1
|
Pang S, Liu M, Wang L, Shao M, Zhu G, Duan Q. Differential Adjuvant Activity by Flagellins from Escherichia coli, Salmonella enterica Serotype Typhimurium, and Pseudomonas aeruginosa. Vaccines (Basel) 2024; 12:1212. [PMID: 39591115 PMCID: PMC11598095 DOI: 10.3390/vaccines12111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: The adjuvant properties of flagellin from various bacterial species have been extensively studied; however, a systematic comparison of the immunoadjuvant effects of flagellins from different bacterial species is lacking. This study aims to analyze the amino acid sequences and structural features of flagellins from Escherichia coli (FliCE.C), Salmonella enterica serotype Typhimurium (FliCS.T), and Pseudomonas aeruginosa (FliCP.A), and to evaluate their adjuvant activities in terms of Toll-like receptor 5 (TLR5) activation, antibody production, and cytokine responses in a murine model. (2) Methods: Bioinformatics analysis was conducted to compare the amino acid sequences and structural domains (D0, D1, D2, and D3) of flagellins from the three bacterial species. PyMol atomic models were used to confirm structural differences. Toll-like receptor 5 (TLR5) activation assays were performed to measure IL-8 and TNF-α production in vitro. The IgG antibody titers against the model antigen FaeG and cytokine responses, including IL-4 and TNF-α secretion were evaluated in a murine model. (3) Results: Bioinformatics analysis revealed that the D0 and D1 domains are highly conserved, whereas the D2 and D3 domains exhibit significant variability across the three species. Structural analysis via PyMol confirmed these differences, particularly in the D2 and D3 domains. TLR5 activation assays showed that FliCS.T and FliCP.A induced higher levels of IL-8 and TNF-α production compared to FliCE.C, indicating species-specific variations in TLR5 activation. In the murine model, FliCS.T as an adjuvant produced higher antibody titers against FaeG and increased IL-4 secretion in splenocytes compared to FliCE.C and FliCP.A. FliCP.A induced higher TNF-α expression than FliCS.T and FliCE.C, suggesting FliCS.T and FliCP.A are more effective at inducing T-cell responses. (4) Conclusions: This study highlights the potential of FliCS.T and FliCP.A as potent vaccine adjuvants. The results provide insights into the structure-function relationships of these flagellins and support their application in enhancing immune responses against diverse pathogens.
Collapse
Affiliation(s)
- Shengmei Pang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.P.); (M.L.); (L.W.); (M.S.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Mei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.P.); (M.L.); (L.W.); (M.S.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Longlong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.P.); (M.L.); (L.W.); (M.S.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Mingqing Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.P.); (M.L.); (L.W.); (M.S.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.P.); (M.L.); (L.W.); (M.S.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.P.); (M.L.); (L.W.); (M.S.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Chung YC, Cheng LT, Chu CY, Afzal H, Doan TD. Flagellin Enhances the Immunogenicity of Pasteurella multocida Lipoprotein E Subunit Vaccine. Avian Dis 2024; 68:183-191. [PMID: 39400212 DOI: 10.1637/aviandiseases-d-24-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 10/15/2024]
Abstract
Fowl cholera, caused by Pasteurella multocida infection, poses challenges for prevention because of its many serotypes. Bacterins are currently widely used for vaccination against fowl cholera, but protection is limited to homologous strains. Live attenuated vaccines of P. multocida provide some heterologous protection, but side effects are considerable. More recently, protein-based antigens are promising subunit vaccines when their low immunogenicity has been addressed with effective adjuvants. Bacterial flagellin has been widely considered a promising adjuvant for vaccines. In this study, we tested the adjutancy of flagellin in a subunit vaccine against P. multocida in a mice and chicken models. For vaccine formulation, the antigen fPlpE (P. multocida liporotein E) was combined with fFliC (Salmonella Typhimurium flagellin). The recombinant proteins of fPlpE and fFliC were successfully expressed using the Escherichia coli system as the expected sizes of 55 kDa and 70 kDa, respectively. The fFliC elicited strong expression levels of proinflammatory cytokine (IL-1β, IL-8, and IL-6) when stimulated in native chicken peripheral blood mononuclear cells. Immunization of mice and chickens with the subunit vaccines containing fFliC accelerated the antibody response. In the challenge tests, fFliC increased vaccine protective efficacy against the heterologous strain P. multocida A1 and highly virulent strain Chu01 in mice and chickens, respectively. These data indicated potential possibilities of using fFliC as an immunostimulant adjuvant in developing a subunit vaccine against fowl cholera.
Collapse
Affiliation(s)
- Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Haroon Afzal
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Thu-Dung Doan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan,
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
Li Y, Zhou H, Li B, Li J, Shen Y, Jiang Y, Cui W, Tang L. Immunoprotection of FliBc chimeric fiber2 fusion proteins targeting dendritic cells against Fowl adenovirus serotype 4 infection. Poult Sci 2024; 103:103474. [PMID: 38387285 PMCID: PMC10899072 DOI: 10.1016/j.psj.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) is a highly fatal disease in chickens caused by the highly pathogenic fowl adenovirus serotype 4 (FAdV-4), which has severe economic consequences. The fiber2 protein exhibits excellent potential as a candidate for a subunit vaccination against FAdV-4. Despite having a high safety profile, subunit vaccines have low immunogenicity due to their lack of infectivity, which leads to low levels of immune response. As a vaccine adjuvant, Salmonella flagellin possesses the potential to augment the immunological response to vaccinations. Additionally, a crucial strategy for enhancing vaccine efficacy is efficient presentation of immune antigens to dendritic cells (DC) for targeted vaccination. In this study, we designed FAdV-4-fiber2 protein, and a recombinant protein called FliBc-fiber2-SP which based on FAdV-4-fiber2 protein, was generated using the gene sequence FliBc, which retains only the conserved sequence at the amino and carboxyl termini of the flagellin B subunit, and a short peptide SPHLHTSSPWER (SP), which targets chicken bone marrow-derived DC. They were separately administered via intramuscular injection to 14-day-old specific pathogen-free (SPF) chickens, and their immunogenicity was compared. At 21 d postvaccination (dpv), it was found that the FliBc-fiber2-SP recombinant protein elicited significantly higher levels of IgG antibodies and conferred a vaccine protection rate of up to 100% compared to its counterpart fiber2 protein. These results suggest that the DC-targeted peptide fusion strategy for flagellin chimeric antigen construction can effectively enhance the immune protective efficacy of antigen proteins.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Bolong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yuanmeng Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China.
| |
Collapse
|
4
|
Mahmoud NK, El-Deeb AH, Abd El-Khaleck MA, Elsafty MM, Hussein HA. Cytokine expression, protection and shedding reduction induced by the combination of lipopolysaccharide with Montanoid ISA71 in oil-based Newcastle disease vaccine. Microb Pathog 2024; 188:106542. [PMID: 38199445 DOI: 10.1016/j.micpath.2024.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Oil-based inactivated ND vaccines are a commonly used control strategy for this endemic disease in Egypt. One of the major limitations of these inactivated vaccines is the time taken to develop a protective response in vaccinated birds. In the present study, we aimed to formulate an inactivated oil-based ND vaccine incorporated with lipopolysaccharide (LPS) that stimulates the early onset innate response to inactivated vaccines via proinflammatory cytokine production. Five groups of 21-day old SPF chicks were reared in isolators and were treated as follows: G1: Montanoid ISA71 adjuvanted NDV vaccinated group, G2: LPS and Montanoid ISA71 adjuvanted NDV vaccinated group, G3: LPS and Montanoid ISA71 with phosphate buffer saline received group and two non-vaccinated control groups. NDV specific antibodies and cell mediated immune responses were evaluated by hemagglutination inhibition and lymphocyte proliferation tests, respectively. Transcriptional responses of the TLR4, IFN-γ and IL-2 genes were analyzed in peripheral blood mononuclear cells (PBMCs) following vaccination by qRT-PCR. Protection % was determined after challenge with a lethal strain of NDV 106 EID50/0.5 ml. Viral shedding was assessed on oropharyngeal swabs by qRT-PCR and infectivity titration on SPF-ECE. The results revealed that the incorporation of LPS with ISA71 in the oil-based ND vaccine induced a synergistic response confirmed by significant humoral and lymphoproliferative responses with a significant increase in Th1 cytokine transcripts. The simultaneous use of both adjuvants in G2 demonstrated complete protection and a significant reduction in viral shedding compared to the ISA71-adjuvated ND vaccine in G1, which conferred 90 % protection.
Collapse
Affiliation(s)
- Nehal K Mahmoud
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo, 11381, Egypt
| | - Ayman H El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Mohamed A Abd El-Khaleck
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo, 11381, Egypt
| | - Mounir M Elsafty
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB) , Agriculture Research Centre (ARC), Cairo, 11381, Egypt
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
5
|
Pan X, Liu Q, de Jong MCM, Forlenza M, Niu S, Yan D, Teng Q, Li X, Beerens N, Li Z. Immunoadjuvant efficacy of CpG plasmids for H9N2 avian influenza inactivated vaccine in chickens with maternal antibodies. Vet Immunol Immunopathol 2023; 259:110590. [PMID: 36990004 DOI: 10.1016/j.vetimm.2023.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Maternal-derived antibodies (MDAs) are one of reasons why vaccination with the H9N2 inactivated whole virus (IWV) vaccine failed in poultry. Unmethylated CpG motif-containing oligodeoxynucleotides (CpG ODN) shows great potential to overcome MDAs interference in mammals, but whether it has similar characteristics in poultry is still unknown. In the present study, different classes and various copies of CpG ODN motifs were cloned into two different plasmids (pCDNA3.1 or T vector). Immunomodulatory activities and immunoadjuvant efficacy of these CpG ODN plasmids were tested in vitro and in vivo in the presence of passively transferred antibodies (PTAs) that were used to mimic MDAs. Results showed that the T vector enriched with 30 copies of CpG-A ODN and 20 copies of CpG-B ODN (T-CpG-AB) significantly up-regulated mRNA expression of chicken-interferon-α (ch-IFN-α), chicken-interferon-β (ch-IFN-β) and chicken-interleukin-12 protein 40 (ch-IL-12p40). When administered as adjuvant of the H9N2 IWV vaccine, the minimal dose of T-CpG-AB plasmid was 30 µg per one-day-old chicken, which could induce strong humoral immune responses in the presence of PTAs. Furthermore, T-CpG-AB plasmid-based vaccine triggered both strong humoral immune responses and cytokines expression in the presence of PTAs in chickens. Overall, our findings suggest that T-CpG-AB plasmid can be an excellent adjuvant candidate for the H9N2 IWV vaccine to overcome MDAs interference in chickens.
Collapse
Affiliation(s)
- Xue Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China; Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University & Research, the Netherlands
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University & Research, the Netherlands
| | - Maria Forlenza
- Host-Microbe Interactomics Group, Animal Sciences Group, Wageningen University & Research, the Netherlands
| | - Shiqi Niu
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China
| | - Dawei Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, the Netherlands.
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China.
| |
Collapse
|
6
|
Tráj P, Sebők C, Mackei M, Kemény Á, Farkas O, Kákonyi Á, Kovács L, Neogrády Z, Jerzsele Á, Mátis G. Luteolin: A Phytochemical to Mitigate S. Typhimurium Flagellin-Induced Inflammation in a Chicken In Vitro Hepatic Model. Animals (Basel) 2023; 13:ani13081410. [PMID: 37106972 PMCID: PMC10135145 DOI: 10.3390/ani13081410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The use of natural feed supplements is an alternative tool to diminish the damage caused by certain bacteria, improving animal health and productivity. The present research aimed to investigate the proinflammatory effect of flagellin released from the bacterial flagellum of Salmonella enterica serovar Typhimurium and to attenuate the induced inflammation with luteolin as a plant-derived flavonoid on a chicken primary hepatocyte-non-parenchymal cell co-culture. Cells were cultured in a medium supplemented with 250 ng/mL flagellin and 4 or 16 µg/mL luteolin for 24 h. Cellular metabolic activity, lactate dehydrogenase (LDH) activity, interleukin-6, 8, 10 (IL-6, IL-8, IL-10), interferon-α, γ (IFN-α, IFN-γ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations were determined. Flagellin significantly increased the concentration of the proinflammatory cytokine IL-8 and the ratio of IFN-γ/IL-10, while it decreased the level of IL-10, indicating that the model served adequate to study inflammation in vitro. Luteolin treatment at 4 µg/mL did not prove to be cytotoxic, as reflected by metabolic activity and extracellular LDH activity, and significantly reduced the flagellin-triggered IL-8 release of the cultured cells. Further, it had a diminishing effect on the concentration of IFN-α, H2O2 and MDA and restored the level of IL-10 and the ratio of IFN-γ/IL-10 when applied in combination with flagellin. These results suggest that luteolin at lower concentrations may protect hepatic cells from an excessive inflammatory response and act as an antioxidant to attenuate oxidative damage.
Collapse
Affiliation(s)
- Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Orsolya Farkas
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Ákos Kákonyi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - László Kovács
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2., H-1078 Budapest, Hungary
| |
Collapse
|
7
|
Sharma BK, Ramakrishan S, Kaliappan A, Singh M, Kumar A, Dandapat S, Dey S, Chellappa MM. Evaluation of a Lipopolysaccharide and Resiquimod Combination as an Adjuvant with Inactivated Newcastle Disease Virus Vaccine in Chickens. Vaccines (Basel) 2022; 10:vaccines10060894. [PMID: 35746503 PMCID: PMC9229813 DOI: 10.3390/vaccines10060894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Various toll-like receptor (TLR) agonists have shown potential as adjuvants with different vaccines in both human and livestock species, including chickens. Our previous studies on combination of lipopolysaccharide (LPS; TLR4 agonist) and resiquimod (R-848; TLR7 agonist) showed the synergistic up-regulation of pro-inflammatory Th1 and Th2 cytokines in chicken peripheral blood mononuclear cells (PMBCs). Hence, the present study aimed to explore the combined adjuvant effect of LPS and R-848 with inactivated Newcastle disease virus (NDV) vaccine in chickens. Two weeks-old SPF chickens were immunized with inactivated NDV vaccine along with a combination of LPS and R-848 as an adjuvant with suitable control groups. A booster dose was given two weeks later. Antibody responses were assessed by enzyme linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) test, while cell-mediated immune responses were analyzed by a lymphocyte transformation test (LTT) and flow cytometry following vaccination. Two weeks post-booster, the birds were challenged with a velogenic strain of NDV, and protection against clinical signs, mortality and virus shedding was analyzed. The results indicated that inactivated NDV vaccine with R-848 induced significantly higher humoral and cellular immune responses with 100% protection against mortality and viral shedding following a virulent NDV challenge. However, the combination of LPS and R-848 along with inactivated NDV vaccine produced poor humoral and cellular immune responses and could not afford protection against challenge infection and virus shedding when compared to the vaccine-alone group, indicating the deleterious effects of the combination on antigen-specific immune responses. In conclusion, the combination of LPS and R-848 showed the inhibitory effects on antigen-specific humoral, cellular and protective immune responses when used as an adjuvant with inactivated NDV vaccines in chickens. This inhibitory effect might have occurred due to systemic cytokine storm. A nanoparticle-based delivery of the combination of LPS and R-848 for slow and sustained release could be tried as an alternative method to explore the synergistic effect of the combination as an adjuvant in chickens.
Collapse
Affiliation(s)
- Bal Krishnan Sharma
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Saravanan Ramakrishan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
- Correspondence: ; Tel.: +91-941-246-3498
| | - Abinaya Kaliappan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Mithilesh Singh
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| |
Collapse
|
8
|
Toll-like receptor ligands and their combinations as adjuvants - current research and its relevance in chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915000094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Xu M, Xie Y, Tan M, Zheng K, Xiao Y, Jiang C, Zhao F, Zeng T, Wu Y. The N-terminal D1 domain of Treponema pallidum flagellin binding to TLR5 is required but not sufficient in activation of TLR5. J Cell Mol Med 2019; 23:7490-7504. [PMID: 31493340 PMCID: PMC6815820 DOI: 10.1111/jcmm.14617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Syphilis is a chronic bacterial infection caused by Treponema pallidum (T pallidum) and the pathogenesis that T pallidum infection induces immunopathological damages in skin and other tissues remains unclear. We have previously reported that recombinant flagellins of T pallidum can elicit IL‐6 and IL‐8 transcriptions via TLR5 pathway. To identify the domains which induced the pro‐inflammatory activity and the importance of the interactions between TLR5 and domains, homology‐based modelling and comparative structural analyses revealed that Tpflagellins can combine with TLR5 directly. Deletion mutations showed that the ND1 domain binding to TLR5 is required but not sufficient in TLR5 activation. Moreover, site‐directed mutagenesis analysis indicated that the arginine residue (Tpflagellins R89) of the ND1 domain and its adjacent residues (Tpflagellins L93 and E113) constitute a hot spot that elicits IL‐6, IL‐8 transcriptions and TLR5 activation, and affects the binding of Tpflagellins to TLR5. Taken together, these results give insight into the pathogenesis of T pallidum and may contribute to the future design of Tpflagellins‐based therapeutics and syphilis vaccine.
Collapse
Affiliation(s)
- Man Xu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yafeng Xie
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Manyi Tan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Kang Zheng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feijun Zhao
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Tiebing Zeng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
10
|
Khani MH, Bagheri M, Zahmatkesh A, Moradi Bidhendi S. Immunostimulatory effects of truncated and full-length flagellin recombinant proteins. Microb Pathog 2018; 127:190-197. [PMID: 30528248 DOI: 10.1016/j.micpath.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
Problems regarding purification efficacy in recombinant technologies is due to the protein structure. Experimental manipulation of genes and the subsequent proteins may overcome this issue. In order to improve production efficacy and maintain immunestimulatory effect of flagellin, the Toll-like Receptor 5 (TLR5) ligand and a potent adjuvant, we performed a bioinformatic study to find the best model for FliC manipulation. Truncated modified FliC (tmFliC) and full length FliC (flFliC) genes were cloned and expressed in pET-21a vector and protein purification was carried out using an improved His-Tag method. Polyclonal antibodies were generated against flFliC and tmFliC in New Zealand white rabbits. IgG response to the recombinant proteins was determined by ELISA. Cross-reactivity assay was performed by ELISA for all proteins and bacteria. Immunogenicity of tmFliC and flFliC was evaluated in chicken cells, and expression level of tumor necrotic factor-α (TNF-α) and interleukin-6 (IL-6) were relatively analyzed by Real-Time-PCR. Results showed high purification efficacy for tmFliC. Antibody titer of tmFliC was significantly higher than that of flFliC. In addition, the cross-reactivity assay for both proteins and Salmonella was positive which indicates similar epitopic regions. Stimulation of both FliCs significantly increased TNF-α and IL-6 expression in peripheral blood mononuclear cells (PBMCs) and splenocytes, with higher effect observed with flFliC. IL-8 protein level increased after 6 and 24 h stimulation with different concentrations of tmFliC and flFliC. These results suggest that the aimed gene modification in fliC gene produces a bioactive immunostimulant type of flagellin which upregulates TLR5 downstream genes as well as in flFliC.
Collapse
Affiliation(s)
- Mohammad-Hosein Khani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Soheila Moradi Bidhendi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
11
|
Effect of C-Terminus Modification in Salmonella typhimurium FliC on Protein Purification Efficacy and Bioactivity. Mol Biotechnol 2018; 61:12-19. [DOI: 10.1007/s12033-018-0135-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Effect of microencapsulated essential oil form Chamaecyparis obtusa on monocyte-derived dendritic cell activation and CD4+ T cell polarization. PLoS One 2018; 13:e0201233. [PMID: 30052657 PMCID: PMC6063440 DOI: 10.1371/journal.pone.0201233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
The essential oil of Chamaecyparis obtusa (C. obtusa), which is used in soap, toothpaste, and aromatic agents, has been known to have anti-inflammatory properties. In this study, we investigated the effects of microencapsulated C. obtusa essential oil on airborne fungus-induced dendritic cell (DC) activation and Th immune responses. We stimulated monocyte-derived DCs with Alternaria alternate and lipopolysaccharide (LPS). To determine the anti-inflammatory effects, we pre-treated DCs with various concentrations of microencapsulated C. obtusa essential oil and collected the supernatants to measure interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and we determined the expression of cell surface molecules. The effects of the essential oil on CD4+ T cells polarization was determine by culturing stimulated DCs and autologous CD4+ T cells. Alternaria enhanced the production of IL-6 and TNF-α from DCs, and pretreating DCs with 0.001, 0.01, and 0.05% of the essential oil significantly inhibited their production. Increased CD80 and CD86 expression by Alternaria was significantly inhibited with 0.05% of the essential oil. Alternaria-induced IL-5, IL-10, and interferon-gamma from CD4+ T cells were significantly inhibited with C. obtusa essential oil in a dose dependent manner. C. obtusa influenced both Alternaria- and LPS-induced Th1 and Th2 polarization of CD4+ T cells. These results suggest a novel pharmacological use for C. obtusa essential oil to treat inflammatory airway diseases.
Collapse
|
13
|
Bameri Z, Asadi Karam MR, Habibi M, Ehsani P, Bouzari S. Determination immunogenic property of truncated MrpH.FliC as a vaccine candidate against urinary tract infections caused by Proteus mirabilis. Microb Pathog 2017; 114:99-106. [PMID: 29138084 DOI: 10.1016/j.micpath.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022]
Abstract
Proteus mirabilis is common cause of urinary tract infections (UTIs) especially in complicated UTIs which are resistant to antibiotic therapy, Consequently, an ideal vaccine is inevitably required. The N-terminal domain of MrpH (Truncated form of MrpH) lies between the most critical antigens of P. mirabilis to consider as vaccine candidate. FliC of Salmonella typhimurium induces several pathways of immunity system, which leads to produce antibody and cytokines. In this study, adjuvant properties of FliC and efficacy of truncated MrpH as important antigen, in tMrpH.FliC were determined in in vitro and in vivo circumstances. Three proteins including: FliC, MrpH and tMrpH.FliC were injected to mice and subsequently sera and supernatant of cell culture were collected to evaluate different immune responses. According to our findings, tMrpH.FliC could stimulate both humoral and cellular immune responses, so that serum IgG, urine IgA, IL.4, IFN-γ and IL.17 were increased significantly in comparison to MrpH and FliC alone, this augmentation was considerable. Results showed significant decrease of bacterial load in all of the challenged groups compared to the control group, although this protective effect was the highest in mice vaccinated with tMrpH.FliC. Our results showed truncated MrpH, without an unwanted domain is an ideal vaccine target and FliC, as adjuvant, increases its immunogenic property. Thus, fusion protein tMrpH.FliC can be considered as promising vaccine against P. mirabilis.
Collapse
Affiliation(s)
- Zakaria Bameri
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
14
|
Song L, Xiong D, Hu M, Kang X, Pan Z, Jiao X. Enhanced humoural and cellular immune responses to influenza H7N9 antigen HA1-2 fused with flagellin in chickens. BMC Vet Res 2017. [PMID: 28637471 PMCID: PMC5480149 DOI: 10.1186/s12917-017-1106-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sudden increases in the number of human A (H7N9) cases reported during December and January have been observed in previous years. Most reported infection cases are due to prior exposure to live poultry or potentially contaminated environments. Low pathogenicity of influenza A (H7N9) virus in avian species complicates timely discovery of infected birds. Therefore, there is a pressing need to develop safe and effective anti-H7N9 vaccines for poultry to reduce the risk of human infection and prevent the emergence of novel mutated strains. In addition to a good antigen, an effective vaccine also requires an appropriate adjuvant to enhance its immunogenicity. Previously, we generated an H7N9 influenza recombinant subunit vaccine (HA1-2-fliC), in which haemagglutinin globular head domain (HA1-2) was fused with flagellin (fliC), a potent TLR5 ligand, and demonstrated that HA1-2-fliC elicited effective HA1-2-specific immune responses in mice. RESULTS In this study, we determined flagellin-induced expression profiles of cytokines and chemokines in different types of avian immune cells in vitro and ex vivo. We found that flagellin significantly increased the expression levels of CXCL inflammatory chemokines (CXCLi1 and CXCLi2) and CCL chemokines (MIP-1β and MCP-3) in avian macrophage HD11 cells. In addition, HA1-2-fliC induced significant upregulation of cytokines (IL-1β, IL-6, IL-18 and IFN-γ) and chemokines (CXCLi1, CXCLi2 and MIP-1β) in ex vivo splenic lymphocytes and peripheral blood mononuclear cells (PBMCs), suggesting that flagellin promoted immune responses of avian cells in vitro. We also evaluated specific humoural and cellular immune responses induced by HA1-2-fliC and found that chickens immunised intramuscularly with HA1-2-fliC showed significantly higher HA1-2-specific immunoglobulin (Ig)G titers in serum. Furthermore, HA1-2-fliC potentiated cellular immune responses, as reflected by an increase in CD4+ and CD8+ T cells and proliferation of PBMCs. Significantly higher levels of IFN-γ and IL-4 in PBMCs from chickens vaccinated with HA1-2-fliC further indicated that HA1-2-fliC promoted a balanced Th1/Th2 immune response. CONCLUSIONS We demonstrated that the use of the flagellin as an adjuvant potentiated immunogenicity of influenza subunit vaccine HA1-2 in vitro and in vivo. These findings provide a basis for the development of H7N9 influenza HA1-2 subunit vaccines for chickens.
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China.
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China.
| |
Collapse
|
15
|
Abdul-Cader MS, Amarasinghe A, Abdul-Careem MF. Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses. Arch Virol 2016; 161:2075-86. [PMID: 27233799 PMCID: PMC7087267 DOI: 10.1007/s00705-016-2904-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs), well-characterized pattern-recognizing receptors of the innate arm of the immune system, are vital in detecting pathogen-associated molecular patterns (PAMPs). The TLR-PAMP interaction initiates an intracellular signaling cascade, predominantly culminating in upregulation of antiviral components, including inducible nitric oxide synthase (iNOS). After activation, various TLR pathways can promote iNOS production via the myeloid differentiation primary response-88 (MyD-88) adapter protein. Subsequently, iNOS facilitates production of nitric oxide (NO), a highly reactive and potent antiviral molecule that can inhibit replication of RNA and DNA viruses. Furthermore, NO can diffuse freely across cell membranes and elicit antiviral mechanisms in various ways, including direct and indirect damage to viral genomes. This review emphasizes current knowledge of NO-mediated antiviral responses elicited after activation of TLR signaling pathways.
Collapse
Affiliation(s)
- Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C58, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Aruna Amarasinghe
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C58, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C58, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
16
|
Abstract
Robust and sustainable development of poultry industry requires prevention of deadly infectious diseases. Vigorous vaccination of the birds is a routine practice; however, the live and inactivated vaccines that are used have inherent disadvantages. New-generation vaccines such as DNA vaccines offer several advantages over conventional vaccines. DNA vaccines, which encode an antigen of interest or multiple antigens in the target host, are stable, easy to produce and administer, do not require cold chain maintenance, and are not affected by the maternal antibodies. In addition, DNA vaccines can also be administered in ovo, and thus, mass vaccination and early induction of immune response can effectively be achieved. In this chapter, we focus on the development of DNA vaccines against important infectious viral as well as parasitic diseases of poultry.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India.
| | - Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
17
|
Deb R, Dey S, Madhan Mohan C, Gaikwad S, Kamble N, Khulape SA, Gupta SK, Maity HK, Pathak DC. Development and evaluation of a Salmonella typhimurium flagellin based chimeric DNA vaccine against infectious bursal disease of poultry. Res Vet Sci 2015; 102:7-14. [PMID: 26412511 DOI: 10.1016/j.rvsc.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/27/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
Abstract
Infectious bursal disease (IBD) is an acute immunosuppressive disease of young chicks, caused by a double-stranded RNA virus. VP2 being the major capsid protein of the virus is an ideal vaccine candidate possessing the neutralizing epitopes. The present study involves the use of flagellin (fliC) as a genetic adjuvant to improve the immune response of VP2 based DNA vaccine against IBD. Our findings revealed that birds immunized with plasmid pCIVP2fliC showed robust immune response than pCIVP2 immunized groups. Further, challenge study proved that genetic fusion of fliC and VP2 can provide a comparatively higher level of protection against vvIBDV challenge in chickens than VP2 alone. These results thus indicate that Salmonella flagellin could enhance the immune responses and protection efficacy of a DNA vaccine candidate against IBDV infection in chickens, highlighting the potential of flagellin as a genetic adjuvant in the prevention of vvIBDV infection.
Collapse
Affiliation(s)
- Rajib Deb
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - C Madhan Mohan
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Satish Gaikwad
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Nitin Kamble
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sagar A Khulape
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shishir Kumar Gupta
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Hemanta Kumar Maity
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Dinesh Chandra Pathak
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
18
|
Ramakrishnan S, Annamalai A, Sachan S, Kumar A, Sharma BK, Govindaraj E, Chellappa MM, Dey S, Krishnaswamy N. Synergy of lipopolysaccharide and resiquimod on type I interferon, pro-inflammatory cytokine, Th1 and Th2 response in chicken peripheral blood mononuclear cells. Mol Immunol 2015; 64:177-82. [DOI: 10.1016/j.molimm.2014.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022]
|
19
|
Gupta SK, Deb R, Dey S, Chellappa MM. Toll-like receptor-based adjuvants: enhancing the immune response to vaccines against infectious diseases of chicken. Expert Rev Vaccines 2014; 13:909-25. [PMID: 24855906 DOI: 10.1586/14760584.2014.920236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huge productivity loss due to infectious diseases in chickens is a major problem and, hence, robust development of the poultry industry requires control of poultry health. Immunization using vaccines is routine practice; however, to combat infectious diseases, conventional vaccines as well as new-generation recombinant vaccines alone, due to relatively weak immunogenicity, may not be effective enough to provide optimum immunity. With this in mind, there is a need to incorporate better and more suitable adjuvants in the vaccines to elicit the elevated immune response in the host. Over last few decades, with the increase in the knowledge of innate immune functioning, efforts have been made to enhance vaccine potency using novel adjuvants like Toll-like receptor based adjuvant systems. In this review, we will discuss the potential use of toll-like receptor ligands as an adjuvant in vaccines against the infectious diseases of chickens.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Division of Veterinary Biotechnology, Recombinant DNA Lab, Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, UP, India
| | | | | | | |
Collapse
|
20
|
Djaldetti M, Bessler H. Modulators affecting the immune dialogue between human immune and colon cancer cells. World J Gastrointest Oncol 2014; 6:129-38. [PMID: 24834143 PMCID: PMC4021329 DOI: 10.4251/wjgo.v6.i5.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/03/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
The link between chronic inflammation and colorectal cancer has been well established. The events proceeding along tumorigenesis are complicated and involve cells activated at the cancer microenvironment, tumor infiltrating polymorphonuclears, immune cells including lymphocyte subtypes and peripheral blood mononuclear cells (PBMC), as well as tumor-associated macrophages. The immune cells generate inflammatory cytokines, several of them playing a crucial role in tumorigenesis. Additional factors, such as gene expression regulated by cytokines, assembling of tumor growth- and transforming factors, accelerated angiogenesis, delayed apoptosis, contribute all to initiation, development and migration of tumor cells. Oxygen radical species originating from the inflammatory area promote cell mutation and cancer proliferation. Tumor cells may over-express pro-inflammatory mediators that in turn activate immune cells for inflammatory cytokines production. Consequently, an immune dialogue emerges between immune and cancer cells orchestrated through a number of activated molecular pathways. Cytokines, encompassing migration inhibitory factor, transforming growth factor beta 1, tumor necrosis factor-α, Interleukin (IL)-6, IL-10, IL-12, IL-17, IL-23 have been reported to be involved in human cancer development. Some cytokines, namely IL-5, IL-6, IL-10, IL-22 and growth factors promote tumor development and metastasis, and inhibit apoptosis via activation of signal transducer activator transcription-3 transcription factor. Colon cancer environment comprises mesenchymal, endothelial and immune cells. Assessment of the interaction between components in the tumor environment and malignant cells requires a reconsideration of a few topics elucidating the role of chronic inflammation in carcinogenesis, the function of the immune cells expressed by inflammatory cytokine production, the immunomodulation of cancer cells and the existence of a cross-talk between immune and malignant cells leading to a balance in cytokine production. It is conceivable that the prevalence of anti-inflammatory cytokine production by PBMC in the affected colonic mucosa will contribute to the delay, or even to halt down malignant expansion. Targeting the interplay between immune and cancer cells by mediators capable to alter cytokine secretion toward increased anti-inflammatory cytokine release by PBMC and tumor associated macrophages, may serve as an additional strategy for treatment of malignant diseases. This review will focus on the inflammatory events preceding tumorigenesis in general, and on a number of modulators capable to affect colon cancer cell-induced production of inflammatory cytokines by PBMC through alteration of the immune cross-talk between PBMC and cancer cells.
Collapse
|
21
|
Singh LV, Saxena S, Gupta S, Gupta SK, Ravi Kumar G, Desai GS, Sahoo AP, Harish DR, Tiwari AK. Evaluation and comparison of the constitutive expression levels of Toll-like receptors 2, 3 and 7 in the peripheral blood mononuclear cells of Tharparkar and crossbred cattle. Vet World 2014. [DOI: 10.14202/vetworld.2014.209-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:261-70. [PMID: 24451328 DOI: 10.1128/cvi.00669-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore, regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particularly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understanding of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combination with other TLR ligands as an adjuvant in chicken vaccines.
Collapse
|