1
|
Cebeci T, Otlu B. Prevalence, virulence potential, antibiotic resistance profile, heavy metal resistance genes of Listeria innocua: A first study in consumed foods for assessment of human health risk in Northern Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65078-65091. [PMID: 39570529 DOI: 10.1007/s11356-024-35582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Listeria (L.) innocua is typically considered a non-pathogenic bacterium that can sometimes act as an opportunistic pathogen in severely immunocompromised patients. However, it plays an important role in food safety because it acts as an indicator organism for potential contamination and the effectiveness of sanitation methods. The aim of this study was to determine the prevalence, virulence genes, antibiotic resistance profiles, heavy metal and disinfectant resistance genes of L. innocua isolates from animal-derived foods. In this study, we isolated and characterized 39 L. innocua strains recovered from commonly 400 consumed beef meat, fresh fish meat, raw cow milk, and traditional cheese samples collected in Giresun, Turkey. The occurrence of virulence-associated genes was detected, such as plcA (97.4%), iap (35.8%), and hlyA (15.3%). A high incidence of resistance was recorded for fusidic acid (100%), followed by oxacillin (97.4%), clindamycin (82%), trimethoprim/sulfamethoxazole (69.2%), benzylpenicillin (41%), nitrofurantoin (35.8%), and fosfomycin (35.8%). Overall, 100% (39/39) of the isolates were resistant to at least one antibiotic, while 92.3% (36/39) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. Among the L. innocua isolates (n = 39), 51.2%, 38.4%, 20.5%, 7.6%, 5.1%, 2.5%, and 2.5% were positive for qacH, cadA1, qacE, qacEΔ1-sul, qacJ, qacF, and qacG heavy metal and disinfectant resistance genes, respectively. The results highlight the need for more comprehensive studies to understand the monitoring and surveillance of L. innocua and their potential hazards to both humans and animals.
Collapse
Affiliation(s)
- Tugba Cebeci
- Espiye Vocational School, Department of Medical Services and Techniques, Giresun University, Giresun, Turkey.
| | - Barış Otlu
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
2
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
3
|
Markovich Y, Palacios-Gorba C, Gomis J, Gómez-Martín Á, Ortolá S, Quereda JJ. Phenotypic and genotypic antimicrobial resistance of Listeria spp. in Spain. Vet Microbiol 2024; 293:110086. [PMID: 38615477 DOI: 10.1016/j.vetmic.2024.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Listeriosis is a zoonotic disease caused by Listeria monocytogenes and Listeria ivanovii. The genus Listeria currently includes 27 recognized species and is found throughout the environment. The number of systematic studies on antimicrobial resistance in L. monocytogenes isolates from domestic farms using antimicrobial substances is limited. Importantly, dairy ruminant farms are reservoir of hypervirulent lineage I L. monocytogenes isolates, previously associated with human clinical cases. Considering that the classes of antibiotics used in food-producing domestic animals are frequently the same or closely related to those used in human medicine, studies about the impact of antibiotic use on the acquisition of antibiotic resistance in Listeria spp. in domestic animal farms are, therefore, of high importance. Here, susceptibility to 25 antibiotics was determined. Eighty-one animal-related, 35 food and 21 human pathogenic Listeria spp. isolates and 114 animal-related non-pathogenic Listeria spp. isolates were tested. Whole genome sequencing data was used for molecular characterization. Regarding L. monocytogenes, 2 strains from the clinical-associated linage I showed resistance to erythromycin, both related to dairy ruminants. Acquired resistance to one antibiotic was exhibited in 1.5% of L. monocytogenes isolates compared with 14% of non-pathogenic Listeria spp. isolates. Resistance to tetracycline (7.9%), doxycycline (7.9%), penicillin (4.4%), and ampicillin (4.4%) were the most frequently observed in non-pathogenic Listeria spp. While resistance to two or more antibiotics (5.6%) was most common in Listeria spp., isolates, resistance to one antibiotic was also observed (1.6%). The present results show that non-pathogenic Listeria spp. harbour antimicrobial resistance genes.
Collapse
Affiliation(s)
- Yuval Markovich
- Research Group Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, Alfara del Patriarca, Valencia 46115, Spain.
| | - Carla Palacios-Gorba
- Research Group Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, Alfara del Patriarca, Valencia 46115, Spain.
| | - Jesús Gomis
- Research Group Microbiological Agents Associated with Animal Reproduction (ProVaginBIO), Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7 Alfara del Patriarca, Valencia 46115, Spain.
| | - Ángel Gómez-Martín
- Research Group Microbiological Agents Associated with Animal Reproduction (ProVaginBIO), Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7 Alfara del Patriarca, Valencia 46115, Spain.
| | - Susana Ortolá
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, Valencia 46020, Spain.
| | - Juan J Quereda
- Research Group Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, Alfara del Patriarca, Valencia 46115, Spain.
| |
Collapse
|
4
|
Matto C, Gianneechini RE, Rodríguez V, Schanzembach MA, Braga V, Mota MI, Rivero R, Varela G. Listeria innocua and serotypes of Listeria monocytogenes isolated from clinical cases in small ruminants in the northwest of Uruguay. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT: Listeriosis is an infectious disease caused by bacteria of the genus Listeria, the neurological form being more common in ruminants. There are many reports of listeriosis in small ruminants in the region that includes Brazil, Argentina and Uruguay. However, these diagnoses were mainly based on histological lesions in the central nervous system (CNS) without the isolation and characterization of the involved Listeria strains. The aim of this study was to report sheep and goats listeriosis cases from 2016 to 2021 in northwestern Uruguay. The diagnosis was made according to lesions observed at histopathology, plus Listeria isolation in CNS, identifying it at specie and serotype level. Nine animals (n=9) of three outbreaks and five sporadic cases of listeriosis were studied. Sheep was the species with more cases in relation to goats, and adults were the category most affected. Cases occurred in spring and less frequently in winter. All presented neurological clinical signs and the lesions in the CNS were consistent with suppurative meningoencephalitis and micro-abscesses in the brainstem. In eight of nine CNS samples, Listeria strains were isolated (seven L. monocytogenes and one L. innocua). All the L. monocytogenes isolates carried the inlA gene; serotyping showed that four strains belonged to serotype 1/2b, two isolates belonged to serotype 4b, and one to serotype 1/2a. Considering that listeriosis is a common disease in this region and the fact that isolates are scarcely recovered from small ruminants, it would be important to emphasize the need for Listeria isolation to better characterize the strains that affect animals. Not only to improve knowledge about the epidemiology of disease but also with the objective of developing serotype specific vaccines for animal use.
Collapse
|
5
|
Gradovska S, Šteingolde Ž, Ķibilds J, Meistere I, Avsejenko J, Streikiša M, Alksne L, Terentjeva M, Bērziņš A. Genetic diversity and known virulence genes in Listeria innocua strains isolated from cattle abortions and farm environment. Vet Anim Sci 2022; 19:100276. [PMID: 36545353 PMCID: PMC9762182 DOI: 10.1016/j.vas.2022.100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Listeria innocua is considered as non-pathogenic bacteria living in an environment although several cases of immunocompromised humans and ruminant listeriosis infections have been reported. Previously, L. innocua was identified as a potential pathogen and virulence in association with L. monocytogenes PrfA dependent virulence (LIPI-1) gene cluster was demonstrated in hemolytic L. innocua. L. innocua usually considered non-pathogenic versus pathogenic L. monocytogenes and L. ivanovii because of the main virulence gene loss. There are limited studies and reports available about L. innocua-caused illness in cattle. A total of 18 STs were identified in cattle abortions while 17 STs in the farm environment with majority of STs were present in both abortions and environmental samples. Genome sequencing showed that in one farm identical L. innocua clones were represented in water, feed, soil, and faeces sample groups, suggesting that animals most likely through the faecal shedding may remain as the main source of L. innocua in a farm environment. Out of all L. innocua isolates PrfA-dependent virulence genes were not found in aborted foetuses isolates and environmental L. innocua isolate groups; however, in 20% of isolates a complete LIPI-3 pathogenicity island encoding listeriolysin S was identified. In this study, we demonstrated that genetically diverse L. innocua clones were widely distributed in cattle farm environment and certain isolates had a significant pathogenicity potential for cattle, thus causing adverse health effects, including abortions.
Collapse
Affiliation(s)
- Silva Gradovska
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa,Corresponding author.
| | - Žanete Šteingolde
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa,Latvia University of Life Sciences and Technologies, Faculty of Veterinary Medicine
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa
| | - Irēna Meistere
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa
| | - Jeļena Avsejenko
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa
| | - Madara Streikiša
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa
| | - Margarita Terentjeva
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes Str 3, Riga Latvia, Lativa,Latvia University of Life Sciences and Technologies, Faculty of Veterinary Medicine
| |
Collapse
|
6
|
Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON. Comparative Genomics of Listeria Species Recovered from Meat and Food Processing Facilities. Microbiol Spectr 2022; 10:e0118922. [PMID: 36066257 PMCID: PMC9604131 DOI: 10.1128/spectrum.01189-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Listeria species (spp.) are contaminants that can survive in food, on equipment, and on food processing premises if appropriate hygiene measures are not used. Homologous stress tolerance genes, virulence gene clusters such as the prfA cluster, and clusters of internalin genes that contribute to the pathogenic potential of the strains can be carried by both pathogenic and nonpathogenic Listeria spp. To enhance understanding of the genome evolution of virulence and virulence-associated properties, a comparative genome approach was used to analyze 41 genome sequences belonging to L. innocua and L. welshimeri isolated from food and food processing facilities. Genetic determinants responsible for disinfectant and stress tolerance were identified, including the efflux cassette bcrABC and Tn6188_qac_1 disinfectant resistance determinant, and stress survival islets. These disinfectant-resistant genes were more frequently found in L. innocua (12%) than in L. welshimeri (2%). Several isolates representing the presumed nonpathogenic L. innocua still carried virulence-associated genes, including LGI2, LGI3, LIPI-3, and LIPI-4 which were absent in all L. welshimeri isolates. The mobile genetic elements identified were plasmids (pLGUG1 and J1776) and prophages (PHAGE_Lister_vB_LmoS_188, PHAGE_Lister_LP_030_3, PHAGE_Lister_A118, PHAGE_Lister_B054, and PHAGE_Lister_vB_LmoS_293). The results suggest that the presumed nonpathogenic isolates especially L. innocua can carry genes relevant to the strain's virulence and stress tolerance in the food and food processing facilities. IMPORTANCE This study provides genomic insights into the recently expanded genus in order to gain valuable information about the evolution of the virulence and stress tolerance properties of the genus Listeria and the distribution of these genetic elements pertinent to the pathogenic potential across Listeria spp. and clonal lineages in South Africa (SA).
Collapse
Affiliation(s)
- T. Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - I. Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - K. Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - R. E. Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - O. N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
El Zowalaty ME, Moura A, Lecuit M, Zishiri OT. Draft Genome Sequence of Listeria innocua Strain MEZLIS29, Isolated from a Cow in South Africa. Microbiol Resour Announc 2022; 11:e0112221. [PMID: 35225692 PMCID: PMC8928759 DOI: 10.1128/mra.01122-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
Here, we report the draft genome sequence of Listeria innocua strain MEZLIS29, which was isolated from a healthy cow in Flagstaff, Eastern Cape Province, South Africa. The genome was sequenced using the Illumina MiSeq platform and had a length of 2,805,865 bp, with a G+C content of 37.5% and 2,783 coding DNA sequences, 58 tRNAs, 4 noncoding RNAs, and 8 rRNA genes.
Collapse
Affiliation(s)
- Mohamed E. El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexandra Moura
- Institut Pasteur, National Reference Center and World Health Organization Collaborating Center for Listeria, Paris, France
- Institut Pasteur, Université de Paris, INSERM U1117, Biology of Infection Unit, Paris, France
| | - Marc Lecuit
- Institut Pasteur, National Reference Center and World Health Organization Collaborating Center for Listeria, Paris, France
- Institut Pasteur, Université de Paris, INSERM U1117, Biology of Infection Unit, Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Giorda F, Crociara P, Iulini B, Gazzuola P, Favole A, Goria M, Serracca L, Dondo A, Crescio MI, Audino T, Peletto S, Di Francesco CE, Caramelli M, Sierra E, Di Nocera F, Lucifora G, Petrella A, Puleio R, Mazzariol S, Di Guardo G, Casalone C, Grattarola C. Neuropathological Characterization of Dolphin Morbillivirus Infection in Cetaceans Stranded in Italy. Animals (Basel) 2022; 12:ani12040452. [PMID: 35203160 PMCID: PMC8868427 DOI: 10.3390/ani12040452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary There is abundant literature reporting demyelination in dogs and pinnipeds affected by morbillivirus infection, but myelinopathy is poorly investigated in stranded cetaceans affected with the virus. Also, the neuropathogenesis of cetacean morbillivirus infection has not been fully clarified, leaving questions on cell tropism unanswered. A novel dolphin morbillivirus lineage of Atlantic origin circulating in Italian waters replaced the previous Mediterranean strain in late 2015; however, differences in virulence and pathogenesis between the two strains have not yet been documented. The aims of the present study were to: describe histopathological changes and immunohistochemical findings in the central nervous system of 31 cetaceans which tested positive on molecular investigations for the two dolphin morbillivirus strains; characterize by double indirect immunofluorescence staining the areas of myelin damage. The most frequently observed morbillivirus-associated lesions were astro-microgliosis, neuronal necrosis, spongiosis, malacia, and non-suppurative meningoencephalitis. Demyelination was detected by means of a specific myelin biomarker. Inside and around the demyelinated areas there were morbillivirus antigen-bearing cells of mainly neuronal and microglial origin, associated with marked astro and microglia reactivity. Molecular and immunohistochemical analysis suggested a higher neurotropic affinity of the novel circulating strain. Abstract Cetacean morbillivirus (CeMV) is responsible for epidemic and endemic fatalities in free-ranging cetaceans. Neuro-inflammation sustained by CeMV is a leading cause of death in stranded cetaceans. A novel dolphin morbillivirus (DMV) strain of Atlantic origin circulating in Italian waters since early 2016 has caused acute/subacute lesions associated with positive immunolabelling of the virus. To date, myelin damage has not been fully documented and investigated in cetaceans. This study describes neuropathological findings in the brain tissue of 31 cetaceans found stranded along the Italian coastline and positive for DMV infection on molecular testing. Cell changes in the areas of myelinopathy were revealed by double indirect immunofluorescence. The most frequent DMV-associated lesions were astro-microgliosis, neuronal necrosis, spongiosis, malacia, and non-suppurative meningoencephalitis. Myelin reduction and areas of demyelination were revealed by means of a specific myelin biomarker. Morbilliviral antigen immunolabelling was mainly observed in neurons and microglial cells, in association with a marked activation of microglia and astrocytes. These findings extend our knowledge of DMV-associated brain lesions and shed light on their pathogenesis.
Collapse
Affiliation(s)
- Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35416 Canary Islands, Spain;
- Correspondence:
| | - Paola Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
- Department of Prevention, Local Veterinary Services (ASLTO4), SS Sanità Animale, Piazza Gino Viano Bellandi, Cuorgnè, 10082 Torino, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Paola Gazzuola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Alessandra Favole
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Tania Audino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | | | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Eva Sierra
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35416 Canary Islands, Spain;
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute, 2, Portici, 80055 Napoli, Italy; (F.D.N.); (G.L.)
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute, 2, Portici, 80055 Napoli, Italy; (F.D.N.); (G.L.)
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy;
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi, 3, 90129 Palermo, Italy;
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy;
| | - Giovanni Di Guardo
- Retired Professor of General Pathology and Veterinary Pathophysiology, Veterinary Medical Faculty, University of Teramo, Localita’ Piano d’Accio, 64100 Teramo, Italy;
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.C.); (B.I.); (P.G.); (A.F.); (M.G.); (L.S.); (A.D.); (M.I.C.); (T.A.); (S.P.); (M.C.); (C.C.); (C.G.)
| |
Collapse
|
9
|
Matto C, D'Alessandro B, Mota MI, Braga V, Buschiazzo A, Gianneechini E, Varela G, Rivero R. Listeria innocua isolated from diseased ruminants harbour minor virulence genes of L. monocytogenes. Vet Med Sci 2022; 8:735-740. [PMID: 35040277 PMCID: PMC8959264 DOI: 10.1002/vms3.710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Listeriosis is one of the most common nervous diseases in ruminants, and is caused almost exclusively by the Gram‐positive bacterium, Listeria monocytogenes. However, there are few reports of listeriosis associated with L. innocua, which is genetically closely related to L. monocytogenes, but considered non‐pathogenic. In this work, we report two cases of suppurative meningoencephalitis in apparently previously healthy ruminants from different farms, in which two strains of L. innocua were recovered. The whole genomes from both isolates were sequenced, allowing phylogenetic analyses to be performed, which indicated that the two strains were very closely related. Virulence determinants were searched, especially genes coding for the main L. monocytogenes virulence factors which have been previously described in L. innocua. Surprisingly, the two isolates do not possess such virulence determinants. Instead, both strains carried a set of genes that encode for other virulence factors of the genus Listeria detected using the Virulence Factor Database (VFDB): iap (division and invasion of host cells), lpeA (entry into non‐professional phagocytes cells), fbpA (multifunctional virulence factor, including adherence to host cells), lspA (surface protein anchoring), lap (adhesion to enterocytes and trans epithelial translocation), pdgA (resistance to lysozyme), oatA (resistance to different antimicrobial compounds and also required for growth inside macrophages), lplA1 (use of host‐metabolites for in vivo growth), gtcA (catalyses teichoic acid of bacterial wall), prsA2 (cell invasion, vacuole lysis and intracellular growth), clpC, clpE and clpP (survival under several stress conditions). These genes among others detected, could be involved in the ability of L. innocua to produce damage in animal and human hosts. These results highlight the multifactorial profile of Listeria pathogenesis and the need for comprehensive scientific research that address microbiological, environmental and veterinary aspects of listeriosis. This paper report two cases of nervous listeriosis in ruminants due to L. innocua in which their genomes were sequenced, and the presence of virulence factors were studied.
Collapse
Affiliation(s)
- Carolina Matto
- Laboratorio Regional Noroeste DILAVE 'Miguel C. Rubino' DGSG-MGAP, Paysandú, Uruguay
| | - Bruno D'Alessandro
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Inés Mota
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Valeria Braga
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratorio de Microbiología Molecular y Estructural, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Edgardo Gianneechini
- Laboratorio Regional Noroeste DILAVE 'Miguel C. Rubino' DGSG-MGAP, Paysandú, Uruguay
| | - Gustavo Varela
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rodolfo Rivero
- Laboratorio Regional Noroeste DILAVE 'Miguel C. Rubino' DGSG-MGAP, Paysandú, Uruguay
| |
Collapse
|
10
|
Liao Y, Liu L, Zhou H, Fang F, Liu X. Case Report: Refractory Listeria innocua Meningoencephalitis in a Three-Year-Old Boy. Front Pediatr 2022; 10:857900. [PMID: 35664865 PMCID: PMC9160653 DOI: 10.3389/fped.2022.857900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria innocua is widely distributed in the environment and food and is considered a non-pathogenic bacterium for both humans and animals. To our knowledge, only a few cases of L. innocua infection in humans and ruminants have been reported. Moreover, there has been no report on human L. innocua meningoencephalitis. Here, we report a case of severe refractory meningoencephalitis in a three-year-old boy after infection with L. innocua. The child's first symptoms were a runny nose, high fever, and rashes, which quickly progressed to unconsciousness and convulsions. The initial analysis of cerebral spinal fluid revealed remarkably elevated protein levels and increased white blood cells count. The blood culture of the patient in the early stage was positive for L. innocua. In addition, his brain imaging tests were observed dynamically, and the result showed a speedy progression from multiple intracranial abnormal signals to hydrocephalus and interstitial cerebral edema. After receiving antibiotics and symptomatic treatment for nearly 3 months, the patient's condition improved markedly. However, he still had residual complications such as hydrocephalus. Although L. innocua is considered harmless, it can still cause disease in humans, even severe meningoencephalitis, with rapid progression and poor prognosis. Early discovery, diagnosis, and treatment are necessary to elevate the survival rate and life quality of those patients. Antibiotics should be used with sufficient duration and dosage. Cephalosporins are not suitable for the treatment of L. innocua meningoencephalitis and penicillin antibiotics are preferred for children. The presentation of this case will help to expand our knowledge of Listeria infections and provide a potential candidate for pathogens causing severe childhood central nervous system infection.
Collapse
Affiliation(s)
- Yi Liao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Survey on the Presence of Bacterial, Fungal and Helminthic Agents in Off-Leash Dog Parks Located in Urban Areas in Central-Italy. Animals (Basel) 2021; 11:ani11061685. [PMID: 34198875 PMCID: PMC8229923 DOI: 10.3390/ani11061685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Off-leash dog parks are designated, generally fenced, public spaces where dogs can move freely under the supervision of their owners. These areas, allowing animals to socialize and run free, play a fundamental role in dogs’ welfare. However, such environments may be a source of different pathogens, even zoonotic, excreted by the attending animals. The present study evaluated the occurrence of bacterial, fungal, and parasitic pathogens in off-leash dog parks located in Florence (central Italy). Yersinia spp., Listeria innocua, Toxocara canis eggs and Ancylostoma caninum/Uncinaria stenocephala eggs were found in canine feces. Keratinophilic geophilic fungi (mostly Microsporum gypseum/A. incurvatum, Microsporum canis in a single case) were recovered from soil. Trichosporon sp. and Geotrichum candidum were isolated from two water samples. The obtained results suggest that, despite the not negligible canine fecal contamination of selected areas (feces were found in 88.5% of the parks), attending dogs did not act as important carriers for the investigated pathogens, although examined off-leash dog parks may represent a risk for the spreading of some dermatophytoses to both pets and their owners. Thus, in a One-Health perspective, periodical examinations to detect the main bacteriological, parasitological and mycological pathogens in different samples collected in off-leash dog parks are recommended. Abstract Off-leash dog parks are designated public spaces where dogs can move freely, under their owners’ supervision. These areas, allowing animals to socialize and move freely, are fundamental for dogs’ welfare. However, different pathogens, even zoonotic, may be excreted by the attending animals and contaminate the environment. The aim of the present study was to verify the occurrence of bacterial, fungal and parasitic pathogens in off-leash dog parks located in Florence (central Italy). Between March and May 2019, 83 fecal samples, 43 soil samples and 23 water samples (from fountains and puddles) collected from 26 off-leash fenced areas were examined. Fecal samples scored positive for Yersinia spp. (n = 7), Listeria innocua (n = 4), Toxocara canis eggs (n = 2) and Ancylostoma caninum/Uncinaria stenocephala eggs (n = 1). Keratinophilic geophilic fungi (mostly Microsporum gypseum /A. incurvatum) were recovered from 43 soil samples belonging to 23 out of 26 parks, along with Microsporum canis in a single case. Prototheca spp. was never isolated from water samples, while Trichosporon sp. was cultured in two cases, alone and in association with Geotrichum candidum. These results show that dogs did not act as important carriers for the investigated bacterial and parasitic pathogens, although examined areas may represent a risk for the spreading of some dermatophytoses to both pets and their owners. Periodical examinations to assess the main bacteriological, parasitological and mycological pathogens in different samples collected in off-leash dog parks should be carried out in a One-Health perspective.
Collapse
|
14
|
Occurrence, Diversity of Listeria spp. Isolates from Food and Food-Contact Surfaces and the Presence of Virulence Genes. Microorganisms 2020; 8:microorganisms8020294. [PMID: 32093378 PMCID: PMC7074838 DOI: 10.3390/microorganisms8020294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
This study evaluates the hazards posed by foodborne bacteria of the Listeria genus by analyzing the occurrence, diversity and virulence of Listeria spp.in food and food-manufacturing plants. Seventy-five isolates obtained from the routine analysis of 653 samples taken by three diagnostic laboratories in Northern Italy were genotypically differentiated by Repetitive Extragenic Palindrome (rep) PCR, with the GTG5 primer identified by sequencing the 16S rRNA gene and examined by specific PCR tests for the presence of L. monocytogenes virulence determinants occasionally found to occur in other species of the genus. Within this sample, 76% (n = 57) isolates were identified as L. innocua, 16% (n = 12) as L. monocytogenes, 6.6% (n = 5) as L. welshimeri and 1.3% (n = 1) as L. seeligeri. All L. monocytogenes isolates belonged to the serotype 1/2a and were predicted to be virulent for the presence of the inlJ internalin gene. Potentially virulent strains of L. innocua, L. seeligeri and L. welshimeri, carrying the L. monocytogenesinlA gene and/or hly gene, were identified, and most isolates were found to possess the toxin–antitoxin system mazEF for efficient adaptation to heat shock. Results indicated the need to reinforce food-contamination-prevention measures against all Listeria species by defining efficiently their environmental distribution.
Collapse
|
15
|
Genome Sequence of Listeria innocua Strain MEZLIS26, Isolated from a Goat in South Africa. Microbiol Resour Announc 2019; 8:8/44/e00991-19. [PMID: 31672743 PMCID: PMC6953508 DOI: 10.1128/mra.00991-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here, we report the draft genome sequence of Listeria innocua strain MEZLIS26, isolated from a healthy goat in Flagstaff, Eastern Cape Province, South Africa. The genome was sequenced using the Illumina MiSeq platform and had a length of 2,800,777 bp, with a G+C content of 37.4%, 2,755 coding DNA sequences (CDSs), 49 transfer RNAs (tRNAs), and 4 noncoding RNAs (ncRNAs). Here, we report the draft genome sequence of Listeria innocua strain MEZLIS26, isolated from a healthy goat in Flagstaff, Eastern Cape Province, South Africa. The genome was sequenced using the Illumina MiSeq platform and had a length of 2,800,777 bp, with a G+C content of 37.4%, 2,755 coding DNA sequences (CDSs), 49 transfer RNAs (tRNAs), and 4 noncoding RNAs (ncRNAs).
Collapse
|
16
|
Atypical Hemolytic Listeria innocua Isolates Are Virulent, albeit Less than Listeria monocytogenes. Infect Immun 2019; 87:IAI.00758-18. [PMID: 30670551 DOI: 10.1128/iai.00758-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/26/2023] Open
Abstract
Listeria innocua is considered a nonpathogenic Listeria species. Natural atypical hemolytic L. innocua isolates have been reported but have not been characterized in detail. Here, we report the genomic and functional characterization of representative isolates from the two known natural hemolytic L. innocua clades. Whole-genome sequencing confirmed the presence of Listeria pathogenicity islands (LIPI) characteristic of Listeria monocytogenes species. Functional assays showed that LIPI-1 and inlA genes are transcribed, and the corresponding gene products are expressed and functional. Using in vitro and in vivo assays, we show that atypical hemolytic L. innocua is virulent, can actively cross the intestinal epithelium, and spreads systemically to the liver and spleen, albeit to a lesser degree than the reference L. monocytogenes EGDe strain. Although human exposure to hemolytic L. innocua is likely rare, these findings are important for food safety and public health. The presence of virulence traits in some L. innocua clades supports the existence of a common virulent ancestor of L. monocytogenes and L. innocua.
Collapse
|
17
|
Abay S, Çakır Bayram L, Aydin F, Müştak HK, Diker KS, Erol İ. Pathogenicity, genotyping and antibacterial susceptibility of the Listeria spp. recovered from stray dogs. Microb Pathog 2018; 126:123-133. [PMID: 30381253 DOI: 10.1016/j.micpath.2018.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/25/2018] [Accepted: 10/27/2018] [Indexed: 12/22/2022]
Abstract
The present study aimed to determine the prevalence of Listeria spp. in stray dogs in the Kayseri province of Turkey. In addition, serotyping, genotyping and virulence gene analysis of the isolated Listeria spp. were performed and their pathogenicity and antibacterial susceptibility were investigated. The study included 80 rectal swaps taken from 80 stray dogs of different ages and gender that were sheltered in the Kayseri Municipal Dog Shelter. Listeria selective broth and Listeria selective agar were used for the isolation of Listeria spp. and the isolates were identified using a Microbact 12L (Oxoid, England) identification test kit. 16S rDNA sequencing and species-specific polymerase chain reaction (PCR) were performed for molecular identification of the isolates, multiplex PCR and a serological test were performed for serotyping, and PCR was used for virulence gene analysis. For determining the pathogenicity of L. monocytogenes and L. innocua isolates, a total of 100 mice (50 pregnant and 50 non-pregnant) were used. The mice were infected intraperitoneally; the inoculation dose was 1 × 109 CFU/mL and 0.2 mL was used for each animal. Tissue samples obtained from infected mice were processed for the re-isolation of the Listeria spp. and then stained with hematoxylin eosin and Brown-Brenn Gram stain. The antibiotic susceptibilities of the isolates were determined by the disk diffusion method. Listeria spp. were isolated from 5 (6.25%) of the 80 fecal samples. While 1 of the isolates was identified as L. monocytogenes, 4 of them were identified as L. innocua. Serotyping by serological and molecular methods revealed the isolate of L. monocytogenes to be serotype 1/2a. According to the phylogenetic trees, L. innocua and L. monocytogenes strains were clustered in different groups. The L. monocytogenes isolate was positive for all virulence genes tested. All L. innocua isolates were positive for the plcB gene. While all L. innocua isolates were negative for the lin1068 gene, 3 L. innocua isolates were found to be positive for the lin0558 gene. In mice infected with L. monocytogenes, pathological findings were observed in the uterus, intestines, pancreas, and heart. In mice infected with L. innocua, pathological findings were observed in the stomach, intestines and spleen. L. monocytogenes- or L. innocua-related infections or other inflammatory reactions were not observed in the brains of infected animals. On histopathological examination with Gram stain, an abundance of Listeria spp. was observed in the lesions of the liver, spleen, uterus, and kidney. Moreover, while abortion was observed in all animals infected with L. monocytogenes, it was not observed in any of the animals infected with L. innocua. Antibiotic susceptibility testing revealed that all 5 isolates were sensitive to ampicillin, amoxicillin/clavulanic acid, erythromycin, gentamicin, penicillin G, and trimethoprim-sulfamethoxazole and were resistant to nalidixic acid, streptomycin, and cefuroxime sodium. Considering also the pathogenicity of the isolated microorganisms, it can be suggested that stray dogs as carriers of Listeria spp. are a significant risk to public health. As L. innocua isolates, which are considered apathogenic, led to the occurrence of lesions similar to those caused by L. monocytogenes, detailed studies on the pathogenesis of L. innocua infections caused by L. innocua isolates recovered from various sources are required.
Collapse
Affiliation(s)
- Seçil Abay
- Erciyes University, Veterinary Faculty, Department of Microbiology, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Erciyes University, Veterinary Faculty, Department of Pathology, Kayseri, Turkey
| | - Fuat Aydin
- Erciyes University, Veterinary Faculty, Department of Microbiology, Kayseri, Turkey
| | - Hamit Kaan Müştak
- Ankara University, Veterinary Faculty, Department of Microbiology, Ankara, Turkey
| | - Kadir Serdar Diker
- Ankara University, Veterinary Faculty, Department of Microbiology, Ankara, Turkey
| | - İrfan Erol
- Ankara University, Veterinary Faculty, Department of Food Hygiene and Technology, Ankara, Turkey
| |
Collapse
|
18
|
Matto C, Varela G, Braga V, Vico V, Gianneechini RE, Rivero R. Detection of Listeria spp. in cattle and environment of pasture-based dairy farms. PESQUISA VETERINÁRIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT: The aim of the study was to detect Listeria spp., particularly Listeria monocytogenes, in cattle and environment of pasture based dairy farms in Paysandú, Uruguay. A two-stage sampling was conducted, 10 farms were selected by probability proportional to size. A single visit was made to each farm. Samples from bovine faeces, feedstuffs, bulk tank milk, drinking water and soil from the entry and exit pens of the milking parlour were collected for bacteriological studies. PCR assays were used to confirm species and determine the serotype profile of L. monocytogenes isolates. AscI-pulsed-field gel electrophoresis was done to genetically compare them. Listeria spp. were isolated from eight of ten dairy farms, whereas L. monocytogenes in three of them. Serotype distribution in L. monocytogenes was as follows: 1/2a, three isolates; 4b, one isolate. L. monocytogenes or L. innocua excreted from clinically healthy milking cows was detected via faeces. In feedstuffs, only one L. monocytogenes 1/2a isolate from a pasture was obtained. The strain was identical by PFGE to an isolate 1/2a obtained from a pool of milking cow feces that grazed on this farm. No isolation of Listeria spp. was retrieved from the bulk tank milk or drinking water from any of the farms. Listeria innocua was detected in 13 feedstuffs and seven samples of soil from the entry and exit pens of the milking parlour. This is a first local study that confirms the presence of Listeria spp. including L. monocytogenes in healthy cattle and environment of pasture-based dairy farms. These results suggest the potential role that healthy cattle and their sub-products would play as a source of these agents for humans and/or others animals. More detailed studies that include genetic comparison of human and animal isolates are required in order to clearly establish the epidemiological relationship.
Collapse
|
19
|
Matto C, Varela G, Mota MI, Gianneechini R, Rivero R. Rhombencephalitis caused by Listeria monocytogenes in a pastured bull. J Vet Diagn Invest 2017; 29:228-231. [PMID: 28166691 DOI: 10.1177/1040638716689116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A pastured 2-y-old cross-breed bull developed brainstem encephalitis (rhombencephalitis); Listeria monocytogenes was isolated from the brain. In the brainstem, there was perivascular cuffing, multiple microabscesses, and positive immunostaining for L. monocytogenes. Samples of bovine feces, water, feedstuffs, milking parlor soil, and bulk tank milk were collected from the dairy farm. Seven isolates of the genus Listeria were obtained, 6 of L. innocua and 1 of L. monocytogenes, which was found in the pasture where the bull grazed. Both isolates belonged to serotype 4b and were positive for internalins A, C, and J. According to the DNA fragment patterns of pulsed-field gel electrophoresis, the isolates were closely related. The source of infection was the pasture, implying that listeriosis should not be discounted in cases with compatible clinical signs but the absence of silage feeding.
Collapse
Affiliation(s)
- Carolina Matto
- Facultad de Veterinaria (Matto) and Instituto de Higiene Facultad de Medicina (Varela, Mota), Universidad de la República, Uruguay.,Laboratorio Regional Noroeste DILAVE "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca, Uruguay (Gianneechini, Rivero)
| | - Gustavo Varela
- Facultad de Veterinaria (Matto) and Instituto de Higiene Facultad de Medicina (Varela, Mota), Universidad de la República, Uruguay.,Laboratorio Regional Noroeste DILAVE "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca, Uruguay (Gianneechini, Rivero)
| | - María Inés Mota
- Facultad de Veterinaria (Matto) and Instituto de Higiene Facultad de Medicina (Varela, Mota), Universidad de la República, Uruguay.,Laboratorio Regional Noroeste DILAVE "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca, Uruguay (Gianneechini, Rivero)
| | - Ruben Gianneechini
- Facultad de Veterinaria (Matto) and Instituto de Higiene Facultad de Medicina (Varela, Mota), Universidad de la República, Uruguay.,Laboratorio Regional Noroeste DILAVE "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca, Uruguay (Gianneechini, Rivero)
| | - Rodolfo Rivero
- Facultad de Veterinaria (Matto) and Instituto de Higiene Facultad de Medicina (Varela, Mota), Universidad de la República, Uruguay.,Laboratorio Regional Noroeste DILAVE "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca, Uruguay (Gianneechini, Rivero)
| |
Collapse
|
20
|
Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 2015; 35:211-35. [PMID: 26073265 DOI: 10.1080/01652176.2015.1063023] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeriosis is an infectious and fatal disease of animals, birds, fish, crustaceans and humans. It is an important food-borne zoonosis caused by Listeria monocytogenes, an intracellular pathogen with unique potential to spread from cell to cell, thereby crossing blood-brain, intestinal and placental barriers. The organism possesses a pile of virulence factors that help to infect the host and evade from host immune machinery. Though disease occurrence is sporadic throughout the world, it can result in severe damage during an outbreak. Listeriosis is characterized by septicaemia, encephalitis, meningitis, meningoencephalitis, abortion, stillbirth, perinatal infections and gastroenteritis with the incubation period varying with the form of infection. L. monocytogenes has been isolated worldwide from humans, animals, poultry, environmental sources like soil, river, decaying plants, and food sources like milk, meat and their products, seafood and vegetables. Since appropriate vaccines are not available and infection is mainly transmitted through foods in humans and animals, hygienic practices can prevent its spread. The present review describes etiology, epidemiology, transmission, clinical signs, post-mortem lesions, pathogenesis, public health significance, and advances in diagnosis, vaccines and treatment of this disease. Special attention has been given to novel as well as prospective emerging therapies that include bacteriophage and cytokine therapy, avian egg yolk antibodies and herbal therapy. Various vaccines, including advances in recombinant and DNA vaccines and their modes of eliciting immune response, are also discussed. Due focus has also been given regarding appropriate prevention and control strategies to be adapted for better management of this zoonotic disease.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Kumaragurubaran Karthik
- b Division of Bacteriology and Mycology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences , Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura 281001 , India
| | - Muhammad Zubair Shabbir
- d Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore 54600, Pakistan
| | - Sukhadeo Barbuddhe
- e Indian Council of Agricultural Research Complex for Goa , Old Goa, Goa 403402, India
| | - Satya Veer Singh Malik
- f Division of Veterinary Public Health , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Raj Kumar Singh
- g Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| |
Collapse
|