1
|
Polidoro BR, de Oliveira MJK, Braga FDSC, Polycarpo GDV. Mannan oligosaccharide as an alternative to infeed antibiotics to improve growth performance of broilers: a meta-analysis. Br Poult Sci 2024:1-9. [PMID: 39212222 DOI: 10.1080/00071668.2024.2391764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
1. The purpose of this meta-analysis was to evaluate the effect of mannan oligosaccharide (MOS) as an alternative to antibiotic growth promoters (AGP) on feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) of broilers.2. Data from 75,594 broilers were extracted from 17 articles (19 trials) published between January 2010 and March 2023. The main criteria for the publication selection were as follows, at least three treatments applied (negative control group without MOS or AGP versus MOS or AGP supplementation), presence of performance results, and intra-experimental variation associated with the mean of response (such as standard error). Treatments were classified as control, MOS, or AGP, and adjusted means of treatment were compared. Additionally, the average daily gain (ADG) and average daily feed intake (ADFI) of each type of supplementation were calculated relative (Δ) to the control group (ΔADFI and ΔADG) and expressed as a percentage of the difference.3. Broilers receiving a diet supplemented with MOS had a 3.7% better BWG and 3% better FCR compared to the control diet (P < 0.001), but these variables were similar to the group receiving AGP supplementation. No significant difference was detected in FI among treatments (P > 0.050). The relationship between ΔADG and ΔADFI was linear for the MOS and AGP-supplemented group (P < 0.050). The ΔADG of broilers fed diets supplemented with MOS or AGP was 6.4% and 4.54% when ΔADFI was zero, respectively. The ΔADG of MOS increased by 0.58% for every 1% of increasing observed in ΔADFI. The corresponding value for the increased ΔADG for the AGP group was 0.69%.4. The results of this meta-analysis indicated that MOS supplementation is effective in increasing BWG and reducing FCR, similar to broilers fed a diet supplemented with AGP. Therefore, MOS is a safe and sustainable alternative for AGP-free poultry production.
Collapse
Affiliation(s)
- B R Polidoro
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - M J K de Oliveira
- Department of Indian Nursing Council, Prairie Swine Centre, Saskatoon,SK, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - F D S C Braga
- College of Veterinary Medicine and Animal Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - G D V Polycarpo
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- College of Veterinary Medicine and Animal Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
2
|
Abd El Monsef AG, El Zohairy NF, Hassan MF, Salem SM, Gouda AA, Mansour MK, Alkhaldi AAM, Alzaylaee H, Elmahallawy EK. Effects of prebiotic (lactoferrin) and diclazuril on broiler chickens experimentally infected with Eimeria tenella. Front Vet Sci 2024; 11:1416459. [PMID: 39036795 PMCID: PMC11258017 DOI: 10.3389/fvets.2024.1416459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Avian coccidiosis presents a significant challenge to the poultry industry in Egypt, highlighting the urgent need for validating new drug targets offering promising prospects for the development of advanced anticoccidials. Although numerous reports highlight the activity of lactoferrin (LF) against various microorganisms, its potential against Eimeria has not been explored. The present study evaluated the potential anticoccidial effect of LF and diclazuril in broiler chickens experimentally infected with Eimeria tenella. Methods A total of 100 one-day-old broiler chicks were divided into five equal groups (20 each) as follows: Group 1 (G1) served as the normal healthy control group, Group 2 (G2) consisted of chickens infected with 1 × 105 sporulated E. tenella oocysts at 14 days of age, Group 3 (G3) comprised infected chickens treated with diclazuril (0.5 mL/L in drinking water) for 3 days successively, Group 4 (G4) included infected chickens treated with LF (at a dose of 250 mg/kg of diet) from one day of age until the end of the study, and Group 5 (G5) comprised infected chickens treated with both LF and diclazuril. Results The positive control group (G2) experienced significant reductions in body weight (BW), BW gain, serum glucose, lipase, amylase, total antioxidant capacity, several hematological indices, and total proteins, along with alterations in various antioxidant enzymes. Conversely, serum levels of aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Alkaline phosphatases (ALP), urea, creatinine, nitric oxide, mean corpuscular volume (MCV), White blood cells (WBCs), heterophils, alpha 2, beta 1, and liver contents of malondialdehyde were elevated in this group. Moreover, higher oocyst counts and lesion scores, along with histopathological alterations, were observed in G2. Remarkably, treatment with diclazuril and/or LF demonstrated potent antioxidant and anticoccidial effects, resulting in reduced shedding of oocysts, lesion scores, and lymphocytic infiltrates in the cecum. Additionally, these treatments improved the antioxidant and immune systems in chickens and restored all histopathological changes reported in the infected non-treated group (G2). Conclusion This study offers novel perspectives on the potential anticoccidial effects of the combination of LF and diclazuril in broiler chickens infected with E. tenella, highlighting the potential synergistic actions of LF in treating poultry coccidiosis.
Collapse
Affiliation(s)
- Asmaa G. Abd El Monsef
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig Branch, Zagazig, Egypt
| | - Nermin F. El Zohairy
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig Branch, Zagazig, Egypt
| | - Marwa F. Hassan
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Sanaa M. Salem
- Department of Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig Branch, Zagazig, Egypt
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mogda K. Mansour
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | | | - Hind Alzaylaee
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Adil S, Banday MT, Hussain SA, Wani MA, Al-Olayan E, Patra AK, Rasool S, Gani A, Sheikh IU, Khan AA, Muzamil S. Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken. Foods 2024; 13:1515. [PMID: 38790815 PMCID: PMC11121394 DOI: 10.3390/foods13101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This study evaluated the effect of free and nanoencapsulated rosemary essential oil (REO) as an antibiotic alternative in broiler diets on growth performance, nutrient digestibility, carcass traits, meat quality and gene expression. Four hundred twenty day-old commercial broiler chicks (VENCOBB) were randomly allocated to seven dietary treatments, each having four replicates of fifteen chicks. The dietary treatments comprised control (CON) fed a basal diet only, AB (basal diet + 10 mg enramycin/kg), CS (basal diet + 150 mg chitosan nanoparticles/kg), REOF100 and REOF200 (basal diet + 100 mg and 200 mg free REO/kg, respectively), and REON100 and REON200 (basal diet + 100 mg and 200 mg nanoencapsulated REO/kg, respectively). Overall (7-42 d), REON200 showed the highest (p < 0.001) body weight gain (1899 g/bird) and CON had the lowest gain (1742 g/bird), while the CS, REOF100 and REOF200 groups had a similar gain, but lower than that of the AB and REON100 groups. Feed intake was not affected by dietary treatments. Overall, the feed efficiency increased (p = 0.001) by 8.47% in the REON200 group and 6.21% in the AB and REON100 groups compared with the CON. Supplementation of REO improved (p < 0.05) dry matter and crude protein digestibility, with the highest values in REON100 and REON200. Ether extract, crude fiber, calcium and phosphorus digestibility values showed no difference among the groups. The dressing, breast, thigh % increased (p < 0.05) and abdominal fat % decreased (p < 0.001) more in the REON200 group than with other treatments and CON. In breast meat quality, water holding capacity and extract reserve volume increased (p < 0.05) while drip loss and cholesterol content decreased (p < 0.05) in REON100 and REON200. No change was observed in the breast meat color among dietary treatments and CON. The REON100 and REON200 groups had reduced (p < 0.05) meat lipid peroxidation as depicted by the decreased levels of TBARS, free fatty acids and peroxide value compared to other treatments and CON. The expression of the Mucin 2, PepT1 and IL-10 genes was upregulated (p < 0.001) and TNF-α downregulated (p < 0.001) by dietary addition of REO particularly in the nanoencapsulated form compared with the CON. In conclusion, nanoencapsulated REO, especially at 200 mg/kg diet, showed promising results as an antibiotic alternative in improving the performance, nutrient digestibility, carcass traits, meat quality and upregulation of growth and anti-inflammatory genes.
Collapse
Affiliation(s)
- Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India (M.A.W.); (I.U.S.)
| | - Mohammad T. Banday
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India (M.A.W.); (I.U.S.)
| | - Syed A. Hussain
- Division of Livestock Products Technology, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India;
| | - Manzoor A. Wani
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India (M.A.W.); (I.U.S.)
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amlan K. Patra
- American Institute for Goat Research, School of Agriculture and Applied Sciences, Langston University, Langston, OK 73050, USA
| | - Shahid Rasool
- Council of Scientific and Industrial Research, Field Station, Bonera, Pulwama 192301, India
| | - Adil Gani
- Department of Food Technology, University of Kashmir, Jammu & Kashmir, Hazratba 190006, India
| | - Islam U. Sheikh
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India (M.A.W.); (I.U.S.)
| | - Azmat A. Khan
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India (M.A.W.); (I.U.S.)
| | - Showkeen Muzamil
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Science and Technology (Kashmir), Jammu & Kashmir, Shuhama 190006, India;
| |
Collapse
|
4
|
Zhu Z, Yu Y, Wang B, Ding M, Tian Y, Jiang R, Sun G, Han R, Kang X, Yan F, Guo Y. Dietary supplementation with pseudostellaria heterophylla polysaccharide enhanced immunity and changed mRNA expression of spleen in chicks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105094. [PMID: 37951325 DOI: 10.1016/j.dci.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides as natural immunomodulators that can promote animal immunity. The present study was performed to investigate the effect of feed supplement Pseudostellaria Heterophylla Polysaccharide (PHP) on serum Immunoglobulins, T lymphocyte subpopulations, Cytokines and Lysozyme (LZM) activity in chicks. In addition, the influence of PHP on splenic gene expression was investigated by transcriptome sequencing. Four hundred 7-day-old Gushi cocks were randomly divided into four groups in a completely randomized design. The chicks were fed with a basal diet supplemented with 0 (CON-A), 100 (PHP-L), 200 (PHP-M) and 400 (PHP-H) mg/kg PHP. Blood and spleen samples were collected from 6 randomly selected chicks in each group at 14, 21, 28, and 35 days of age. The results showed that compared to the CON-A group, the PHP-M group exhibited significant increases in the levels of IgA, IgG, IgM, CD3, and LZM in the serum at 14, 21, 28, and 35 days (P < 0.05), and at 28 d, there was a significant quadratic relationship between the levels of dietary PHP and the levels of IgG, IgM, IFN-γ, IL-2, CD3, and LZM. Furthermore, a total of 470 differentially expressed genes (DEGs) were identified in spleen from PHP-M and CON-A at 28 d. These DEGs were significantly enriched in the Phagosome, Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction pathways. The present investigation highlights the ameliorating effect of dietary PHP on immunological variables and spleen of chicks, the study suggests that PHP supplementation can enhance immunity and positively impact spleen mRNA expression in chicks.
Collapse
Affiliation(s)
- Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Bingxin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Horodincu L, Solcan C. Influence of Different Light Spectra on Melatonin Synthesis by the Pineal Gland and Influence on the Immune System in Chickens. Animals (Basel) 2023; 13:2095. [PMID: 37443893 DOI: 10.3390/ani13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that the pineal gland in birds influences behavioural and physiological functions, including those of the immune system. The purpose of this research is to examine the endocrine-immune correlations between melatonin and immune system activity. Through a description of the immune-pineal axis, we formulated the objective to determine and describe: the development of the pineal gland; how light influences secretory activity; and how melatonin influences the activity of primary and secondary lymphoid organs. The pineal gland has the ability to turn light information into an endocrine signal suitable for the immune system via the membrane receptors Mel1a, Mel1b, and Mel1c, as well as the nuclear receptors RORα, RORβ, and RORγ. We can state the following findings: green monochromatic light (560 nm) increased serum melatonin levels and promoted a stronger humoral and cellular immune response by proliferating B and T lymphocytes; the combination of green and blue monochromatic light (560-480 nm) ameliorated the inflammatory response and protected lymphoid organs from oxidative stress; and red monochromatic light (660 nm) maintained the inflammatory response and promoted the growth of pathogenic bacteria. Melatonin can be considered a potent antioxidant and immunomodulator and is a critical element in the coordination between external light stimulation and the body's internal response.
Collapse
Affiliation(s)
- Loredana Horodincu
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Carmen Solcan
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
6
|
Zhen W, Zhu T, Wang P, Guo F, Zhang K, Zhang T, Jalukar S, Zhang Y, Bai D, Zhang C, Guo Y, Wang Z, Ma Y. Effect of dietary Saccharomyces-derived prebiotic refined functional carbohydrates as antibiotic alternative on growth performance and intestinal health of broiler chickens reared in a commercial farm. Poult Sci 2023; 102:102671. [PMID: 37120891 PMCID: PMC10172995 DOI: 10.1016/j.psj.2023.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
The search for effective in-feed antibiotic alternative is growing due to the global trend to reduce or ban the utilization of antibiotics as growth promotors in poultry diets. This study was processed to assess the effect of dietary refined functional carbohydrates (RFCs) replacing antibiotic growth promoters (AGP) on growth performance, intestinal morphologic structure and microbiota, as well as intestinal immune function and barrier function of broilers reared on a commercial broilers farm. Trials contained 3 treatments with 4 replicate broiler houses, with about 25,000 birds each room. The treatments were control group (CON), RFCs group (CON + 100 mg/kg RFCs), and AGP group (CON + 50 mg/kg bacitracin methylene disalicylate (BMD), respectively. Results showed that RFCs and AGP group significantly increased (P < 0.05) average daily gain (ADG) during d 22 to 45 in contrast to control. Compared with the control and AGP-treated groups, feeding RFCs increased (P < 0.05) jejunal villus height to crypt depth ratio. AGP addition reduced (P < 0.05) the jejunal villi surface area compared to broilers fed control and RFC supplemented diets. Supplementation of RFCs promoted (P < 0.05) the growth of Lactobacillus but inhibited Escherichia coli and Salmonella proliferation compared with the control group. Inclusion of RFCs and BMD enhanced (P < 0.05) antibody titers against avian influenza virus H9 compared with control. RFCs and AGP both down-regulated (P < 0.05) intestinal TLR4 mRNA levels, whereas RFCs tended to up-regulate (P = 0.05) IFN-γ gene expression compared to control. Expression of intestinal tight junction genes was not affected by either AGP or RFCs supplementation. Based on above observation, we suggested that RFCs could replace in-feed antibiotic BMD in broiler diets for reducing intestinal pathogenic bacteria and modulating immunity of broilers.
Collapse
|
7
|
Effect of citrus-coconut electrolyte blend on growth performance, haemato-biochemical status, organs development and intestinal morphology of broiler chickens. Trop Anim Health Prod 2023; 55:56. [PMID: 36715847 DOI: 10.1007/s11250-023-03463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION In a bid to mitigate growing concerns regarding the use of antibiotics in food animals OBJECTIVES: This study determined the growth performance, haemato-biochemical status, organ development and intestinal morphology of Arbor Acre broiler chicken strain on oral administration of citrus-coconut electrolyte blend (CCEB) for 26 days. METHODS One-hundred ninety-two chicks were brooded for 2 weeks and thereafter divided on a weight equalization basis into four groups (0, 5, 10 and 15 ml CCEB per litre of water) of six replicates each and eight birds per replicate. Phytochemical screening of CCEB was determined, while data collected for growth performance, organ proportions and intestinal morphology were subjected to a one-way analysis of variance. RESULTS Phytochemical composition revealed the abundance of phenols (128.40 mg/100g) and tannins (78.10 mg/100g) in CCEB. All productive performance parameters measured were not significantly (p < 0.05) different across treatment means. However, significantly (p < 0.05) highest concentrations (134.47 and 66.48 mg/dl, respectively) for total cholesterol and high-density lipoprotein (HDL) and the lowest concentration (38.34 mg/dl) for low-density lipoprotein (LDL) were recorded in birds on 15 ml of CCEB/litre of water. Furthermore, a progressive reduction (p < 0.05) in the bursa of Fabricius was observed with increasing CCEB/litre of water. The supplementation of CCEB did not influence (p > 0.05) duodenal morphological parameters. CONCLUSION The study concluded that 15 ml of CCEB/litre of water enhanced the production of HDL, reduced LDL, and improved immunity via the reduction of the bursa of Fabricius in broiler chickens.
Collapse
|
8
|
Effects of paraprobiotic as replacements for antibiotic on performance, immunity, gut health and carcass characteristics in broiler chickens. Sci Rep 2022; 12:22619. [PMID: 36587047 PMCID: PMC9805422 DOI: 10.1038/s41598-022-27181-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
This study sought to determine the effects of dietary paraprobiotic (PPB) on broiler chicken performance, immunity, gut health, and carcass traits. A total of 240 day-old CARIBRO Vishal commercial broiler chicks of identical body weight randomly divided into six treatment groups, each with five replicates and eight chicks in each replicate. Six dietary treatments were preapared: T1 = (control diet), T2 = T1 + 0.02% (w/v) chlortetracycline (CTC), T3 = T1 + 0.2% (w/v) PPB, T4 = T1 + 0.4% (w/v) PPB, T5 = T1 + 0.6% (w/v) PPB and T6 = T1 + 0.8% (w/v) PPB, respectively. Body weight gain (BWG) significantly (P ≤ 0.05) increased in the T5 (0.6% PPB) and T6 (0.8% PPB) group. At the same time the feed intake significantly (P ≤ 0.05) decreased and the feed conversion ratio (FCR) significantly (P ≤ 0.05) improved in T5 and T6 group. There was a significant (P ≤ 0.05) increase in cell-mediated immunity and haem-agglutination titre (HA titre) in the 0.6% and 0.8% PPB supplemented groups compare to the control group (T1). The percentage of carcass traits and organ weights did not significantly differ between the PPB-supplemented and control groups, but the percentage of live weight in cut up parts showed a significant improvement (P ≤ 0.05) in the PPB-supplemented group. At 42 days, villus height, width, and crypt depth all significantly (P ≤ 0.05) increased in the groups supplemented with 0.6 and 0.8% para-probiotics (T5 and T6). The results show that para-probiotics can be added to broiler diets at a rate of 0.6% (w/v) to enhance performance, immunity, gut health, and breast yield. The para-probiotic may therefore be a useful substitution for antibiotic growth promoters in the diet of chickens.
Collapse
|
9
|
Mlambo V, Mnisi CM, Matshogo TB, Mhlongo G. Prospects of dietary seaweeds and their bioactive compounds in sustainable poultry production systems: A symphony of good things? FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.998042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Modern poultry production systems face numerous economic, environmental, and social sustainability challenges that threaten their viability and acceptability as a major source of animal protein. As scientists and producers scramble to find cost-effective and socially acceptable solutions to these challenges, the dietary use of marine macroalgae (seaweeds) could be an ingenious option. Indeed, the incredible array of nutritive and bioactive compounds present in these macroscopic marine organisms can be exploited as part of sustainable poultry production systems of the future. Incorporating seaweeds in poultry diets could enhance feed utilization efficiency, growth performance, bird health, meat stability and quality, and consumer and environmental health. Theoretically, these benefits are mediated through the putative antiviral, antibacterial, antifungal, antioxidant, anticarcinogenic, anti-inflammatory, anti-allergic, antithrombotic, neuroprotective, hypocholesterolemic, and hypoglycemic properties of seaweed bioactive compounds. Despite this huge potential, exploitation of seaweed for poultry production appears to be constrained by a variety of factors such as high fibre, phenolics, and ash content. In addition, conflicting findings are often reported when seaweeds or their extracts are used in poultry feeding trials. Therefore, the purpose of this review paper is to collate information on the production, phytochemical components, and nutritive value of different seaweed species. It provides an overview ofin vivoeffects of dietary seaweeds as measured by nutrient utilization efficiency, growth performance, and product quality and stability in poultry. The utility of dietary seaweeds in sustainable poultry production systems is explored, while gaps that require further research are highlighted. Finally, opportunities that exist for enhancing the utility of seaweeds as a vehicle for sustainable production of functional poultry products for better global food and nutrition security are presented.
Collapse
|
10
|
Kalia VC, Shim WY, Patel SKS, Gong C, Lee JK. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155300. [PMID: 35447189 DOI: 10.1016/j.scitotenv.2022.155300] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
With a continuously increasing human population is an increasing global demand for food. People in countries with a higher socioeconomic status tend to switch their preferences from grains to meat and high-value foods. Their preference for chicken as a source of protein has grown by 70% over the last three decades. Many studies have shown the role of feed in regulating the animal gut microbiome and its impact on host health. The microbiome absorbs nutrients, digests foods, induces a mucosal immune response, maintains homeostasis, and regulates bioactive metabolites. These metabolic activities are influenced by the microbiota and diet. An imbalance in microbiota affects host physiology and progressively causes disorders and diseases. With the use of antibiotics, a shift from dysbiosis with a higher density of pathogens to homeostasis can occur. However, the progressive use of higher doses of antibiotics proved harmful and resulted in the emergence of multidrug-resistant microbes. As a result, the use of antibiotics as feed additives has been banned. Researchers, regulatory authorities, and managers in the poultry industry have assessed the challenges associated with these restrictions. Research has sought to identify alternatives to antibiotic growth promoters for poultry that do not have any adverse effects. Modulating the host intestinal microbiome by regulating dietary factors is much easier than manipulating host genetics. Research efforts have led to the identification of feed additives, including bacteriocins, immunostimulants, organic acids, phytogenics, prebiotics, probiotics, phytoncides, and bacteriophages. In contrast to focusing on one or more of these alternative bioadditives, an improved feed conversion ratio with enhanced poultry products is possible by employing a combination of feed additives. This article may be helpful in future research towards developing a sustainable poultry industry through the use of the proposed alternatives.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Woo Yong Shim
- Samsung Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Chunjie Gong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Effects of Postbiotics and Paraprobiotics as Replacements for Antibiotics on Growth Performance, Carcass Characteristics, Small Intestine Histomorphology, Immune Status and Hepatic Growth Gene Expression in Broiler Chickens. Animals (Basel) 2022; 12:ani12070917. [PMID: 35405905 PMCID: PMC8997137 DOI: 10.3390/ani12070917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: This experiment was designed to investigate how replacing antibiotics with postbiotics and paraprobiotics could affect growth performance, small intestine morphology, immune status, and hepatic growth gene expression in broiler chickens. Methods: The experiment followed a completely randomized design (CRD) in which eight treatments were replicated six times with seven birds per replicate. A total of 336, one-day-old (COBB 500) chicks were fed with the eight treatment diets, which include T1 = negative control (Basal diet), T2 = positive control (Basal diet + 0.01% (w/w) Oxytetracycline), T3 = Basal diet + 0.2% (v/w) postbiotic TL1, T4 = Basal diet + 0.2% (v/w) postbiotic RS5, T5 = Basal diet + 0.2% (v/w) paraprobiotic RG11, T6 = Basal diet + 0.2% (v/w) postbiotic RI11, T7 = Basal diet + 0.2% (v/w) paraprobiotic RG14, T8 = Basal diet + 0.2% (v/w) paraprobiotic RI11, for 35 days in a closed house system. Results: The growth performance indicators (final body weight, cumulative weight gain, and feed conversion ratio) were not significantly (p > 0.05) affected by the dietary treatments. However, feed intake recorded a significant (p < 0.05) change in the starter and finisher phases across the dietary treatments. Paraprobiotic RG14 had significantly (p < 0.05) lower abdominal fat and intestines. Villi heights were significantly (p < 0.05) increased, while the crypt depth decreased significantly due to dietary treatments. The dietary treatments significantly influenced colon mucosa sIgA (p < 0.05). Similarly, plasma immunoglobulin IgM level recorded significant (p < 0.05) changes at the finisher phase. In this current study, the hepatic GHR and IGF-1 expressions were significantly (p < 0.05) increased by postbiotics and paraprobiotics supplementation. Conclusions: Therefore, it was concluded that postbiotics and paraprobiotics differ in their effect on broiler chickens. However, they can replace antibiotics without compromising the growth performance, carcass yield, and immune status of broiler chickens.
Collapse
|
12
|
Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult Sci 2022; 101:101584. [PMID: 34942519 PMCID: PMC8695362 DOI: 10.1016/j.psj.2021.101584] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing market pressure to reduce the use of antibiotics and the Veterinary Feed Directive of 2019 have led to expanded research on alternate antibiotic solutions. This review aimed to assess the benefits of using essential oils (EOs) and their nanoemulsions (NEs) as feed supplements for poultry and their potential use as antibiotic alternatives in organic poultry production. Antibiotics are commonly used to enhance the growth and prevent diseases in poultry animals due to their antimicrobial activities. EOs are a complex mixture of volatile compounds derived from plants and manufactured via various fermentation, extraction, and steam distillation methods. EOs are categorized into 2 groups of compounds: terpenes and phenylpropenes. Differences among various EOs depend on the source plant type, physical and chemical soil conditions, harvest time, plant maturity, drying technology used, storage conditions, and extraction time. EOs can be used for therapeutic purposes in various situations in broiler production as they possess antibacterial, antifungal, antiparasitic, and antiviral activities. Several studies have been conducted using various combinations of EOs or crude extracts of their bioactive compounds to investigate their complexity and applications in organic poultry production. NEs are carrier systems that can be used to overcome the volatile nature of EOs, which is a major factor limiting their application. NEs are being progressively used to improve the bioavailability of the volatile lipophilic components of EOs. This review discusses the use of these nonantibiotic alternatives as antibiotics for poultry feed in organic poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza,12211, Egypt
| | - Noha M Ashry
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Toukh, 13736, Egypt
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
13
|
Maguey-González JA, Gómez-Rosales S, de Lourdes Angeles M, López-Hernández LH, Rodríguez-Hernández E, Solís-Cruz B, Hernández-Patlán D, Merino-Gúzman R, Téllez-Isaías G. Effects of humic acids on the recovery of different bacterial strains in an in vitro chicken digestive model. Res Vet Sci 2022; 145:21-28. [DOI: 10.1016/j.rvsc.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
|
14
|
Zhu Q, Sun P, Zhang B, Kong L, Xiao C, Song Z. Progress on Gut Health Maintenance and Antibiotic Alternatives in Broiler Chicken Production. Front Nutr 2021; 8:692839. [PMID: 34869510 PMCID: PMC8636040 DOI: 10.3389/fnut.2021.692839] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023] Open
Abstract
The perturbation of gut health is a common yet unresolved problem in broiler chicken production. Antibiotics used as growth promoters have remarkably improved the broiler production industry with high feed conversion efficiency and reduced intestinal problems. However, the misuse of antibiotics has also led to the increase in the development of antibiotic resistance and antibiotic residues in the meat. Many countries have enacted laws prohibiting the use of antibiotics in livestock production because of the increasing concerns from the consumers and the public. Consequently, one of the most significant discussions in the poultry industry is currently antibiotic-free livestock production. However, the biggest challenge in animal husbandry globally is the complete removal of antibiotics. The necessity to venture into antibiotic-free production has led researchers to look for alternatives to antibiotics in broiler chicken production. Many strategies can be used to replace the use of antibiotics in broiler farming. In recent years, many studies have been conducted to identify functional feed additives with similar beneficial effects as antibiotic growth promoters. Attention has been focused on prebiotics, probiotics, organic acids, emulsifiers, enzymes, essential oils, tributyrin, and medium-chain fatty acids. In this review, we focused on recent discoveries on gut health maintenance through the use of these functional feed additives as alternatives to antibiotics in the past 10 years to provide novel insights into the design of antibiotic-free feeds.
Collapse
Affiliation(s)
- Qidong Zhu
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Peng Sun
- Department of Nutrition Technology, Shandong Hekangyuan Cooperation, Jinan, China
| | - Bingkun Zhang
- Department of Animal Science, China Agricultural University, Beijing, China
| | - LingLian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
15
|
Jia L, Zhang X, Li X, Schilling W, David Peebles E, Kiess AS, Zhai W, Zhang L. Bacitracin, Bacillus subtilis, and Eimeria spp. challenge exacerbates woody breast incidence and severity in broilers. Poult Sci 2021; 101:101512. [PMID: 34788711 PMCID: PMC8605194 DOI: 10.1016/j.psj.2021.101512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
Woody breast (WB) is a myopathy that is related to the increasing growth rate. Understanding the influence of management factors on WB formation and development is important to minimize WB. This study was conducted to define how management factors affect broiler growth performance, processing yield, and WB incidence. Ross × Ross 708 chicks were randomly assigned to a 3 (diet) × 2 (cocci challenge) × 2 (sex) factorial arrangement of treatments. The 3 dietary treatments were: control diet (corn-soybean meal basal diet), antibiotic diet (basal diet + 6.075 mg bacitracin /kg feed), and probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6/kg feed). Birds in cocci challenge treatments received 20 × live cocci vaccine on d 14. The hardness of breast muscle in live birds was determined by palpation and grouped into Normal, Slight, Moderate, and Severe categories. Across diet and sex treatments, the cocci challenge resulted in decreases in body weight (BW) on d 29 and 35 (P < 0.0001 and = 0.032) in body weight gain (BWG) from d 14 to 29 (P < 0.0001). However, an increase of BW occurred on d 35 (P = 0.032) and an increase of BWG occurred from d 29 to 35 and d 35 to 43 (P = 0.0001 and 0.002), and the cocci challenge increased WB incidence on d 29 (P = 0.043) and d 43 (P = 0.013). Across challenge and sex treatments, birds fed the antibiotic diet exhibited a higher growth rate (GR) than those fed the control or probiotic diet from d 0 to 14 (P = 0.016), but not after d 14 (P > 0.05). Across sex, the antibiotic and probiotic diets increased WB incidence for those birds that did not receive a cocci challenge on d 43 (P = 0.040). Across challenge and diet treatments, males exhibited a higher BW, BWG, and GR throughout all growth phases, and males showed a higher WB incidence on d 29, 35, and 43 (P = 0.002, P < 0.0001, and P = 0.0002, respectively). In conclusion, bacitracin and Eimeria spp. increased WB incidence, BW, and GR. However, Bacillus subtilis increased WB incidence in male broilers without affecting BW and GR.
Collapse
Affiliation(s)
- Linan Jia
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xue Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xiaofei Li
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - E David Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh NC 27695, USA
| | - Wei Zhai
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
16
|
Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Effects of exogenous β-glucanase on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics, and performance of coccidiosis vaccinated broiler chickens fed hulless barley-based diets with and without medication. PLoS One 2021; 16:e0236231. [PMID: 33939708 PMCID: PMC8092798 DOI: 10.1371/journal.pone.0236231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Limited use of medication in poultry feed led to the investigation of exogenous enzymes as antibiotic alternatives for controlling enteric disease. The objective of this study was to evaluate the effects of diet β-glucanase (BGase) and medication on β-glucan depolymerization, digestive tract characteristics, and growth performance of broilers. Materials and methods Broilers were fed hulless barley (HB) based diets with BGase (Econase GT 200P from AB Vista; 0 and 0.1%) and medication (Bacitracin and Salinomycin Na; with and without) arranged as a 2 × 2 factorial. In Experiment 1, 160 broilers were housed in cages from d 0 to 28. Each treatment was assigned to 10 cages. In Experiment 2, broilers (2376) were housed in floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to one floor pen in each of nine rooms. Results In Experiment 1, the soluble β-glucan weighted average molecular weight (Mw) in the ileal digesta was lower with medication in the 0% BGase treatments. Peak molecular weight (Mp) and Mw were lower with BGase regardless of medication. The maximum molecular weight for the smallest 10% β-glucan (MW-10%) was lower with BGase addition. In Experiment 2, Mp was lower with medication in 0% BGase treatments. Beta-glucanase resulted in lower Mp regardless of medication, and the degree of response was lower with medication. The MW-10% was lower with BGase despite antibiotic addition. Body weight gain and feed efficiency were higher with medication regardless of BGase use through-out the trial (except d 11–22 feed efficiency). Beta-glucanase resulted in higher body weight gain after d 11 and worsened and improved feed efficiency before and after d 11, respectively, in unmedicated treatments. Conclusion BGase and medication caused the depolymerization of soluble ileal β-glucan. Beta-glucanase acted as a partial replacement for diet medication by increasing growth performance in coccidiosis vaccinated broilers.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Nancy P. Ames
- Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Barkat RA, Gabr AA, Foda MA, Noreldin AE, Khafaga AF, El-Sabrout K, Elwan HAM, Tiwari R, Yatoo MI, Michalak I, Di Cerbo A, Dhama K. Potential role of important nutraceuticals in poultry performance and health - A comprehensive review. Res Vet Sci 2021; 137:9-29. [PMID: 33915364 DOI: 10.1016/j.rvsc.2021.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Antibiotics use in poultry as a growth promoter leads to the propagation of antibiotic-resistant microorganisms and incorporation of drug residues in foods; therefore, it has been restricted in different countries. There is a global trend to limit the use of antibiotics in the animal products. Prevention of the antibiotics use in the poultry diets led to the reduction in the growth performance. Consequently, there is a high demand for natural substances that lead to the same growth enhancement and beneficially affect poultry health. These constituents play essential roles in regulating the normal physiological functions of animals including the protection from infectious ailments. Nutraceuticals administration resulted beneficial in both infectious and noninfectious diseases. Being the natural components of diet, they are compatible with it and do not pose risks associated with antibiotics or other drugs. Nutraceuticals are categorized as commercial additives obtained from natural products as an alternative feed supplement for the improvement of animal welfare. This group includes enzymes, synbiotics, phytobiotics, organic acids and polyunsaturated fatty acids. In the present review, the summary of various bioactive ingredients that act as nutraceuticals and their mode of action in growth promotion and elevation of the immune system has been presented.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amr A Gabr
- Department of Physiology, Faculty of Veterinary Medicine, Cairo Unversity, Giza 1221, Egypt
| | - Manar A Foda
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Karim El-Sabrout
- Poultry production Department, Faculty of Agriculture, Alexandria University, Elshatby, Egypt
| | - Hamada A M Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 El-Minya, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, 190025 Srinagar, Jammu and Kashmir, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław 50-370, Poland
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
18
|
|
19
|
Eckert J, Carrisosa M, Hauck R. Network meta-analysis comparing the effectiveness of anticoccidial drugs and anticoccidial vaccination in broiler chickens. Vet Parasitol 2021; 291:109387. [PMID: 33667988 DOI: 10.1016/j.vetpar.2021.109387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
With the trend to organic production and concerns about using antibiotic feed additives, the control of infections with Eimeria spp. in broiler flocks has become more difficult. Vaccination against coccidia is an alternative, but there are concerns that the live vaccines used might have negative effects on production parameters and intestinal health. Reports of experiments directly comparing anticoccidial drugs and anticoccidial vaccines are rare. This network meta-analysis (NMA) identified and analyzed 61 articles reporting 63 experiments testing anticoccidial drugs and anticoccidial vaccines under conditions resembling commercial broiler production. The effect sizes were mean differences in body weight/body weight gain (BW/BWG) and feed conversion rate (FCR) between the 175 included groups. The results show that groups vaccinated against coccidia have a similar BW/BWG and FCR at processing age compared to groups given anticoccidial drugs. However, the results tended to be more favorable for anticoccidial drugs than for vaccines. The analysis of eight subsets, containing only groups (1) groups that had not received an AGP in addition to an anticoccidial drug, (2) groups that had not received ionophores, (3) groups that had not received chemicals, (4) groups that had not received an attenuated vaccine, (5) groups that had not received a fully virulent vaccine, (6) groups that were not additionally challenged with bacteria or not challenged, (7) groups that had received a severe challenge as defined by a total infection dose of more than 100,000 oocysts or were not challenged, (8) groups that were challenged on day 15 or earlier or not challenged brought similar results and confirmed the robustness of the NMA. In addition, the analysis exposes unnecessary, as well as inherent, problems with data quality, which every researcher working with coccidia should carefully consider, and identifies under-researched areas that should be addressed in future research.
Collapse
Affiliation(s)
- Jordan Eckert
- Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, United States
| | - Miranda Carrisosa
- Department of Poultry Science, Auburn University, Auburn, AL 36849, United States
| | - Rüdiger Hauck
- Department of Poultry Science, Auburn University, Auburn, AL 36849, United States; Department of Pathobiology, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
20
|
Yu K, Choi I, Yun CH. Immunosecurity: immunomodulants enhance immune responses in chickens. Anim Biosci 2021; 34:321-337. [PMID: 33705619 PMCID: PMC7961195 DOI: 10.5713/ab.20.0851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The global population has increased with swift urbanization in developing countries, and it is likely to result in a high demand for animal-derived protein-rich foods. Animal farming has been constantly affected by various stressful conditions, which can be categorized into physical, environmental, nutritional, and biological factors. Such conditions could be exacerbated by banning on the use of antibiotics as a growth promoter together with a pandemic situation including, but not limited to, African swine fever, avian influenza, and foot-and-mouth disease. To alleviate these pervasive tension, various immunomodulants have been suggested as alternatives for antibiotics. Various studies have investigated how stressors (i.e., imbalanced nutrition, dysbiosis, and disease) could negatively affect nutritional physiology in chickens. Importantly, the immune system is critical for host protective activity against pathogens, but at the same time excessive immune responses negatively affect its productivity. Yet, comprehensive review articles addressing the impact of such stress factors on the immune system of chickens are scarce. In this review, we categorize these stressors and their effects on the immune system of chickens and attempt to provide immunomodulants which can be a solution to the aforementioned problems facing the chicken industry.
Collapse
Affiliation(s)
- Keesun Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Inhwan Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.,Center for Food Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
21
|
Adewole D. Effect of Dietary Supplementation with Coarse or Extruded Oat Hulls on Growth Performance, Blood Biochemical Parameters, Ceca Microbiota and Short Chain Fatty Acids in Broiler Chickens. Animals (Basel) 2020; 10:E1429. [PMID: 32824171 PMCID: PMC7459877 DOI: 10.3390/ani10081429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to determine the effect of dietary supplementation with coarse or extruded oat hulls on growth performance, blood biochemistry, cecal microbiota, and short chain fatty acids (SCFA) in broiler chickens. Chickens were randomly allotted to four dietary treatments consisting of a corn-wheat-soybean meal-based diet (Basal), Basal + Bacitracin methylenedisalicylate (BMD), Basal +3% coarse OH (COH), and basal +3% extruded OH (EOH). Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were recorded weekly. On day 36, eight chickens/treatment were euthanized, blood samples were collected, and organ weights were determined. Cecal digesta samples were collected for the determination of SCFA concentration and microbial DNA sequence. Data were subjected to ANOVA using the mixed procedure of SAS. Alpha diversity was estimated with the Shannon index, and the significance of diversity differences was tested with ANOVA. Birds fed COH and EOH had reduced (p < 0.05) BWG, but there was no effect of treatment on FCR. There was a significant increase (p = 0.0050) in relative gizzard empty weight among birds that were fed COH, compared to the other treatments. Dietary treatments had no effect on blood biochemical parameters and SCFA concentration. Cecal microbial composition of chickens was mostly comprised of Firmicutes and Tenericutes. Seven OTUs that were differentially abundant among treatments were identified. In conclusion, supplementation of broiler chickens' diets with 3% COH or EOH did not affect the FCR, blood biochemical parameters and SCFA concentration, but modified few cecal microbiota at the species level. Dietary supplementation with COH but not EOH significantly increased the relative gizzard weight.
Collapse
Affiliation(s)
- Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
22
|
Sood U, Gupta V, Kumar R, Lal S, Fawcett D, Rattan S, Poinern GEJ, Lal R. Chicken Gut Microbiome and Human Health: Past Scenarios, Current Perspectives, and Futuristic Applications. Indian J Microbiol 2020; 60:2-11. [PMID: 32089569 PMCID: PMC7000578 DOI: 10.1007/s12088-019-00785-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Sustainable poultry practices are needed to maintain an adequate supply of poultry products to the increasing human population without compromising human wellbeing. In order to achieve the understanding of the core microbiome that assumes an imperative role in digestion, absorption, and assimilation of feed as well as restrict the growth of pathogenic strains, a proper meta-data survey is required. The dysbiosis of the core microbiome or any external infection in chickens leads to huge losses in the poultry production worldwide. Along with this, the consumption of infected meat also impacts on human health as chicken meat is a regular staple in many diets as a vital source of protein. To tackle these losses, sub-therapeutic doses of antibiotics are being used as a feed additive along with other conventional approaches including selective breeding and modulation in feed composition. Altogether, these conventional approaches have improved the yield and quality of poultry products, however, the use of antibiotics encompasses the risk of developing multi-drug resistant pathogenic strains that can be harmful to human beings. Thus, there is an urgent need to understand the chicken microbiome in order to modulate chicken gut microbiome and provide alternatives to the conventional methods. Although there is now emerging literature available on some of these important microbiome aspects, in this article, we have analysed the relevant recent developments in understanding the chicken gut microbiome including the establishment of integrated gene catalogue for chicken microbiome. We have also focussed on novel strategies for the development of a chicken microbial library that can be used to develop novel microbial consortia as novel probiotics to improve the poultry meat production without compromising human health. Thus, it can be an alternative and advanced step compared to other conventional approaches to improve the gut milieu and pathogen-mediated loss in the poultry industry.
Collapse
Affiliation(s)
- Utkarsh Sood
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Roshan Kumar
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Sukanya Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007 India
| | - Derek Fawcett
- Physics and Nanotechnology, Murdoch University, Perth, WA Australia
| | - Supriya Rattan
- Physics and Nanotechnology, Murdoch University, Perth, WA Australia
| | | | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
| |
Collapse
|
23
|
Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb Pathog 2019; 139:103916. [PMID: 31812772 DOI: 10.1016/j.micpath.2019.103916] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
The objective of this study was to determine whether curcumin and a commercial microencapsulated phytogenic supplement containing thymol, cinnamaldehyde and carvacrol in broiler chicken feed would improve health and meat quality (fatty acid profile), as well as to determine the coccidiostatic and bactericidal potential of the additives. The broiler chickens were divided into five groups: NC - negative control feed; PC - positive control; CU - with 50 mg/kg of curcumin, PHY - 100 mg/kg phytogenic; and PHY + CU, a combination of both additives at 50 mg/kg (curcumin) and 100 mg/kg (phytogenic). We observed significantly higher levels of total proteins associated with increased circulating globulins, as well as lower levels of uric acid, cholesterol and triglycerides in the PHY + CU group than in the NC. There were significantly fewer oocysts in birds supplemented with additives in the NC group on day 21; on day 35, the NC, PHY and PHY + CU groups had significantly lower counts than the PC and CU groups; however, at 44 days, the lowest counts were in PC group. The bacterial counts were significantly lower on day 21 in all groups that received additives than those of the control group; however, at 44 days, the bacterial and Escherichia coli counts in these groups were significantly higher than those of the control. Curcumin with or without phytogenic agent improved meat quality, with increased antioxidant levels and reduction of lipid peroxidation. There were significantly lower total saturated fatty acid levels and significantly greater monounsaturated/polyunsaturated fatty acid levels in broilers that consumed additives individually and in combination. The combination of additives significantly increased the crypt/villus ratio, a marker of improved intestinal health and performance. Additives potentiated their individual effects, suggesting they can replace conventional growth promoters without compromising health, intestinal mucosa or meat quality.
Collapse
|
24
|
Bourassa DV, Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of Salmonella Typhimurium from litter and ceca. Poult Sci 2018; 97:64-73. [PMID: 29136237 DOI: 10.3382/ps/pex289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Three separate broiler Salmonella Typhimurium challenge experiments were conducted evaluating efficacy of formic and propionic acid feed supplements to suppress environmental and cecal Salmonella Typhimurium prevalence. In experiment 1, broilers were provided feed with 1 kg/ton formic acid or 5 kg/ton propionic acid feed additives or a basal control diet. At the day of placement, half of the pens were inoculated with seeder chicks orally challenged with a marker strain of Salmonella Typhimurium and to yield challenged and adjacent nonchallenged pens. No differences in weekly litter samples or cecal Salmonella prevalence at 3 or 6 wk among feeding treatments were detected. In experiment 2, treatments were: 2 kg/ton propionic acid in feed, 1.0 mL/L formic acid in water, both propionic acid in feed and formic acid in water, and a basal control. Every pen was challenged with seeder chicks inoculated with Salmonella Typhimurium. By 6 wk all pens maintained detectable litter Salmonella, and broilers provided both propionic acid in feed and formic acid in water had the lowest cecal recovery (35%), compared to the control (60%). In experiment 3, treatments were: formic acid at 4 or 6 kg/ton from wk 0 to 6 or for only the last wk, propionic acid at 5 or 10 kg/ton for only the last wk, and a basal control. Each pen was challenged with Salmonella Typhimurium inoculated seeder chicks. By 6 wk, broilers fed formic acid (4 kg/ton) for the entire growout had no Salmonella-positive ceca (0/30). All treatments that provided acid supplemented feed for only the last wk had 3-13% Salmonella-positive ceca. These experiments indicate that adding formic acid to broiler feed appears to prevent Salmonella colonization from challenge pens entering into the adjacent nonchallenge pens. Feeding formic acid (4 kg/ton) for 6 wk resulted in no recovery of Salmonella from ceca compared to the control prevalence of 17%.
Collapse
Affiliation(s)
- D V Bourassa
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, Athens, GA, 30605-2702
| | - K M Wilson
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, Athens, GA, 30605-2702.,Department of Poultry Science, The University of Georgia, Athens, GA, 30602
| | - C R Ritz
- Department of Poultry Science, The University of Georgia, Athens, GA, 30602
| | - B K Kiepper
- Department of Poultry Science, The University of Georgia, Athens, GA, 30602
| | - R J Buhr
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, Athens, GA, 30605-2702
| |
Collapse
|
25
|
Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:170-178. [PMID: 30140756 PMCID: PMC6103476 DOI: 10.1016/j.aninu.2018.03.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/12/2023]
Abstract
Antibiotics are used to fight bacterial infections. However, a selective pressure gave rise to bacteria resistant to antibiotics. This leaves scientists worried about the danger to human and animal health. Some strategies can be borrowed to reduce the use of antibiotics in chicken farms. Much research has been carried out to look for natural agents with similar beneficial effects of growth promoters. The aim of these alternatives is to maintain a low mortality rate, a good level of animal yield while preserving environment and consumer health. Among these, the most popular are probiotics, prebiotics, enzymes, organic acids, immunostimulants, bacteriocins, bacteriophages, phytogenic feed additives, phytoncides, nanoparticles and essential oils.
Collapse
Affiliation(s)
- Youcef Mehdi
- Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, 2425 rue de l'Agriculture, local 4145 (Qc), Québec G1V 0A6, Canada
- Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein-Québec, Québec G1P 3W8, Canada
| | - Marie-Pierre Létourneau-Montminy
- Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, 2425 rue de l'Agriculture, local 4145 (Qc), Québec G1V 0A6, Canada
| | - Marie-Lou Gaucher
- Université de Montréal, Faculté de Médecine Vétérinaire, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Younes Chorfi
- Université de Montréal, Faculté de Médecine Vétérinaire, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Gayatri Suresh
- Institut National de Recherche Scientifique, 490 de la Couronne (Qc), Québec G1K 9A9, Canada
| | - Tarek Rouissi
- Institut National de Recherche Scientifique, 490 de la Couronne (Qc), Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- Institut National de Recherche Scientifique, 490 de la Couronne (Qc), Québec G1K 9A9, Canada
| | - Caroline Côté
- Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein-Québec, Québec G1P 3W8, Canada
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, Québec G9N 6V8, Canada
| | - Stéphane Godbout
- Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein-Québec, Québec G1P 3W8, Canada
| |
Collapse
|
26
|
Lee KW, Lillehoj HS. An update on direct-fed microbials in broiler chickens in post-antibiotic era. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a post-antibiotic era, applying dietary alternatives to antibiotics into diets of chickens has become a common practice to improve the productivity and health status of chickens. It is generally accepted that direct-fed microbials (DFMs), defined as a source of viable, naturally occurring microorganisms, as an alternative to antibiotics, have a long history for their safe use and health benefit and are generally regarded for therapeutic, prophylactic and growth-promotion uses in poultry industry. It has been suggested that two primary modes of action by DFMs are balancing gut microbiota and modulating host immunity. Recent findings have suggested that gut microbiota plays an important role in developing immune system and maintaining the homeostasis of mature immune system in mammals and chickens. With the help of molecular and bioinformatics tools, it is now scientifically proven that gut microbiota is diverse, dynamic, and varies according to age, breed, diet composition, environment and feed additives. Broiler chickens are commonly raised on the floor with bedding materials, which facilitates the acquisition of microorganisms present in the bedding materials. Thus, it is expected that environmental factors, including the type of litter, influence host immunity in a positive or negative way. In this regard, adding DFMs into diets of chickens will affect host–microbe interaction, shaping host immunity towards increasing resistance of chickens to enteric diseases.
Collapse
|
27
|
Wielinga PR, Jensen VF, Aarestrup FM, Schlundt J. Evidence-based policy for controlling antimicrobial resistance in the food chain in Denmark. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Dhama K, Tiwari R, Khan RU, Chakrabort S, Gopi M, Karthik K, Saminathan M, Desingu PA, Sunkara LT. Growth Promoters and Novel Feed Additives Improving Poultry Production and
Health, Bioactive Principles and Beneficial Applications: The Trends and Advances-A
Review. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.129.159] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Ojo OO, Bhadauria S, Rath SK. Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS One 2013; 8:e69086. [PMID: 23840907 PMCID: PMC3698082 DOI: 10.1371/journal.pone.0069086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Salinomycin is used as an antibiotic in animal husbandry. Its implication in cancer therapy has recently been proposed. Present study evaluated the toxic effects of Salinomycin on male reproductive system of mice. Doses of 1, 3 or 5 mg/kg of Salinomycin were administered daily for 28 days. Half of the mice were sacrificed after 24 h of the last treatment and other half were sacrificed 28 days after withdrawal of treatment. Effects of SAL on body and reproductive organ weights were studied. Histoarchitecture of testis and epididymis was evaluated along with ultrastructural changes in Leydig cells. Serum and testicular testosterone and luteinizing hormones were estimated. Superoxide dismutase, reduced glutathione, lipid peroxidation, catalase and lactate dehydrogenase activities were measured. Spermatozoa count, morphology, motility and fertility were evaluated. Expression patterns of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage proteins (CYP11A1) were assessed by Western blotting. Salinomycin treatment was lethal to few mice and retarded body growth in others with decreased weight of testes and seminal vesicles in a dose dependent manner. Seminiferous tubules in testes were disrupted and the epithelium of epididymis showed frequent occurrence of vacuolization and necrosis. Leydig cells showed hypertrophied cytoplasm with shrunken nuclei, condensed mitochondria, proliferated endoplasmic reticulum and increased number of lipid droplets. Salinomycin decreased motility and spermatozoa count with increased number of abnormal spermatozoa leading to infertility. The testosterone and luteinizing hormone levels were decreased in testis but increased in serum at higher doses. Depletion of superoxide dismutase and reduced glutathione with increased lipid peroxidation in both testis and epididymis indicated generation of oxidative stress. Suppressed expression of StAR and CYP11A1 proteins indicates inhibition of steroidogenesis. Spermatogenesis was however observed in testis 28 days after Salinomycin withdrawal. The results indicate reversible dose-dependent adverse effects of Salinomycin on male reproductive system of mice.
Collapse
Affiliation(s)
| | - Smrati Bhadauria
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, India
- * E-mail:
| |
Collapse
|