, RNPEG-ABT-199 has stronger lysosomal escape ability and mitochondrial targeting than PEG-ABT-199. RNPEG-ABT-199 can cause apoptosis of
inflammatory cells and decrease pro-inflammatory cytokines, which is better than PEG-ABT-199. Vitamin1,25-(OH)2D3 can obviously inhibit the proliferation activity of ASMCs cells, and be used in the treatment of asthma along with RNPEG-ABT-199.
Collapse
Affiliation(s)
- Xiaoyun Xie
- Department of Clinical Pharmacy, 900th Hospital of Joint Logistics Support Force, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou 300074, China
| | - Zongyang Yu
- Department of Pulmonary and Critical Care Medicine, 900th Hospital of Joint Logistics Support Force, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou 300074, China
| | - Aiwen Huang
- Department of Clinical Pharmacy, 900th Hospital of Joint Logistics Support Force, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou 300074, China
| | - Guoxiang Lai
- Department of Pulmonary and Critical Care Medicine, 900th Hospital of Joint Logistics Support Force, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou 300074, China
| | - Deling Liu
- Department of Pulmonary and Critical Care Medicine, 900th Hospital of Joint Logistics Support Force, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou 300074, China
| | - Shumei Zou
- Department of Pulmonary and Critical Care Medicine, 900th Hospital of Joint Logistics Support Force, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou 300074, China
| |
Collapse
|
6
|
Hemmendinger M, Sauvain JJ, Hopf NB, Suárez G, Guseva Canu I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants (Basel) 2022; 11:antiox11050830. [PMID: 35624694 PMCID: PMC9138069 DOI: 10.3390/antiox11050830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification. We developed a new liquid chromatography coupled to tandem mass spectrometry method to quantify 8-OHdG and 8-isoprostane in EBC simultaneously. We applied this novel biomarker method in EBC obtained from 10 healthy subjects, 7 asthmatic subjects, and 9 subjects with chronic obstructive pulmonary disease. Both biomarkers were below the limit of detection (LOD) despite the good sensitivity of the chemical analytical method (LOD = 0.5 pg/mL for 8-OHdG; 1 pg/mL for 8-isoprostane). This lack of detection might result from factors affecting EBC collections. These findings are in line with methodological concerns already raised regarding the reliability of EBC collection for quantification of 8-OHdG and 8-isoprostane. Precaution is therefore needed when comparing literature results without considering methodological issues relative to EBC collection and analysis. Loss of analyte during EBC collection procedures still needs to be resolved before using these oxidative stress biomarkers in EBC.
Collapse
|
7
|
A novel temperature-controlled open source microcontroller based sampler for collection of exhaled breath condensate in point-of-care diagnostics. Talanta 2022; 237:122984. [PMID: 34736704 DOI: 10.1016/j.talanta.2021.122984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022]
Abstract
Exhaled breath condensate (EBC) is an attractive, non-invasive sample for clinical diagnostics. During EBC collection, its composition is influenced by the collection temperature, a factor that is often not thoroughly monitored and controlled. In this study, we assembled a novel, simple, portable, and inexpensive device for EBC collection, able to maintain a stable temperature at any value between -7 °C and +12 °C. The temperature was controlled using a microcontroller and a thermoelectric cooler that was employed to cool the aluminum block holding the glass tube or the polypropylene syringe. The performance of the novel sampler was compared with the passively cooled RTube™ and a simple EBC sampler, in which the temperature was steadily increasing during sampling. The developed sampler was able to maintain a stable temperature within ±1 °C. To investigate the influence of different sampling temperatures (i.e., +12, -7, -80 °C) on the analyte content in EBC, inorganic ions and organic acids were analyzed by capillary electrophoresis with a capacitively coupled contactless conductivity detector. It was shown that the concentration of metabolites decreased significantly with decreasing temperature. The portability and the ability to keep a stable temperature during EBC sampling makes the developed sampler suitable for point-of-care diagnostics.
Collapse
|
8
|
Gade IL, Schultz JG, Brøndum RF, Kjærgaard B, Nielsen-Kudsk JE, Andersen A, Kristensen SR, Honoré B. Putative Biomarkers for Acute Pulmonary Embolism in Exhaled Breath Condensate. J Clin Med 2021; 10:5165. [PMID: 34768685 PMCID: PMC8584843 DOI: 10.3390/jcm10215165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Current diagnostic markers for pulmonary embolism (PE) are unspecific. We investigated the proteome of the exhaled breath condensate (EBC) in a porcine model of acute PE in order to identify putative diagnostic markers for PE. EBC was collected at baseline and after the induction of autologous intermediate-risk PE in 14 pigs, plus four negative control pigs. The protein profiles of the EBC were analyzed using label-free quantitative nano liquid chromatography-tandem mass spectrometry. A total of 897 proteins were identified in the EBCs from the pigs. Alterations were found in the levels of 145 different proteins after PE compared with the baseline and negative controls: albumin was among the most upregulated proteins, with 14-fold higher levels 2.5 h after PE (p-value: 0.02). The levels of 49 other proteins were between 1.3- and 17.1-fold higher after PE. The levels of 95 proteins were lower after PE. Neutrophil gelatinase-associated lipocalin (fold change 0.3, p-value < 0.01) was among the most reduced proteins 2.5 h after PE. A prediction model based on penalized regression identified five proteins including albumin and neutrophil gelatinase-associated lipocalin. The model was capable of discriminating baseline samples from EBC samples collected 2.5 h after PE correctly in 22 out of 27 samples. In conclusion, the EBC from pigs with acute PE contained several putative diagnostic markers of PE.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Hematology and Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jacob Gammelgaard Schultz
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.G.S.); (J.E.N.-K.); (A.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Rasmus Froberg Brøndum
- Department of Hematology and Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
| | - Benedict Kjærgaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.G.S.); (J.E.N.-K.); (A.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.G.S.); (J.E.N.-K.); (A.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark; (S.R.K.); (B.H.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Tereshchenko SY, Malinchik MA, Smolnikova MV. Inflammatory markers in exhaled breath condensate in bronchial asthma. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021. [DOI: 10.21518/2079-701x-2021-16-212-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic respiratory diseases are among the most common non- infection diseases. In particular, it is bronchial asthma (BA), characterized by bronchial hyperreactivity and varying degrees of airway obstruction that is the cause of morbidity and mortality. The methods available for the information about the presence of inflammation in the airways, such as bronchoscopy and bronchial biopsy to be obtained have currently been invasive and difficult in everyday clinical practice, especially for children and seriously ill patients. In this regard, recently there has been an increase in the development of non-invasive methods for diagnosing the respiratory system, being comfortable and painless for trial subjects, especially children, also providing the inflammatory process control in the lungs, the severity assessment and monitoring the treatment process. The exhaled breath condensate (EBC) is of great attention, which is a source of various biomolecules, including nitric oxide (NO), leukotrienes, 8-isoprostane, prostaglandins, etc., being locally or systemically associated with disease processes in the body. Of particular interest is the presence of cytokines in EBC, namely the specific proteins produced by various cells of the body that play a key role in inflammatory processes in AD and provide cell communication (cytokine network). Thereby, it becomes possible for the severity and control level of childhood bronchial asthma using only the EBC analysis to be assessed. In addition, the non-invasiveness of this method allows it to be reused for monitoring lung diseases of even the smallest patients, including infants. Thus, the field of metabolite analysis in EBC has been developing and, in the near future, the given method is likely to be the most common for diagnosing the respiratory system diseases in both children and adults.
Collapse
Affiliation(s)
- S. Yu. Tereshchenko
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| | - M. A. Malinchik
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| | - M. V. Smolnikova
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
10
|
Połomska J, Bar K, Sozańska B. Exhaled Breath Condensate-A Non-Invasive Approach for Diagnostic Methods in Asthma. J Clin Med 2021; 10:jcm10122697. [PMID: 34207327 PMCID: PMC8235112 DOI: 10.3390/jcm10122697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of asthma has been intensively studied, but its underlying mechanisms such as airway inflammation, control of airway tone, and bronchial reactivity are still not completely explained. There is an urgent need to implement novel, non-invasive diagnostic tools that can help to investigate local airway inflammation and connect the molecular pathways with the broad spectrum of clinical manifestations of asthma. The new biomarkers of different asthma endotypes could be used to confirm diagnosis, predict asthma exacerbations, or evaluate treatment response. In this paper, we briefly describe the characteristics of exhaled breath condensate (EBC) that is considered to be an interesting source of biomarkers of lung disorders. We look at the composition of EBC, some aspects of the collection procedure, the proposed biomarkers for asthma, and its clinical implications. We also indicate the limitations of the method and potential strategies to standardize the procedure of EBC collection and analytical methods.
Collapse
|
11
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gade IL, Schultz JG, Cehofski LJ, Kjaergaard B, Severinsen MT, Rasmussen BS, Vorum H, Honoré B, Kristensen SR. Exhaled breath condensate in acute pulmonary embolism; a porcine study of effect of condensing temperature and feasibility of protein analysis by mass spectrometry. J Breath Res 2020; 15. [PMID: 33321479 DOI: 10.1088/1752-7163/abd3f2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The search for diagnostic biomarkers for pulmonary embolism (PE) has mainly been focused on blood samples. Exhaled breath condensate (EBC) is a possible source for biomarkers specific for chronic lung diseases and cancer, yet no previous studies have investigated the potential of EBC for diagnosis of PE. The protein content in the EBC is very low, and efficient condensing of the EBC is important in order to obtain high quality samples for protein analysis. We investigated if advanced proteomic techniques in a porcine model of acute intermediate-high-risk PE was feasible using two different condensing temperatures for EBC collection. METHODS Seven pigs were anaesthetized and intubated. EBC was collected one hour after intubation. Two autologous emboli were induced through the right external jugular vein. Two hours after the emboli were administered, EBC was collected again. Condensing temperature was either -21 °C or -80 °C. Nano liquid chromatography - tandem mass spectrometry (nLC-MS/MS) was used to identify and quantify proteins of the EBC. RESULTS A condensing temperature of - 80 °C significantly increased the EBC volume compared with -21 °C (1.78±0.25 ml vs 0.71±0.12 ml) while the protein concentration in the EBC was unaltered. The mean protein concentration in the EBCs was 5.85±0.93 µg/ml, unaltered after PE. In total, 254 proteins were identified in the EBCs. Identified proteins included proteins of the cytoplasm, nucleus, plasma membrane and extracellular region. The protein composition did not differ according to condensing temperature. CONCLUSION The EBC from pigs with acute intermediate-high-risk PE contained sufficient amounts of protein for analysis by nLC-MS/MS. The proteins were from relevant cellular compartments, indicating that EBC is a possible source for biomarkers for acute PE.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, Aalborg, 9000, DENMARK
| | | | | | - Benedict Kjaergaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, DENMARK
| | | | - Bodil Steen Rasmussen
- Department of Anesthesiology and Intensive Care, Aalborg University Hospital, Aalborg, DENMARK
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, DENMARK
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, DENMARK
| | | |
Collapse
|
13
|
Mäkitie AA, Almangush A, Youssef O, Metsälä M, Silén S, Nixon IJ, Haigentz M, Rodrigo JP, Saba NF, Vander Poorten V, Ferlito A. Exhaled breath analysis in the diagnosis of head and neck cancer. Head Neck 2019; 42:787-793. [PMID: 31854494 DOI: 10.1002/hed.26043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) comprises a heterogeneous group of upper aerodigestive tract malignant neoplasms, the most frequent of which is squamous cell carcinoma. HNC forms the eighth most common cancer type and the incidence is increasing. However, survival has improved only moderately during the past decades. Currently, early diagnosis remains the mainstay for improving treatment outcomes in this patient population. Unfortunately, screening methods to allow early detection of HNC are not yet established. Therefore, many cases are still diagnosed at advanced stage, compromising outcomes. Exhaled breath analysis (EBA) is a diagnostic tool that has been recently introduced for many cancers. Breath analysis is non-invasive, cost-effective, time-saving, and can potentially be applied for cancer screening. Here, we provide a summary of the accumulated evidence on the feasibility of EBA in the diagnosis of HNC.
Collapse
Affiliation(s)
- Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Faculty of Dentistry, University of Misurata, Misurata, Libya
| | - Omar Youssef
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Markus Metsälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Suvi Silén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iain J Nixon
- Department of Otolaryngology, Head and Neck Surgery, NHS Lothian, Edinburgh University, Edinburgh, UK
| | - Missak Haigentz
- Division of Hematology/Oncology, Department of Medicine, Morristown Medical Center/Atlantic Health System, Morristown, New Jersey
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, ISPA, IUOPA, CIBERONC, Oviedo, Spain
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section of Head and Neck Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
14
|
Koc A, Goksel T, Pelit L, Korba K, Dizdas TN, Baysal E, Uzun UC, Kaya OO, Ozyilmaz B, Kutbay YB, Ozdemir TR, Kirbiyik O, Erdogan KM, Guvenc MS, Kocal GC, Basbinar Y. cfDNA in exhaled breath condensate (EBC) and contamination by ambient air: toward volatile biopsies. J Breath Res 2019; 13:036006. [PMID: 30970343 DOI: 10.1088/1752-7163/ab17ff] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exhaled breath is a source of volatile and nonvolatile biomarkers in the body that can be accessed non-invasively and used for monitoring. The collection of lung secretions by conventional methods such as bronchoalveolar lavage, induced sputum collection, and core biopsies is limited by the invasive nature of these methods. Non-invasive collection of exhaled breath condensate (EBC) provides fluid samples that are representative of airway lining fluids. Various volatile and nonvolatile biomarkers can be detected in volatile condensates, such as H2O2, nitric oxide, lipid mediators, cytokines, chemokines, DNA, and microRNAs. Studies have examined cell-free DNA (cfDNA) in plasma samples from non-small-cell lung cancer patients, offering to new insights and fostering development of the liquid biopsy. However, few studies have examined cfDNA in EBC samples. This study examined whether EBC is an appropriate source of cfDNA using housekeeping-gene-specific primer probes and quantitative real-time polymerase chain reaction in healthy subjects. Ambient (room) air is contaminated with DNA, so caution is needed. Preliminary studies indicated that volatile biopsies are becoming an important diagnostic tool in lung cancer.
Collapse
Affiliation(s)
- Altug Koc
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey. Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey. Genetic Diagnosis Center, Izmir Tepecik Training and Research Hospital, Health Sciences University, Izmir, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Farne H, Groves HT, Gill SK, Stokes I, McCulloch S, Karoly E, Trujillo-Torralbo MB, Johnston SL, Mallia P, Tregoning JS. Comparative Metabolomic Sampling of Upper and Lower Airways by Four Different Methods to Identify Biochemicals That May Support Bacterial Growth. Front Cell Infect Microbiol 2018; 8:432. [PMID: 30619778 PMCID: PMC6305596 DOI: 10.3389/fcimb.2018.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria need nutrients from the host environment to survive, yet we know little about which biochemicals are present in the airways (the metabolome), which of these biochemicals are essential for bacterial growth and how they change with airway disease. The aims of this pilot study were to develop and compare methodologies for sampling the upper and lower airway metabolomes and to identify biochemicals present in the airways that could potentially support bacterial growth. Eight healthy human volunteers were sampled by four methods: two standard approaches - nasal lavage and induced sputum, and two using a novel platform, synthetic adsorptive matrix (SAM) strips—nasosorption and bronchosorption. Collected samples were analyzed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Five hundred and eighty-one biochemicals were recovered from the airways belonging to a range of metabolomic super-pathways. We observed significant differences between the sampling approaches. Significantly more biochemicals were recovered when SAM strips were used, compared to standard sampling techniques. A range of biochemicals that could support bacterial growth were detected in the different samples. This work demonstrates for the first time that SAM strips are a highly effective method for sampling the airway metabolome. This work will assist further studies to understand how changes in the airway metabolome affect bacterial infection in patients with underlying airway disease.
Collapse
Affiliation(s)
- Hugo Farne
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Helen T Groves
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Simren K Gill
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Isobel Stokes
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | | | - Sebastian L Johnston
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Mallia
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Peterová E, Chládek J, Kohoutová D, Knoblochová V, Morávková P, Vávrová J, Řezáčová M, Bureš J. Exhaled Breath Condensate: Pilot Study of the Method and Initial Experience in Healthy Subjects. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:8-16. [PMID: 30012244 DOI: 10.14712/18059694.2018.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Analysis of Exhaled breath condensate (EBC) is a re-discovered approach to monitoring the course of the disease and reduce invasive methods of patient investigation. However, the major disadvantage and shortcoming of the EBC is lack of reliable and reproducible standardization of the method. Despite many articles published on EBC, until now there is no clear consensus on whether the analysis of EBC can provide a clue to diagnosis of the diseases. The purpose of this paper is to investigate our own method, to search for possible standardization and to obtain our own initial experience. Thirty healthy volunteers provided the EBC, in which we monitored the density, pH, protein, chloride and urea concentration. Our results show that EBC pH is influenced by smoking, and urea concentrations are affected by the gender of subjects. Age of subjects does not play a role. The smallest coefficient of variation between individual volunteers is for density determination. Current limitations of EBC measurements are the low concentration of many biomarkers. Standardization needs to be specific for each individual biomarker, with focusing on optimal condensate collection. EBC analysis has a potential become diagnostic test, not only for lung diseases.
Collapse
Affiliation(s)
- Eva Peterová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic. .,Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| | - Jaroslav Chládek
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Veronika Knoblochová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Paula Morávková
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 2017; 1006:49-60. [PMID: 30016264 DOI: 10.1016/j.aca.2017.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/13/2023]
Abstract
The non-invasive, quick, and safe collection of exhaled breath condensate makes it a candidate as a diagnostic matrix in personalized health monitoring devices. The lack of standardization in collection methods and sample analysis is a persistent limitation preventing its practical use. The collection method and hardware design are recognized to significantly affect the metabolomic content of EBC samples, but this has not been systematically studied. Here, we completed a series of experiments to determine the sole effect of collection temperature on the metabolomic content of EBC. Temperature is a likely parameter that can be controlled to standardize among different devices. The study considered six temperature levels covering two physical phases of the sample; liquid and solid. The use of a single device in our study allowed keeping saliva filtering and collector surface effects as constant parameters and the temperature as a controlled variable; the physiological differences were minimized by averaging samples from a group of volunteers and a period of time. After EBC collection, we used an organic solvent rinse to collect the non-water-soluble compounds from the condenser surface. This additional matrix enhanced metabolites recovery, was less dependent on temperature changes, and may possibly serve as an additional pointer to standardize EBC sampling methodologies. The collected EBC samples were analyzed with a set of mass spectrometry methods to provide an overview of the compounds and their concentrations present at each temperature level. The total number of volatile and polar non-volatile compounds slightly increased in each physical phase as the collection temperature was lowered to minimum, 0 °C for liquid and -30, -56 °C for solid. The low-polarity non-volatile compounds showed a weak dependence on the collection temperature. The metabolomic content of EBC samples may not be solely dependent on temperature but may be influenced by other phenomena such as greater sample dilution due to condensation from the ambient air at colder temperatures, or due to adhesion properties of the collector surface and occurring chemical reactions. The relative importance of other design parameters such as condenser coating versus temperature requires further investigation.
Collapse
|
19
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Peel AM, Crossman-Barnes CJ, Tang J, Fowler SJ, Davies GA, Wilson AM, Loke YK. Biomarkers in adult asthma: a systematic review of 8-isoprostane in exhaled breath condensate. J Breath Res 2017; 11:016011. [PMID: 28102831 DOI: 10.1088/1752-7163/aa5a8a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We aimed to assess the evidence for the use of 8-isoprostane in exhaled breath condensate (EBC) as a biomarker in adult asthma. DESIGN A systematic review and meta-analysis of EBC 8-isoprostane. METHODS We searched a number of online databases (including PubMed, Embase and Scopus) in January 2016. We included studies of adult non-smokers with EBC collection and asthma diagnosis conducted according to recognised guidelines. We aimed to pool data using random effects meta-analysis and assess heterogeneity using I 2. RESULTS We included twenty studies, the findings from which were inconsistent. Seven studies (n = 329) reported 8-isoprostane levels in asthma to be significantly higher than that of control groups, whilst six studies (n = 403) did not. Only four studies were appropriate for inclusion in a random effects meta-analysis of mean difference. This found a statistically significant between-groups difference of 22 pg ml-1. Confidence in the result is limited by the small number of studies and by substantial statistical heterogeneity (I 2 = 94). CONCLUSION The clinical value of EBC 8-isoprostane as a quantitative assessment of oxidative stress in asthma remains unclear due to variability in results and methodological heterogeneity. It is essential to develop a robust and standardised methodology if the use of EBC 8-isoprostane in asthma is to be properly evaluated.
Collapse
Affiliation(s)
- Adam M Peel
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Lütkecosmann S, Warsinke A, Tschöpe W, Eichler R, Hanack K. A novel monoclonal antibody suitable for the detection of leukotriene B4. Biochem Biophys Res Commun 2016; 482:1054-1059. [PMID: 27913298 DOI: 10.1016/j.bbrc.2016.11.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
Leukotriene B4 as an inflammatory mediator is an important biomarker for different respiratory diseases like asthma, chronic obstructive pulmonary disease or cystic lung fibrosis. Therefore the detection of LTB4 is helpful in the diagnosis of these pulmonary diseases. However, until now its determination in exhaled breath condensates suffers from problems of accuracy. Reasons for that could be improper sample collection and preparation methods of condensates and the lack of consistently assay specificity and reproducibility of the used immunoassay detection system. In this study we describe the development and the characterization of a specific monoclonal antibody (S27BC6) against LTB4, its use as molecular recognition element for the development of an enzyme-linked immunoassay to detect LTB4 and discuss possible future diagnostic applications.
Collapse
Affiliation(s)
- Steffi Lütkecosmann
- Chair of Immunotechnology, Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Axel Warsinke
- FILT GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | - Katja Hanack
- Chair of Immunotechnology, Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany.
| |
Collapse
|
22
|
Youssef O, Sarhadi VK, Armengol G, Piirilä P, Knuuttila A, Knuutila S. Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers-A mini-review. Genes Chromosomes Cancer 2016; 55:905-914. [DOI: 10.1002/gcc.22399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Omar Youssef
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Virinder Kaur Sarhadi
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma De Barcelona; Barcelona Catalonia Spain
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS-Medical Imaging Center, Helsinki University Hospital and Helsinki University; Helsinki Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine; University of Helsinki and Helsinki University Hospital, Heart and Lung Center; Helsinki Finland
| | - Sakari Knuutila
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| |
Collapse
|
23
|
Hayes SA, Haefliger S, Harris B, Pavlakis N, Clarke SJ, Molloy MP, Howell VM. Exhaled breath condensate for lung cancer protein analysis: a review of methods and biomarkers. J Breath Res 2016; 10:034001. [PMID: 27380020 DOI: 10.1088/1752-7155/10/3/034001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide, and is considered one of the most aggressive human cancers, with a 5 year overall survival of 10-15%. Early diagnosis of lung cancer is ideal; however, it is still uncertain as to what technique will prove successful in the systematic screening of high-risk populations, with the strongest evidence currently supporting low dose computed tomography (LDCT). Analysis of exhaled breath condensate (EBC) has recently been proposed as an alternative low risk and non-invasive screening method to investigate early-stage neoplastic processes in the airways. However, there still remains a relative paucity of lung cancer research involving EBC, particularly in the measurement of lung proteins that are centrally linked to pathogenesis. Considering the ease and safety associated with EBC collection, and advances in the area of mass spectrometry based profiling, this technology has potential for use in screening for the early diagnosis of lung cancer. This review will examine proteomics as a method of detecting markers of neoplasia in patient EBC with a particular emphasis on LC, as well as discussing methodological challenges involving in proteomic analysis of EBC specimens.
Collapse
Affiliation(s)
- Sarah A Hayes
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia. Sydney Medical School Northern, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Bikov A, Hull JH, Kunos L. Exhaled breath analysis, a simple tool to study the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 2016; 27:1-8. [DOI: 10.1016/j.smrv.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
25
|
van Mastrigt E, de Jongste JC, Pijnenburg MW. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children - clinical tools or scientific toys? Clin Exp Allergy 2016; 45:1170-88. [PMID: 25394891 DOI: 10.1111/cea.12454] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current monitoring strategies for respiratory diseases are mainly based on clinical features, lung function and imaging. As airway inflammation is the hallmark of many respiratory diseases in childhood, noninvasive methods to assess the presence and severity of airway inflammation might be helpful in both diagnosing and monitoring paediatric respiratory diseases. At present, the measurement of fractional exhaled nitric oxide is the only noninvasive method available to assess eosinophilic airway inflammation in clinical practice. We aimed to evaluate whether the analysis of volatile organic compounds (VOCs) in exhaled breath (EB) and biomarkers in exhaled breath condensate (EBC) is helpful in diagnosing and monitoring respiratory diseases in children. An extensive literature search was conducted in Medline, Embase and PubMed on the analysis and applications of VOCs in EB and EBC in children. We retrieved 1165 papers, of which nine contained original data on VOCs in EB and 84 on biomarkers in EBC. These were included in this review. We give an overview of the clinical applications in childhood and summarize the methodological issues. Several VOCs in EB and biomarkers in EBC have the potential to distinguish patients from healthy controls and to monitor treatment responses. Lack of standardization of collection methods and analysis techniques hampers the introduction in clinical practice. The measurement of metabolomic profiles may have important advantages over detecting single markers. There is a lack of longitudinal studies and external validation to reveal whether EB and EBC analysis have added value in the diagnostic process and follow-up of children with respiratory diseases. In conclusion, the use of VOCs in EB and biomarkers in EBC as markers of inflammatory airway diseases in children is still a research tool and not validated for clinical use.
Collapse
Affiliation(s)
- E van Mastrigt
- Department of Paediatric Respiratory Medicine, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J C de Jongste
- Department of Paediatric Respiratory Medicine, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M W Pijnenburg
- Department of Paediatric Respiratory Medicine, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Bikov A, Pako J, Montvai D, Kovacs D, Koller Z, Losonczy G, Horvath I. Exhaled breath condensate pH decreases following oral glucose tolerance test. J Breath Res 2015; 9:047112. [DOI: 10.1088/1752-7155/9/4/047112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Mirowsky J, Gordon T. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:354-80. [PMID: 25605444 PMCID: PMC6659729 DOI: 10.1038/jes.2014.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/26/2014] [Accepted: 11/05/2014] [Indexed: 05/09/2023]
Abstract
Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.
Collapse
Affiliation(s)
- Jaime Mirowsky
- Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA
| |
Collapse
|
28
|
Exhaled Breath Condensate: Technical and Diagnostic Aspects. ScientificWorldJournal 2015; 2015:435160. [PMID: 26106641 PMCID: PMC4461795 DOI: 10.1155/2015/435160] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023] Open
Abstract
Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.
Collapse
|
29
|
Greguš M, Foret F, Kubáň P. Single-breath analysis using a novel simple sampler and capillary electrophoresis with contactless conductometric detection. Electrophoresis 2015; 36:526-33. [PMID: 25377628 DOI: 10.1002/elps.201400456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022]
Abstract
The analysis of ionic content of exhaled breath condensate (EBC) from one single breath by CE with C(4) D is demonstrated for the first time. A miniature sampler made from a 2-mL syringe and an aluminum cooling cylinder for collection of EBC was developed. Various parameters of the sampler that influence its collection efficiency, repeatability, and effect of respiratory patterns were studied in detail. Efficient procedures for the cleanup of the miniature sampler were also developed and resulted in significant improvement of sampling repeatability. Analysis of EBC was performed by CE-C(4) D in a 60 mM MES/l-histidine BGE with 30 μM CTAB and 2 mM 18-crown-6 at pH 6 and excellent repeatability of migration times (RSD < 1.3% (n = 7)) and peak areas (RSD < 7% (n = 7)) of 12 inorganic anions, cations, and organic acids was obtained. It has been shown that the breathing pattern has a significant impact on the concentration of the analytes in the collected EBC. As the ventilatory pattern can be easily controlled during single exhalation, the developed collection system and method provides a highly reproducible and fast way of collecting EBC with applicability in point-of-care diagnostics.
Collapse
Affiliation(s)
- Michal Greguš
- Bioanalytical Instrumentation, CEITEC, Masaryk University, Brno, Czech Republic; Department of Chemistry, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
30
|
Motta A, Paris D, D'Amato M, Melck D, Calabrese C, Vitale C, Stanziola AA, Corso G, Sofia M, Maniscalco M. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J Proteome Res 2014; 13:6107-20. [PMID: 25393672 DOI: 10.1021/pr5010407] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exhaled breath condensate (EBC) collection is a noninvasive method to investigate lung diseases. EBC is usually collected with commercial/custom-made condensers, but the optimal condensing temperature is often unknown. As such, the physical and chemical properties of exhaled metabolites should be considered when setting the temperature, therefore requiring validation and standardization of the collecting procedure. EBC is frequently used in nuclear magnetic resonance (NMR)-based metabolomics, which unambiguously recognizes different pulmonary pathological states. Here we applied NMR-based metabolomics to asthmatic and healthy EBC samples collected with two commercial condensers operating at -27.3 and -4.8 °C. Thirty-five mild asthmatic patients and 35 healthy subjects were included in the study, while blind validation was obtained from 20 asthmatic and 20 healthy different subjects not included in the primary analysis. We initially analyzed the samples separately and assessed the within-day, between-day, and technical repeatabilities. Next, samples were interchanged, and, finally, all samples were analyzed together, disregarding the condensing temperature. Partial least-squares discriminant analysis of NMR spectra correctly classified samples, without any influence from the temperature. Input variables were either integral bucket areas (spectral bucketing) or metabolite concentrations (targeted profiling). We always obtained strong regression models (95%), with high average-quality parameters for spectral profiling (R(2) = 0.84 and Q(2) = 0.78) and targeted profiling (R(2) = 0.91 and Q(2) = 0.87). In particular, although targeted profiling clustering is better than spectral profiling, all models reproduced the relative metabolite variations responsible for class differentiation. This warrants that cross comparisons are reliable and that NMR-based metabolomics could attenuate some specific problems linked to standardization of EBC collection.
Collapse
Affiliation(s)
- Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council , Via Campi Flegrei 34, Pozzuoli (Naples) 80078, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nobakht M Gh BF, Aliannejad R, Rezaei-Tavirani M, Taheri S, Oskouie AA. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers 2014; 20:5-16. [PMID: 25403491 DOI: 10.3109/1354750x.2014.983167] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are characterized by airway obstruction and an inflammatory process. Reaching early diagnosis and discrimination of subtypes of these respiratory diseases are quite a challenging task than other chronic illnesses. Metabolomics is the study of metabolic pathways and the measurement of unique biochemical molecules generated in a living system. In the last decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. In this article, we review the current state of the metabolomics of COPD, asthma and CF with a focus on the different methods and instrumentation being used for the discovery of biomarkers in research and translation into clinic as diagnostic aids for the choice of patient-specific therapies.
Collapse
Affiliation(s)
- B Fatemeh Nobakht M Gh
- Faculty of Paramedical Sciences, Proteomics Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | | | | | | | |
Collapse
|
32
|
Rosso MI, Roark S, Taylor E, Ping X, Ward JM, Roche K, McCracken C, Brown LAS, Gauthier TW. Exhaled breath condensate in intubated neonates--a window into the lung's glutathione status. Respir Res 2014; 15:1. [PMID: 24397246 PMCID: PMC3890556 DOI: 10.1186/1465-9921-15-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analysis of exhaled breath condensates (EBC) is a non-invasive technique to evaluate biomarkers such as antioxidants in the pediatric population, but limited data exists of its use in intubated patients, particularly newborns. Currently, tracheal aspirate (TA) serves as the gold standard collection modality in critically ill newborns, but this method remains invasive. We tested the hypothesis that glutathione status would positively correlate between EBC and TA collections in intubated newborns in the Newborn Intensive Care Unit (NICU). We also hypothesized that these measurements would be associated with alveolar macrophage (AM) glutathione status in the newborn lung. METHODS Reduced glutathione (rGSH), glutathione disulfide (GSSG), and total GSH (rGSH + (2 X GSSG)) were measured in sequential EBC and TA samples from 26 intubated newborns via high performance liquid chromatography (HPLC). Additionally, AM glutathione was evaluated via immunofluorescence. Pearson's correlation coefficient and associated 95% confidence intervals were used to quantify the associations between raw and urea-corrected concentrations in EBC and TA samples and AM staining. Statistical significance was defined as p ≤ 0.05 using two-tailed tests. The sample size was projected to allow for a correlation coefficient of 0.5, with 0.8 power and alpha of 0.05. RESULTS EBC was obtainable from intubated newborns without adverse clinical events. EBC samples demonstrated moderate to strong positive correlations with TA samples in terms of rGSH, GSSG and total GSH. Positive correlations between the two sampling sites were observed in both raw and urea-corrected concentrations of rGSH, GSSG and total GSH. AM glutathione staining moderately correlated with GSSG and total GSH status in both the TA and EBC. CONCLUSIONS GSH status in EBC samples of intubated newborns significantly correlated with the GSH status of the TA sample and was reflective of cellular GSH status in this cohort of neonatal patients. Non-invasive EBC sampling of intubated newborns holds promise for monitoring antioxidant status such as GSH in the premature lung. Further studies are necessary to evaluate the potential relationships between EBC biomarkers in the intubated premature newborn and respiratory morbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Theresa W Gauthier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Abstract
Asthma has puzzled and confused physicians from the time of Hippocrates to the present day. The word “asthma” comes from a Greek word meaning “panting” (Keeney 1964), but reference to asthma can also be found in ancient Egyptian, Hebrew, and Indian medical writings (Ellul-Micallef 1976; Unger and Harris 1974). There were clear observations of patients experiencing attacks of asthma in the second century and evidence of disordered anatomy in the lung as far back as the seventeenth century (Dring et al. 1689).
Collapse
|
34
|
Abstract
Over the past three decades, the goal of many researchers is analysis of exhaled breath condensate (EBC) as noninvasively obtained sample. A total quality in laboratory diagnostic processes in EBC analysis was investigated: pre-analytical (formation, collection, storage of EBC), analytical (sensitivity of applied methods, standardization) and post-analytical (interpretation of results) phases. EBC analysis is still used as a research tool. Limitations referred to pre-analytical, analytical, and post-analytical phases of EBC analysis are numerous, e.g. low concentrations of EBC constituents, single-analyte methods lack in sensitivity, and multi-analyte has not been fully explored, and reference values are not established. When all, pre-analytical, analytical and post-analytical requirements are met, EBC biomarkers as well as biomarker patterns can be selected and EBC analysis can hopefully be used in clinical practice, in both, the diagnosis and in the longitudinal follow-up of patients, resulting in better outcome of disease.
Collapse
Affiliation(s)
- Slavica Dodig
- Department of Clinical Laboratory Diagnosis, Srebrnjak Children's Hospital, Zagreb, Croatia.
| | | |
Collapse
|
35
|
Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805:1-18. [DOI: 10.1016/j.aca.2013.07.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
|
36
|
Breath tests in respiratory and critical care medicine: from research to practice in current perspectives. BIOMED RESEARCH INTERNATIONAL 2013; 2013:702896. [PMID: 24151617 PMCID: PMC3789325 DOI: 10.1155/2013/702896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022]
Abstract
Today, exhaled nitric oxide has been studied the most, and most researches have now focused on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future.
Collapse
|
37
|
Lang JE, Blake KV. Role of biomarkers in understanding and treating children with asthma: towards personalized care. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2013; 6:73-84. [PMID: 24019751 PMCID: PMC3760446 DOI: 10.2147/pgpm.s30626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Asthma is one of the most common chronic diseases affecting children. Despite publicized expert panels on asthma management and the availability of high-potency inhaled corticosteroids, asthma continues to pose an enormous burden on quality of life for children. Research into the genetic and molecular origins of asthma are starting to show how distinct disease entities exist within the syndrome of "asthma". Biomarkers can be used to diagnose underlying molecular mechanisms that can predict the natural course of disease or likely response to drug treatment. The progress of personalized medicine in the care of children with asthma is still in its infancy. We are not yet able to apply stratified asthma treatments based on molecular phenotypes, although that time may be fast approaching. This review discusses some of the recent advances in asthma genetics and the use of current biomarkers that can help guide improved treatment. For example, the fraction of expired nitric oxide and serum Immunoglobulin E (IgE) (including allergen-specific IgE), when evaluated in the context of recurrent asthma symptoms, are general predictors of allergic airway inflammation. Biomarker assays for secondhand tobacco smoke exposure and cysteinyl leukotrienes are both promising areas of study that can help personalize management, not just for pharmacologic management, but also education and prevention efforts.
Collapse
Affiliation(s)
- Jason E Lang
- Division of Pulmonary and Sleep Medicine, Nemours Children's Hospital, Orlando, FL, USA
| | | |
Collapse
|
38
|
Schivo M, Seichter F, Aksenov AA, Pasamontes A, Peirano DJ, Mizaikoff B, Kenyon NJ, Davis CE. A mobile instrumentation platform to distinguish airway disorders. J Breath Res 2013; 7:017113. [PMID: 23446184 PMCID: PMC3633523 DOI: 10.1088/1752-7155/7/1/017113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are distinct but clinically overlapping airway disorders which often create diagnostic and therapeutic dilemmas. Current strategies to discriminate these diseases are limited by insensitivity and poor performance due to biologic variability. We tested the hypothesis that a gas chromatograph/differential mobility spectrometer (GC/DMS) sensor could distinguish between clinically well-defined groups with airway disorders based on the volatile organic compounds (VOCs) obtained from exhaled breath. After comparing VOC profiles obtained from 13 asthma, 5 COPD and 13 healthy control subjects, we found that VOC profiles distinguished asthma from healthy controls and also a subgroup of asthmatics taking the drug omalizumab from healthy controls. The VOC profiles could not distinguish between COPD and any of the other groups. Our results show a potential application of the GC/DMS for non-invasive and bedside diagnostics of asthma and asthma therapy monitoring. Future studies will focus on larger sample sizes and patient cohorts.
Collapse
Affiliation(s)
- Michael Schivo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Felicia Seichter
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Germany
| | - Alexander A. Aksenov
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Alberto Pasamontes
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Daniel J. Peirano
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Germany
| | - Nicholas J. Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Cristina E. Davis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Elhefny A, Mourad S, Morsi TS, Kamel MA, Mahmoud HM. Exhaled breath condensate nitric oxide end products and pH in controlled asthma. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2012. [DOI: 10.1016/j.ejcdt.2012.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Xu Z, Shen F, Li X, Wu Y, Chen Q, Jie X, Yao M. Molecular and microscopic analysis of bacteria and viruses in exhaled breath collected using a simple impaction and condensing method. PLoS One 2012; 7:e41137. [PMID: 22848436 PMCID: PMC3405091 DOI: 10.1371/journal.pone.0041137] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Exhaled breath condensate (EBC) is increasingly being used as a non-invasive method for disease diagnosis and environmental exposure assessment. By using hydrophobic surface, ice, and droplet scavenging, a simple impaction and condensing based collection method is reported here. Human subjects were recruited to exhale toward the device for 1, 2, 3, and 4 min. The exhaled breath quickly formed into tiny droplets on the hydrophobic surface, which were subsequently scavenged into a 10 µL rolling deionized water droplet. The collected EBC was further analyzed using culturing, DNA stain, Scanning Electron Microscope (SEM), polymerase chain reaction (PCR) and colorimetry (VITEK 2) for bacteria and viruses.Experimental data revealed that bacteria and viruses in EBC can be rapidly collected using the method developed here, with an observed efficiency of 100 µL EBC within 1 min. Culturing, DNA stain, SEM, and qPCR methods all detected high bacterial concentrations up to 7000 CFU/m(3) in exhaled breath, including both viable and dead cells of various types. Sphingomonas paucimobilis and Kocuria variants were found dominant in EBC samples using VITEK 2 system. SEM images revealed that most bacteria in exhaled breath are detected in the size range of 0.5-1.0 µm, which is able to enable them to remain airborne for a longer time, thus presenting a risk for airborne transmission of potential diseases. Using qPCR, influenza A H3N2 viruses were also detected in one EBC sample. Different from other devices restricted solely to condensation, the developed method can be easily achieved both by impaction and condensation in a laboratory and could impact current practice of EBC collection. Nonetheless, the reported work is a proof-of-concept demonstration, and its performance in non-invasive disease diagnosis such as bacterimia and virus infections needs to be further validated including effects of its influencing matrix.
Collapse
Affiliation(s)
- Zhenqiang Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Fangxia Shen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xiaoguang Li
- Department of Infectious Disease, Peking University Third Hospital, Peking University, Beijing, China
| | - Yan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xu Jie
- Department of Infectious Disease, Peking University Third Hospital, Peking University, Beijing, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
41
|
Vyas A, Zhang Q, Gunaratne S, Lee W, Lin JL, Lin JS, Warwick G, Thomas PS. The effect of temperature on exhaled breath condensate collection. J Breath Res 2012; 6:036002. [DOI: 10.1088/1752-7155/6/3/036002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Antus B, Barta I, Csiszer E, Kelemen K. Exhaled breath condensate pH in patients with cystic fibrosis. Inflamm Res 2012; 61:1141-7. [PMID: 22706320 DOI: 10.1007/s00011-012-0508-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE AND DESIGN Exhaled breath condensate (EBC) pH has been proposed as a useful, non-invasive marker of airway inflammation in pulmonary diseases. In this study we tested whether cystic fibrosis (CF) is associated with acidification of EBC, when pH is assessed by the CO(2) gas standardization method. METHODS EBC was collected using two different devices (EcoScreen and R-Tube) in 46 stable CF patients during routine clinical visits and in 28 healthy controls. RESULTS Mean EBC pH in CF patients and in healthy controls was similar (EcoScreen: CF patients: 6.38 ± 0.03 versus controls: 6.39 ± 0.03, p = 0.699; R-tube: CF patients: 5.94 ± 0.04 versus controls: 6.02 ± 0.03, p = 0.159). Inflammatory cell counts in spontaneously expectorated sputum obtained in a subset of patients (n = 20) showed no correlation with pH values. EBC samples collected with the R-tube were more acidic than those collected with the EcoScreen device (p < 0.001). CONCLUSIONS Our data suggest that EBC pH does not discriminate between healthy controls and those with CF disease indicating that the clinical applicability of EBC pH measurements for assessing airway inflammation in CF is limited.
Collapse
Affiliation(s)
- Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of TB and Pulmonology, Piheno ut 1, Budapest 1121, Hungary.
| | | | | | | |
Collapse
|
43
|
Antus B. Assessment of airway inflammation in chronic obstructive pulmonary disease: Biomarkers in exhaled breath condensate. Orv Hetil 2012; 153:843-51. [DOI: 10.1556/oh.2012.29383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Airway inflammation plays a central role in the pathophysiology of chronic obstructive pulmonary disease. Exposure to cigarette smoke induces the recruitment of inflammatory cells in the airways, which in turn produces various cytokines, chemokines, proteases and pro-inflammatory mediators leading ultimately to increased oxidative stress, a protease/anti-protease imbalance and progressive lung tissue injury. Biomarkers may be useful in monitoring airway inflammation and oxidative stress, defining different phenotypes of the disease and evaluating the response of therapies. Exhaled breath condensate collection is a simple and completely non-invasive method of sampling the lower respiratory tract in humans. Exhaled breath condensate may be a rich source of pulmonary biomarkers including hydrogen peroxide, cytokines, metabolites of the arachidonic acid, nitric oxides and the pH. However, the concentration of these biomarkers is often very low, which may cause several problems in their detection. The clinical applicability of exhaled breath condensate biomarkers cannot be assessed until methods of sample collection and analysis have been standardized. Orv. Hetil., 2012, 153, 843–851.
Collapse
Affiliation(s)
- Balázs Antus
- Országos Korányi Tbc- és Pulmonológiai Intézet Budapest Pihenő út 1. 1121
| |
Collapse
|
44
|
Abstract
The collection and analysis of exhaled breath condensate (EBC) may be useful for the management of patients with chronic respiratory disease at all ages. It is a promising technique due to its apparent simplicity and non-invasiveness. EBC does not disturb an ongoing respiratory inflammation. However, the methodology remains controversial, as it is not yet standardized. The current diversity of the methods used to collect and preserve EBC, the analytical pitfalls and the high degree of within-subject variability are the main issues that hamper further development into a clinical useful technique. In order to facilitate the process of standardization, a simplified schematic approach is proposed. An update of available data identified open issues on EBC methodology. These issues were then classified into three separate conditions related to their influence before, during or after the condensation process: (1) pre-condenser conditions related to subject and/or environment; (2) condenser conditions related to condenser equipment; and (3) post-condenser conditions related to preservation and/or analysis. This simplified methodological approach highlights the potential influence of the many techniques used before, during and after condensation of exhaled breath. It may also serve as a methodological checklist for a more systematical approach of EBC research and development.
Collapse
Affiliation(s)
- Philippe Rosias
- Department of Paediatrics, Orbis Medical Center, Sittard, The Netherlands.
| |
Collapse
|
45
|
Carter SR, Davis CS, Kovacs EJ. Exhaled breath condensate collection in the mechanically ventilated patient. Respir Med 2012; 106:601-13. [PMID: 22398157 DOI: 10.1016/j.rmed.2012.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Collection of exhaled breath condensate (EBC) is a non-invasive means of sampling the airway-lining fluid of the lungs. EBC contains numerous measurable mediators, whose analysis could change the management of patients with certain pulmonary diseases. While initially popularized in investigations involving spontaneously breathing patients, an increasing number of studies have been performed using EBC in association with mechanical ventilation. Collection of EBC in mechanically ventilated patients follows basic principles of condensation, but is influenced by multiple factors. Effective collection requires selection of a collection device, adequate minute ventilation, low cooling temperatures, and sampling times of greater than 10 min. Condensate can be contaminated by saliva, which needs to be filtered. Dilution of samples occurs secondary to distilled water in vapors and humidification in the ventilator circuit. Dilution factors may need to be employed when investigating non-volatile biomarkers. Storage and analysis should occur promptly at -70 °C to -80 °C to prevent rapid degradation of samples. The purpose of this review is to examine and describe methodologies and problems of EBC collection in mechanically ventilated patients. A straightforward and safe framework has been established to investigate disease processes in this population, yet technical aspects of EBC collection still exist that prevent clinical practicality of this technology. These include a lack of standardization of procedure and analysis of biomarkers, and of normal reference ranges for mediators in healthy individuals. Once these procedural aspects have been addressed, EBC could serve as a non-invasive alternative to invasive evaluation of lungs in mechanically ventilated patients.
Collapse
Affiliation(s)
- Stewart R Carter
- Department of Surgery, Loyola University Medical Center, Stritch School of Medicine, Building 110, Room 4232, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | |
Collapse
|
46
|
Assessment of the impact of collection temperature and sampler design on the measurement of exhaled breath condensate pH in healthy horses. Vet J 2012; 191:208-12. [DOI: 10.1016/j.tvjl.2010.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/25/2010] [Accepted: 12/11/2010] [Indexed: 11/21/2022]
|
47
|
Abstract
PURPOSE OF REVIEW Over the past decade, the concept of asthma control as distinct from asthma severity has been clearly defined. Well controlled asthma is the goal of therapy in all asthma patients. This review is a comprehensive description of the tools currently available for a methodical assessment of different aspects of asthma control in clinical practice and research. RECENT FINDINGS Several questionnaires for assessing asthma control have been extensively validated in adults. In children, validation data are less extensive. Considerable overlap exists between asthma control measures and measures of asthma-specific quality of life. Asthma-specific quality-of-life questionnaires have been used as primary outcome measures in major clinical trials evaluating asthma therapy. Biomarkers that reflect eosinophilic inflammation of the airways are used as intermediate outcome measures to reflect the biological basis of asthma control. There is some controversy, however, over which biomarkers are best incorporated into therapeutic algorithms that attempt to achieve maximal asthma control while minimizing treatment intensity. SUMMARY In designing clinical studies to evaluate different asthma therapies, researchers will find this review to be a useful resource in terms of choosing the appropriate tool for assessing asthma control. This is also a valuable resource for a methodical assessment of response to asthma therapy in routine clinical care.
Collapse
Affiliation(s)
- Christian Bime
- Johns Hopkins University School of Medicine and Johns Hopkins University Bloomberg School of Public Health, 5501 Hopkins Bayview Circle, Baltimore, MD 21224,USA
| | | | | |
Collapse
|
48
|
|
49
|
Comparison of two devices and two breathing patterns for exhaled breath condensate sampling. PLoS One 2011; 6:e27467. [PMID: 22087323 PMCID: PMC3210176 DOI: 10.1371/journal.pone.0027467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/17/2011] [Indexed: 11/28/2022] Open
Abstract
Introduction Analysis of exhaled breath condensate (EBC) is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC. Methods EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device - once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC) was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV) were calculated. Results Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%. Conclusion EBC pH and (to a lesser extent) EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies.
Collapse
|
50
|
Popov TA. Human exhaled breath analysis. Ann Allergy Asthma Immunol 2011; 106:451-6; quiz 457. [PMID: 21624743 DOI: 10.1016/j.anai.2011.02.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 02/17/2011] [Accepted: 02/20/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To review the fast-developing topic of assessment of exhaled breath components to improve the diagnosis and monitoring of respiratory and systemic diseases. DATA SOURCES Review of the literature available in monographs and journals. STUDY SELECTION Articles and overviews on the broad spectrum of existing experimental and routinely applied methods to assess different aspects of human exhaled breath analysis were selected for presentation in this review. RESULTS Exhaled breath constitutes more than 3,500 components, the bulk of which are volatile organic compounds in miniature quantities. Many of these characterize the functioning of the organism as a whole (systemic biomarkers), but some are related to processes taking place in the respiratory system and the airways in particular (lung biomarkers). Assessment of lung biomarkers has proven useful in airway inflammatory diseases. It involves direct measurement of gases such as nitric oxide and inflammatory indicators in exhaled breath condensate such as oxidative stress markers (eg, hydrogen peroxide and isoprostanes), nitric oxide derivatives (eg, nitrate and nitrates), arachidonic acid metabolites (eg, prostanoids, leukotrienes, and epoxides), adenosine, and cytokines. Integral approaches have also been suggested, such as exhaled breath temperature measurement and devices of the "electronic nose" type, which enable the capture of approaches have also been suggested, such as exhaled breath temperature measurementexhaled molecular fingerprints (breath prints). Technical factors related to standardization of the different techniques need to be resolved to reach the stage of routine applicability. CONCLUSIONS Examination of exhaled breath has the potential to change the existing routine approaches in human medicine. The rapidly developing new analytical and computer technologies along with novel, unorthodox ideas are prerequisites for future advances in this field.
Collapse
Affiliation(s)
- Todor A Popov
- Clinic of Allergy & Asthma, Medical University Sofia, Bulgaria.
| |
Collapse
|