1
|
Muhmood A, Tang J, Li J, Liu S, Hou L, Le G, Liu D, Huang K. No-observed adverse effect levels of deoxynivalenol and aflatoxin B1 in combination induced immune inhibition and apoptosis in vivo and in vitro. Food Chem Toxicol 2024; 189:114745. [PMID: 38763499 DOI: 10.1016/j.fct.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mycotoxins are toxic metabolites produced by fungal species, commonly exist in animal feeds, and pose a serious risk to human as well as animal health. But limited studies have focused on combined effects of no-observed adverse effect levels. In vivo study, 6 weeks old twenty-four mice were individually exposed to Deoxynivalenol (DON) at 0.1 mg/kg BW, Aflatoxin B1 (AFB1) at 0.01 mg/kg BW, and mixture of DON and AFB1 (0.1 mg/kg BW and 0.01 mg/kg BW, respectively) for 28 days. Then, DON at 0.5 μg/mL, AFB1 at 0.04 μg/mL, and mixtures of DON and AFB1 (0.5 μg/mL, 0.04 μg/mL, respectively) were applied to porcine alveolar macrophages (PAMs) in vitro study. Our in vivo results revealed that the combined no-observed adverse effect levels of DON and AFB1 administration decreased IgA and IgG levels in the serum, the splenic TNF-α, IFN-γ, IL-2 and IL-6 mRNA expression and T-lymphocyte subset levels (CD4+ and CD8+) in the spleen. Additionally, the combined administration increased caspase-3, caspase-9, Bax, Cyt-c, and decreased Bcl-2 protein expression. Taken together, the combined no-observed adverse effect levels of DON and AFB1 could induce immunosuppression, which may be related to apoptosis. This study provides new insights into the combined immune toxicity (DON and AFB1).
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
2
|
Zheng W, Zhang Y, Gu Q, Liang Q, Long Y, Wu Q, Xian S. Development of an indirect ELISA against Orf virus using two recombinant antigens, partial B2L and F1L. J Virol Methods 2024; 326:114891. [PMID: 38336349 DOI: 10.1016/j.jviromet.2024.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Orf is a highly contagious viral disease affecting goats and sheep. It is caused by Orf virus (ORFV) and has caused severe economic losses to the global goat industry, including in China. In this study, an indirect ELISA method for recombinant proteins based on truncated dominant antigenic epitopes of B2L and F1L genes of ORFV was established. A series of conditions and its performance were comprehensively evaluated. The optimized ELISA reaction conditions were: the optimal coating amount of antigen was 0.25 μg/mL, 5% skim milk powder was closed for 1 h, the optimal dilution of serum was 1:200, the optimal incubation time of the rabbit anti-goat IgG was 1:8000, the optimal color development time of TMB was 15 mins, and the threshold value of negative-positive was 0.358. The method specifically detects anti-ORFV antibodies and does not cross-react with positive sera for other common goat pathogenic bacteria antiserum. ORFV-positive sera were still positive after 1:512 dilution, with intra-batch coefficient of variation (CV) between 7.1% and 9.5% and inter-batch CV between 5.0% and 7.6%; 51% (92/180) of immunized goat serum samples were tested positive and 14.44% (14/63) of non-immunized goat serum samples were positive. The results show that the indirect ELISA antibody assay established in this study has good specificity, sensitivity and reproducibility, and provides a technical tool for clinical ORFV serum antibody detection and epidemiological investigation.
Collapse
Affiliation(s)
- Weihao Zheng
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - You Zhang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Qinglin Gu
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Qian Liang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Youci Long
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Qin Wu
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Simei Xian
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China.
| |
Collapse
|
3
|
Lin Y, Zhai JL, Wang YT, Guo PT, Zhang J, Wang CK, Jin L, Gao YY. Potassium diformate alleviated inflammation of IPEC-J2 cells infected with EHEC. Vet Microbiol 2024; 291:110013. [PMID: 38364468 DOI: 10.1016/j.vetmic.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-β, while decreased the content of IL-1β compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-β, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1β, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1β, the gene expressions of IL-1β, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-β and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.
Collapse
Affiliation(s)
- Ying Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Lei Zhai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Ting Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Hoch CC, Shoykhet M, Weiser T, Griesbaum L, Petry J, Hachani K, Multhoff G, Bashiri Dezfouli A, Wollenberg B. Isothiocyanates in medicine: A comprehensive review on phenylethyl-, allyl-, and benzyl-isothiocyanates. Pharmacol Res 2024; 201:107107. [PMID: 38354869 DOI: 10.1016/j.phrs.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maria Shoykhet
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
5
|
Tang X, Zeng Y, Xiong K, Li M. The inflammatory injury of porcine small intestinal epithelial cells induced by deoxynivalenol is related to the decrease in glucose transport. J Anim Sci 2024; 102:skae107. [PMID: 38619320 PMCID: PMC11069187 DOI: 10.1093/jas/skae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/13/2024] [Indexed: 04/16/2024] Open
Abstract
The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK‑8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 μg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1β, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1β, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 5500025, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 5500025, China
| | - Meijun Li
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| |
Collapse
|
6
|
Wang P, Yao Q, Meng X, Yang X, Wang X, Lu Q, Liu A. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: A review. Food Chem Toxicol 2023; 182:114121. [PMID: 37890761 DOI: 10.1016/j.fct.2023.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.
Collapse
Affiliation(s)
- Pengju Wang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qin Yao
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiangwen Meng
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiaosong Yang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Aimei Liu
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
7
|
Lin J, Zuo C, Liang T, Huang Y, Kang P, Xiao K, Liu Y. Lycopene alleviates multiple-mycotoxin-induced toxicity by inhibiting mitochondrial damage and ferroptosis in the mouse jejunum. Food Funct 2022; 13:11532-11542. [PMID: 36318035 DOI: 10.1039/d2fo02994d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Multiple mycotoxins contamination in foods and feeds threatens human and animal health after they accumulate in the food chain, producing various toxic effects. The common mycotoxins contaimination in feeds are zearalenone (ZEN), deoxynivalenol (DON), and aflatoxin B1 (AFB1), but the effects of their co-exposure on the jejunum are not well understood. Lycopene (LYC) has been reported to have antioxidant activity that alleviates jejunal damage. In this study, we investigated the possible role of LYC as a treatment to mitigate the combined effects of ZEN, DON, and AFB1 on the jejunum of mice. Eighty male specific-pathogen-free ICR mice were randomly allocated to treatments with LYC (10 mg kg-1) and/or ZEN + DON + AFB1 (10 mg kg-1 ZEN, 1 mg kg-1 DON, and 0.5 mg kg-1 AFB1). The results indicated that LYC alleviated ZEN + DON + AFB1-induced jejunal injury by ameliorating the jejunal structural injury and increasing the villus height/crypt depth ratio and the levels of tight junction proteins (zonula occludens 1 [ZO1], occludin1 and claudin1) in the mouse jejunum. LYC also inhibited the oxidative stress induced by co-exposure to ZEN, DON, and AFB1 via reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and enhancing the total antioxidant capacity (T-AOC). LYC also alleviated jejunal mitochondrial damage in the ZEN + DON + AFB1-affected mice, evident as an increase in mitochondrial fission 1 (Fis1) transcription and a reduction in mitochondrial mitofusin 1 (Mfn1) and Mfn2 transcription. Co-exposure to ZEN, DON, and AFB1 also significantly increased the transcription of ferroptosis-related genes (transferrin receptor 1 (Tfr1), ferritin heavy chain 1 [Fth1], solute carrier family 3 member 2 [Slc3a2], and glutathione peroxidase 4 [Gpx4]), TFR1 and Fe2+ concentration. Notably, LYC potentially alleviated ZEN + DON + AFB1-induced jejunal ferroptosis. These results demonstrate that LYC alleviates ZEN + DON + AFB1-induced jejunal toxicity by inhibiting oxidative stress-mediated ferroptosis and mitochondrial damage in mice.
Collapse
Affiliation(s)
- Jia Lin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Cuige Zuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Ping Kang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
8
|
Qu J, Zhang S, He W, Liu S, Mao X, Yin L, Yue D, Zhang P, Huang K, Chen X. Crucial Function of Caveolin-1 in Deoxynivalenol-Induced Enterotoxicity by Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12968-12981. [PMID: 36166599 DOI: 10.1021/acs.jafc.2c04854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deoxynivalenol (DON) is one of the most pervasive contaminating mycotoxins in grain, and exposure to DON is known to cause acute and chronic intestinal damage. As the gut is the most important target organ of DON, it is essential to identify the pivotal molecules involved in DON-induced enterotoxicity as well as the potential regulatory mechanisms. In the present study, we found that DON treatment dramatically decreased the jejunal villus height and increased the crypt depth in mice. DON exposure induced oxidative stress and NLRP3 inflammasome activation while increasing the levels of pyroptosis-related factors GSDMD, ASC, Caspase-1 P20, and IL-1β and inflammatory cytokines IL-18, TNF-α, and IL-6. In vitro, 0.5-2 μM DON caused cytotoxicity and oxidative stress, as well as NLRP3-mediated pyroptosis in IPEC-J2 cells. Furthermore, DON treatment substantially improved the expression of Caveolin-1 (Cav-1) in vitro and in vivo. Interestingly, Cav-1 knockdown effectively attenuated DON-induced oxidative stress and NLRP3-mediated pyroptosis in IPEC-J2 cells. Meanwhile, treatment with the antioxidant NAC significantly alleviated DON-induced cytotoxicity and pyroptosis in IPEC-J2 cells. Likewise, after inhibiting NLRP3 inflammasome activation with the inhibitor MCC950, DON-induced cytotoxicity, pyroptosis, and inflammatory response were attenuated. However, NLRP3 inhibition did not affect Cav-1 expression. In conclusion, our study demonstrated that pyroptosis may be an underlying mechanism in DON-induced intestinal injury, and Cav-1 plays a pivotal role in DON-induced pyroptosis via regulating oxidative stress, which suggests a novel strategy to overcome DON-induced enterotoxicity.
Collapse
Affiliation(s)
- Jie Qu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuangshuang Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liuwen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
9
|
Liu S, Kang W, Mao X, Ge L, Du H, Li J, Hou L, Liu D, Yin Y, Liu Y, Huang K. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice. J Pineal Res 2022; 73:e12812. [PMID: 35652241 DOI: 10.1111/jpi.12812] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Aflatoxin B1 (AFB1) is a widespread contaminant in foods and feedstuffs, and its target organ is the liver. Melatonin (MT) has been shown to alleviate inflammation in organs and remodel gut microbiota in animals and humans. However, the underlying mechanism by which MT alleviates AFB1-induced liver injury remains unclear. In the present study, MT pretreatment markedly increased the expression of intestinal tight junction proteins (ZO-1, Occludin, and Claudin-1), decreased intestinal permeability, reduced production of gut-derived Lipopolysaccharide (LPS) and remodeled gut microbiota, ultimately alleviated AFB1-induced liver injury in mice. Interestingly, MT pretreatment failed to exert beneficial effects on the intestine and liver in antibiotic-treated mice. Meanwhile, MT pretreatment significantly increased the farnesoid X receptor (FXR) protein expression of ileum, and decreased the TLR4/NF-κB signaling pathway-related messenger RNA (mRNA) and proteins (TLR4, MyD88, p-p65, and p-IκBα) expression in livers of AFB1-exposed mice. Subsequently, pretreatment by Gly-β-MCA, an intestine-selective FXR inhibitor, blocked the alleviating effect of MT on liver injury through increasing the liver-specific expression of TLR4/NF-κB signaling pathway-related mRNA and proteins (TLR4, MyD88, p-p65, and p-IκBα). In conclusion, MT pretreatment ameliorated AFB1-induced liver injury and the potential mechanism may be related to regulate gut microbiota/intestinal FXR/liver TLR4 signaling axis, which provides a strong evidence for the protection of gut-derived liver inflammation.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Heng Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Liu S, Kang W, Mao X, Du H, Ge L, Hou L, Yuan X, Wang M, Chen X, Liu Y, Huang K. Low dose of arsenic exacerbates toxicity to mice and IPEC-J2 cells exposed with deoxynivalenol: Aryl hydrocarbon receptor and autophagy might be novel therapeutic targets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155027. [PMID: 35381244 DOI: 10.1016/j.scitotenv.2022.155027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Deoxynivalenol (DON) and arsenic (As) are widespread environmental contaminants, which are frequently found in human and animal food products. The intestine is a common target of As and DON when they are digested. Numerous studies mainly evaluate the individual effects whereas their combined toxicity has rarely been elucidated. Hence, this study was to assess the effect of low dose of NaAsO2 on DON-induced intestinal damage and explore the underling mechanism in mice and IPEC-J2 cells. The results showed that low dose of NaAsO2 exacerbated DON-induced intestinal impairment by increasing intestinal permeability and decreasing the abundance of tight junction proteins (ZO-1, Occludin, Claudin-1). Further, low dose of NaAsO2 enhanced the AhR signaling pathway and autophagy-related mRNA/protein expressions induced by DON. Interestingly, FICZ, an AhR activator, instead of CH223191, an AhR inhibitor, could alleviate toxicity of the low dose of NaAsO2 in the mice and IPEC-J2 cells. Compared to the WT IPEC-J2 cells, the intestinal barrier damage was more serious in LC3B-/- IPEC-J2 cells induced by low dose of NaAsO2 combination with DON. Collectively, our study demonstrated that low dose of NaAsO2 exacerbated DON-induced intestinal barrier impairment in vivo and in vitro. The present study also demonstrated that activation of AhR-mediated autophagy might be a self-protection mechanism. Hence, AhR and autophagy might be novel therapeutic targets to prevent or alleviate NaAsO2 combined with DON-induced intestinal barrier impairment.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Heng Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| |
Collapse
|
11
|
Liu S, Mao X, Ge L, Hou L, Le G, Gan F, Wen L, Huang K. Phenethyl isothiocyanate as an anti-nutritional factor attenuates deoxynivalenol-induced IPEC-J2 cell injury through inhibiting ROS-mediated autophagy. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:300-309. [PMID: 35024467 PMCID: PMC8717381 DOI: 10.1016/j.aninu.2021.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Deoxynivalenol (DON) is considered to be the most harmful mycotoxin that affects the intestinal health of animals and humans. Phenethyl isothiocyanate (PEITC) in feedstuff is an anti-nutritional factor and impairs nutrient digestion and absorption in the animal intestinal. In the current study, we aimed to explore the effects of PEITC on DON-induced apoptosis, intestinal tight junction disorder, and its potential molecular mechanism in the porcine jejunum epithelial cell line (IPEC-J2). Our results indicated that PEITC treatment markedly alleviated DON-induced cytotoxicity, decreasing the apoptotic cell percentage and pro-apoptotic mRNA/protein levels, and increasing zonula occludens-1 (ZO-1), occludin and claudin-1 mRNA/protein expression. Meanwhile, PEITC treatment ameliorated DON-induced an increase of the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) mRNA levels and intracellular reactive oxygen species (ROS) level, and a decrease of glutathione peroxidase 1 (GPx1), superoxide dismutase 2 (SOD2), catalase (CAT) and heme oxygenase 1 (HO-1) mRNA levels. Additionally, PEITC treatment significantly down-regulated autophagy-related protein 5 (ATG5), beclin-1 and microtubule-associated protein 1 light chain 3B (LC3-Ⅱ) mRNA/protein levels, decreased the number of green fluorescent protein-microtubule-associated protein 1 light-chain 3 (GFP-LC3) puncta and phosphatidylinositol 3 kinase (PI3K) protein expression, and up-regulated phospho-protein kinase B (p-Akt) and phospho-mammalian target of rapamycin (p-mTOR) protein expression against DON. However, the activation of autophagy by rapamycin, an autophagy agonist, abolished the protective effects of PEITC against DON-induced cytotoxicity, apoptosis and intestinal tight junction disorder. Collectively, PEITC could confer protection against DON-induced porcine intestinal epithelial cell injury by suppressing ROS-mediated autophagy.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|