1
|
Zavala-Castillo KA, Flores-Ramírez N, Vásquez-García SR, Martínez-Flores HE, Fernández-Quiroz D. Folic acid in carboxymethylcellulose/polyethylene oxide electrospun nanofibers: preparation, release and stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9014-9022. [PMID: 38979953 DOI: 10.1002/jsfa.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Folic acid (FA), a synthetically produced compound analogous to vitamin B9, also referred to as vitamin folate, is an essential compound in human health and faces challenges in stability during food processing. This study explores the incorporation of FA into carboxymethylcellulose (CMC) nanofibers using electrospinning to enhance its stability. RESULTS In this study, optimization of both electrospinning and solution parameters facilitated the fabrication of nanofibers. Furthermore, incorporating FA into CMC/polyethylene oxide (PEO) nanofibers resulted in thinner fibers, with an average diameter of 88 nm, characterized by a flat shape and smooth surface. Fourier transform infrared spectroscopic analysis demonstrated substantial hydrogen bonding interactions between FA and the polar groups present in CMC. This interaction contributed to an encapsulation efficiency of 94.5%, with a yield exceeding 87%. Thermal analysis highlighted mutual interference between CMC and PEO, with FA enhancing the thermal stability and reducing the melting temperatures and enthalpies of PEO, while also increasing the reaction heats of CMC. The encapsulated FA remained stable in acidic conditions, with only 6% degradation over 30 days, demonstrating the efficacy of CMC/PEO nanofibers in safeguarding FA against acidic environments. Moreover, the nanofibers provided a protective barrier against UV radiation, thereby preserving the stability of FA. CONCLUSION This study emphasizes the efficacy of CMC/PEO nanofibers as a protective matrix against FA degradation. The findings indicate that this innovative approach could significantly diversify the applications of FA in food fortification, addressing concerns regarding its vulnerability to temperature and hydrolysis reactions during food processing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karen A Zavala-Castillo
- Department of Chemical Pharmacobiology, Universidad Michoacana de San Nicolas de Hidalgo (UMSNH), Morelia, Mexico
| | | | | | - Héctor E Martínez-Flores
- Department of Chemical Pharmacobiology, Universidad Michoacana de San Nicolas de Hidalgo (UMSNH), Morelia, Mexico
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
2
|
Ramalho MJ, Alves B, Andrade S, Lima J, Loureiro JA, Pereira MC. Folic-Acid-Conjugated Poly (Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Gallic Acid Induce Glioblastoma Cell Death by Reactive-Oxygen-Species-Induced Stress. Polymers (Basel) 2024; 16:2161. [PMID: 39125187 PMCID: PMC11313823 DOI: 10.3390/polym16152161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) conventional treatment is not curative, and it is associated with severe toxicity. Thus, natural compounds with anti-cancer properties and lower systemic toxicity, such as gallic acid (GA), have been explored as alternatives. However, GA's therapeutic effects are limited due to its rapid metabolism, low bioavailability, and low permeability across the blood-brain barrier (BBB). This work aimed to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with folic acid (FA), as its receptor is overexpressed in BBB and GBM cells, for GA delivery to enhance its therapeutic efficacy. The preparation of NPs was optimized by a central composite design (CCD). The obtained NPs showed physicochemical features suitable for drug internalization in BBB and tumor cells (sizes below 200 nm, monodispersity, and negative surface charge) and the ability to maintain a slow and sustained release for 40 days. In vitro studies using a human GBM cell line (U215) revealed the NPs' ability to accumulate in the target cells, further promoting GA antiproliferative activity by inducing the production of intracellular reactive oxygen species (ROS). Furthermore, GA encapsulation in the developed nanosystems conferred higher protection to healthy cells.
Collapse
Affiliation(s)
- Maria João Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal (S.A.); (J.A.L.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Bruna Alves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal (S.A.); (J.A.L.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal (S.A.); (J.A.L.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jorge Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal;
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal (S.A.); (J.A.L.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal (S.A.); (J.A.L.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Meng X, Fan H, Chen L, He J, Hong C, Xie J, Hou Y, Wang K, Gao X, Gao L, Yan X, Fan K. Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy. Nat Commun 2024; 15:1626. [PMID: 38388471 PMCID: PMC10884023 DOI: 10.1038/s41467-024-45668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Developing strategies that emulate the killing mechanism of neutrophils, which involves the enzymatic cascade of superoxide dismutase (SOD) and myeloperoxidase (MPO), shows potential as a viable approach for cancer therapy. Nonetheless, utilizing natural enzymes as therapeutics is hindered by various challenges. While nanozymes have emerged for cancer treatment, developing SOD-MPO cascade in one nanozyme remains a challenge. Here, we develop nanozymes possessing both SOD- and MPO-like activities through alloying Au and Pd, which exhibits the highest cascade activity when the ratio of Au and Pd is 1:3, attributing to the high d-band center and adsorption energy for superoxide anions, as determined through theoretical calculations. The Au1Pd3 alloy nanozymes exhibit excellent tumor therapeutic performance and safety in female tumor-bearing mice, with safety attributed to their tumor-specific killing ability and renal clearance ability caused by ultrasmall size. Together, this work develops ultrasmall AuPd alloy nanozymes that mimic neutrophil enzymatic cascades for catalytic treatment of tumors.
Collapse
Affiliation(s)
- Xiangqin Meng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Chaoyi Hong
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Jiaying Xie
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Yinyin Hou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Kaidi Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Xingfa Gao
- National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
- University of Chinese Academy of Sciences, Beijing, 101408, PR China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, 451163, Henan, PR China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
- University of Chinese Academy of Sciences, Beijing, 101408, PR China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, 451163, Henan, PR China.
| |
Collapse
|
4
|
Nara S, Parasher G, Malhotra BD, Rawat M. Novel role of folate (vitamin B9) released by fermenting bacteria under Human Intestine like environment. Sci Rep 2023; 13:20226. [PMID: 37980374 PMCID: PMC10657476 DOI: 10.1038/s41598-023-47243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The anaerobic region of the gastrointestinal (GI) tract has been replicated in the anaerobic chamber of a microbial fuel cell (MFC). Electroactive biomolecules released by the facultative anaerobes (Providencia rettgeri) under anoxic conditions have been studied for their potential role for redox balance. MALDI study reveals the presence of vitamin B9 (folate), 6-methylpterin, para-aminobenzoic acid (PABA) and pteroic acid called pterin pool. ATR-FTIR studies further confirm the presence of the aromatic ring and side chains of folate, 6-methylpterin and PABA groups. The photoluminescence spectra of the pool exhibit the maximum emission at 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm wavelengths (day 20 sample) highlighting the presence of tunable bands. The cyclic voltammetric studies indicate the active participation of pterin pool molecules in the transfer of electrons with redox potentials at - 0.2 V and - 0.4 V for p-aminobenzoate and pterin groups, respectively. In addition, it is observed that under prolonged conditions of continuous oxidative stress (> 20 days), quinonoid tetrahydrofolate is formed, leading to temporary storage of charge. The results of the present study may potentially be useful in designing effective therapeutic strategies for the management of various GI diseases by promoting or blocking folate receptors.
Collapse
Affiliation(s)
- Sharda Nara
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Gulshan Parasher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bansi Dhar Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
- Environmental Sciences & Biomedical Metrology, CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi, 110012, India.
| | - Manmeet Rawat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, The Penn State University College of Medicine, Penn State University, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
Jiang C, Xue S, Zhang J, Zhang Z, Yu Y, Liu J. Effect of carboxyl and hydroxyl groups attached to the benzene ring on the photodegradation of polycyclic aromatic hydrocarbons in ice. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2633-2645. [PMID: 38017682 PMCID: wst_2023_353 DOI: 10.2166/wst.2023.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The effect of carboxyl and hydroxyl groups attached to the benzene ring on the photodegradation of anthracene (Ant) and pyrene (Pyr) in ice was investigated. The present study aims to explore the inhibition mechanism of five dissolved organic matter (DOM) model compounds' materials such as benzoic acid, o-hydroxybenzoic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, and 3-phenyl propionic acid on the degradation of Ant and Pyr in ice. The photodegradation rate of Ant and Pyr were 50.33 and 37.44% in ice, with the photodegradation rate of Ant being greater than that of Pyr. The five DOM model compounds inhibited the photolysis of Ant and Pyr, and the influence mechanism on the photodegradation of Ant and Pyr depended upon the types and positions of functional groups on the benzene. Among them, the structure in which the carboxyl group was directly connected to the benzene ring and carboxyl was located at the ortho position of a hydroxy group had a strong inhibitory effect on the photodegradation of Ant and Pyr. Light-screening effects and quenching effects were the main inhibiting mechanism, and the binding ability of DOM model compounds material and PAHs is dominantly correlated with its inhibiting effect.
Collapse
Affiliation(s)
- Caihong Jiang
- School of Environmental Science, Liaoning University, Shenyang 110036, China E-mail:
| | - Shuang Xue
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jinming Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Zhaohong Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Yingtan Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiyang Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
6
|
Hanna DH, Aziz MM, Shafee EE. Effective-by-method for the preparation of folic acid-coated TiO 2 nanoparticles with high targeting potential for apoptosis induction against bladder cancer cells (T24). Biotechnol Appl Biochem 2023; 70:1597-1615. [PMID: 36905187 DOI: 10.1002/bab.2456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
The research's goal is to create the surfaces of titanium dioxide nanoparticles (TiO2 NPs) in a layer of folic acid (FA) that can effectively target human bladder cancer cells (T24). An efficient method for creating FA-coated TiO2 NPs was used, and many tools have been used to analyze its physicochemical properties. The cytotoxic effects of FA-coated NPs on T24 cells and the mechanisms of apoptosis generation were examined employing a variety of methodologies. The prepared FA-coated TiO2 NPs suspensions with a hydrodynamic diameter around 37 nm and a negative surface charge of -30 mV reduced T24 cell proliferation with stronger IC50 value (21.8 ± 1.9 μg/ml) than TiO2 NPs (47.8 ± 2.5 μg/ml). This toxicity resulted in apoptosis induction (16.63%) that was caused through enhanced reactive oxygen species formation and stopping the cell cycle over G2/M phase. Moreover, FA-TiO2 NPs raised the expression levels of P53, P21, BCL2L4, and cleaved Caspase-3, while decreasing Bcl-2, Cyclin B, and CDK1 in treated cells. Overall, these findings revealed efficient targeting of the FA-TiO2 NPs resulted in increasing cellular internalization caused increased apoptosis in T24 cells. As a result, FA-TiO2 NPs might be a viable treatment for human bladder cancer.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Marina M Aziz
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - E El Shafee
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Askar MA, El-Sayyad GS, Guida MS, Khalifa E, Shabana ES, Abdelrahman IY. Amygdalin-folic acid-nanoparticles inhibit the proliferation of breast cancer and enhance the effect of radiotherapy through the modulation of tumor-promoting factors/ immunosuppressive modulators in vitro. BMC Complement Med Ther 2023; 23:162. [PMID: 37210478 DOI: 10.1186/s12906-023-03986-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/29/2023] [Indexed: 05/22/2023] Open
Abstract
INTRODUCTION Breast cancer (BC) cells often develop multiple mechanisms of chemo- and radio-resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. Targeted nanomedicines have tremendous therapeutic potential in BC treatment over their free drug counterparts. Searching for chemo- and radio-sensitizers to overcome such resistance is therefore urgently required. The goal of this study is to evaluate and compare the radio-sensitizer efficacy of amygdalin-folic acid nanoparticles (Amy-F) on MCF-7 and MDA-MB-231 cells. MATERIALS AND METHODS The effects of Amy-F on MCF-7 and MDA-MB-231 cell proliferation and IC50 were assessed using MTT assay. The expression of proteins involved in several mechanisms induced by Amy-F in MCF-7 and MDA-MB-231 cells, including growth inhibition, apoptosis, tumor growth regulators, immuno-modulators, and radio-sensitizing activities were evaluated via flow cytometry and ELISA assay. RESULTS Nanoparticles demonstrated sustained Amy-F release properties and apparent selectivity towards BC cells. Cell-based assays revealed that Amy-F markedly suppresses cancer cell growth and improves radiotherapy (RT) through inducing cell cycle arrest (G1 and sub-G1), and increases apoptosis as well as reduces the proliferation of BC by down-regulating mitogen-activated protein kinases (MAPK/P38), iron level (Fe), nitric oxide (NO), and up-regulating the reactive oxygen species level (ROS). Amy-F has also been shown to suppress the expression of the cluster of differentiation (CD4 and CD80), and interfere with the Transforming growth factor beta (TGF- β)/Interferon-gamma (INF-g)/Interleukin-2 (IL-2)/Interleukin-6 (IL-6)/Vascular endothelial growth factor (VEGF) induced suppression in its signaling hub, while up-regulating natural killer group 2D receptor (NKG2D) and CD8 expression. CONCLUSIONS Collectively, the novel Amy-F either alone or in combination with RT abrogated BC proliferation.
Collapse
Affiliation(s)
- Mostafa A Askar
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Mona S Guida
- Unit of Genetics, University Pediatrics Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Khalifa
- Oral Biology Department, Faculty of Oral & Dental Medicine, Delta University for Science and Technology, Mansoura, 11152, Egypt
| | - El Shaimaa Shabana
- Unit of Genetics, University Pediatrics Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ibrahim Y Abdelrahman
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
8
|
Chen J, Li F, Gu J, Zhang X, Bartoli M, Domena JB, Zhou Y, Zhang W, Paulino V, C L B Ferreira B, Michael Brejcha N, Luo L, Arduino C, Verde F, Zhang F, Zhang F, Tagliaferro A, Olivier JH, Zhang Y, Leblanc RM. Cancer cells inhibition by cationic carbon dots targeting the cellular nucleus. J Colloid Interface Sci 2023; 637:193-206. [PMID: 36701865 PMCID: PMC9957951 DOI: 10.1016/j.jcis.2023.01.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported. In this project, 1, 2, 4, 5-benzenetetramine (Y15, a focal adhesion kinase inhibitor) derived cationic carbon dots (Y15-CDs) were prepared via a hydrothermal approach utilizing Y15, folic acid and 1,2-ethylenediamine as precursors. Based on the structural, optical, and morphologic characterizations, Y15-CDs possess rich amine groups and nitrogen in structure, an excitation-dependent photoluminescence emission, and a small particle size of 2 to 4 nm. The DNA binding experiments conducted through agarose gel electrophoresis, UV-vis absorption, fluorescence emission, and circular dichroism spectroscopies, prove that Y15-CDs might bind with DNA via electrostatic interactions and partially intercalative binding modes. In addition, the cell imaging and cytotoxicity studies in human foreskin fibroblasts (HFF), prostate cancer (PC3) and osteosarcoma cells (U2OS) indicate the nucleus targeting and anticancer abilities of Y15-CDs. Most interestingly, Y15-CDs exhibit a higher cytotoxicity to cancer cells (PC3 and U2OS) than to normal cells (HFF), inferring that Y15-CDs might be potentially applied in cancer therapy.
Collapse
Affiliation(s)
- Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Xiao Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; C-Dots, LLC, Miami, FL 33136, USA
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Victor Paulino
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Nicholas Michael Brejcha
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Liang Luo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Chiara Arduino
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
9
|
Ahmad A, Ali F, ALOthman ZA, Luque R. UV assisted synthesis of folic acid functionalized ZnO-Ag hexagonal nanoprisms for efficient catalytic reduction of Cr +6 and 4-nitrophenol. CHEMOSPHERE 2023; 319:137951. [PMID: 36702417 DOI: 10.1016/j.chemosphere.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Chemical-based syntheses of metallic nanoparticles (MNPs) has become a major topic of research exploration in the field of nanotechnology. The utilization of folic acid (FA) as stabilizing and capping agent has been reported as a novel route for the synthesis of bimetallic nanomaterials. The present study includes novel research and brief discussion about preparation of UV light assisted ZnO-Ag nanobars (NBs) using FA as stabilizing agent and its catalytic applications on the reduction of organic pollutants (4-NP and Cr+6) using NBs as a catalyst alongwith ascorbic acid (AA). Analytical techniques including UV-visible spectroscopy, XRD, SEM, EDX and FT-IR were used for the characterizing synthesized ZnO-Ag NBs. Hexagonal structure of ZnO-Ag NBs were found having crystallite size 5.6 nm and SEM studies revealed the nanobar width 33.2 nm and length 133.5 nm. The prepared ZnO-Ag NBs were tested for their catalytic activity for the reduction of 4-nitrophenol (4-NP) and Cr+6. In the presence of ZnO-Ag NBs and AA, an effective reduction of 4-nitrophenol (4-NP) and Cr+6 was achieved up to 93% and 90% in 17 and 26 min with respectively. The successful and efficient catalytic activity of NBs may be attributed to the size of NBs or the concentration of FA employed for synthesis.
Collapse
Affiliation(s)
- Awais Ahmad
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain.
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
10
|
Zhang Q, Wang L, Su P, Yu L, Yin R, Bu Y, Hao X, Sun M, Wang S. Highly selective and sensitive determination of ceftriaxone sodium using nitrogen-rich carbon dots based on ratiometric fluorescence. Talanta 2023; 255:124205. [PMID: 36580812 DOI: 10.1016/j.talanta.2022.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Selective and sensitive determination of ceftriaxone sodium (CTR) trace residues is of great importance for food safety and environmental protection. Herein, a determination method based on ratiometric fluorescence and colorimetric method with nitrogen-rich carbon dots as fluorophore is reported. The functional surfaces of indole-derived carbon dots (I-CDs) containing nitrogen and carbon groups can be selectively bound to CTR by electrostatic forces, leading to a hindered conjugation system and deprotonation of the amine on the pyrrole ring, resulting in a distinct variety in fluorescence and absorption wavelength and intensity. With the addition of CTR, the fluorescence at 577 nm can be selectively quenched, accompanied by a new emission peak appeared at 507 nm. The limits of detection (LODs) were estimated to be 19.7 nM and 78.0 nM based on the ratiometric fluorescence method and colorimetric method, respectively. Finally, the in situ visual quantitative determination of CTR using this nanosensor was achieved by combining with the color recognizer of a smartphone, and the method was further validated by spike and recovery test in real water samples including milk, seawater, and tap water.
Collapse
Affiliation(s)
- Qiang Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Lingxiao Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Pengchen Su
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Long Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Ranhao Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Yiming Bu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Xiangyang Hao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| | - Mingtai Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China.
| | - Suhua Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| |
Collapse
|
11
|
Fabrication of hesperidin hybrid lecithin-folic acid silver nanoparticles and its evaluation as anti-arthritis formulation in autoimmune arthritic rat model. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Mohamed MBM, Dahabiyeh LA, Sahib MN. Design and evaluation of molecular organogel based on folic acid as a potential green drug carrier for oral route. Drug Dev Ind Pharm 2022; 48:367-373. [PMID: 36094171 DOI: 10.1080/03639045.2022.2118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The low molecular weight organogels are interesting carriers for pharmaceutical compounds. However, their uses are limited due to the toxicity burden of the organic solvent used. Hence, this study aimed to prepare organogel using folic acid (FA) in different concentrations as a gelator for propylene glycol (PG) biocompatible solvent. METHODS The simple mixing method followed by incubation in a water bath at 90 °C was used to prepare organogels. Then, formulations were assessed using different methods including differential scanning calorimetry (DSC), dropping method, attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), oscillatory rheology studies, scanning electron microscopy (SEM), and in vitro dissolution study. RESULTS Gel formation and its consistency were highly depending on FA concentration. The results showed that increasing the concentration of FA in the organogel led to accelerating the gelation process, and the least amount of FA that could gel the PG was 0.25% w/w. However, higher concentrations were needed to create an organogel with excellent properties. The DSC and dropping studies revealed stable organogels formulations at body temperature. The ATR-FTIR showed interactions between the pteridine ring of FA and PG. The strain amplitude and frequency sweep tests demonstrated an increase in storage modulus values as the concentration of FA increased at 37 °C, which were frequency independent at high frequencies. In addition, the SEM exposed the fabrics like the structure of these organogels. Furthermore, the in vitro dissolution of organogel was pH-dependent, with a high possibility of taking place in the large intestine. CONCLUSION FA/PG organogel formulation is a promising carrier for drug and nutraceuticals compound for the oral delivery system.
Collapse
Affiliation(s)
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
13
|
Ahmadi Kamalabadi M, Neshastehriz A, Ghaznavi H, Amini SM. Folate functionalized gold-coated magnetic nanoparticles effect in combined electroporation and radiation treatment of HPV-positive oropharyngeal cancer. Med Oncol 2022; 39:196. [PMID: 36071293 DOI: 10.1007/s12032-022-01780-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The rate of HPV-positive oropharyngeal cancer incidence is increasing, especially in the young population. While these patients show good responses to radiotherapy. The major complication of radiotherapy is normal tissue involvement. Thus, finding an effective treatment method is essential. Multimodal therapy with the lowest side effect could be an effective treatment method. Theranostic gold magnetic core-shell nanostructure was developed as a platform for multimodal therapy of HPV-positive oropharyngeal cancer. The folate functionalized gold-magnetic core-shell nanostructure has been synthesized in a stepwise approach and characterized with various techniques including TEM, UV-Vis, and FTIR spectroscopy. KB was selected as a host for HPV and folate receptor-positive cancer. HGF as normal cell lines was selected. Both cell lines have been treated with nanoparticles, electric field and radiotherapy, either separately or in combination. Cell viability and apoptosis rate were determined by MTT and flow cytometry assay. In addition, cellular uptake of the nanoparticles was measured by ICP-OES analysis. The average size of folate functionalized gold-magnetic core-shell nanostructure was 13.8 ± 6.4 nm. A characteristic plasmonic peak of gold nanoshells was observed in the UV-Vis spectrum. The functionalization of synthesized nanostructure was confirmed with FTIR spectroscopy. None of the treatments alone can cause a significant death in cancerous cells. Combination treatments can increase cancer cell mortality and increase the proportion of apoptotic cells in them. Furthermore, it has been observed that the electric field enhanced the cellular uptake of nanoparticles just in cancerous cells. Based on our findings, we conclude that the combination of folate functionalized nanoparticles and electroporation opens a new way to improve radiation therapy efficacy of HPV-positive cancers.
Collapse
Affiliation(s)
- Mahdieh Ahmadi Kamalabadi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiation Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Radiation Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Thabet NM, Abdel-Rafei MK, El-Sayyad GS, Elkodous MA, Shaaban A, Du YC, Rashed LA, Askar MA. Multifunctional nanocomposites DDMplusAF inhibit the proliferation and enhance the radiotherapy of breast cancer cells via modulating tumor-promoting factors and metabolic reprogramming. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor-promoting factors (TPF) and metabolic reprogramming are hallmarks of cancer cell growth. This study is designed to combine the newly synthesized two nanocomposites DDM (HA-FA-2DG@DCA@MgO) and AF (HA-FA-Amygdaline@Fe2O3) with fractionated doses of radiotherapy (6 Gy-FDR; fractionated dose radiotherapy) to improve the efficiency of chemo-radiotherapy against breast cancer cell lines (BCCs; MCF-7 and MDA-MB-231). The physicochemical properties of each nanocomposite were confirmed using energy dispersive XRD, FTIR, HR-TEM, and SEM. The stability of DDMPlusAF was also examined, as well as its release and selective cellular uptake in response to acidic pH. A multiple-MTT assay was performed to evaluate the radiosensitivity of BCCs to DDMPlusAF at 3 Gy (single dose radiotherapy; SDR) and 6 Gy-FDR after 24, 48, and 72 h. Finally, the anti-cancer activity of DDMPlusAF with 6 Gy-FDR was investigated via assessing the cell cycle distribution and cell apoptosis by flow cytometry, the biochemical mediators (HIF-1α, TNF-α, IL-10, P53, PPAR-α, and PRMT-1), along with glycolytic pathway (glucose, HK, PDH, lactate, and ATP) as well as the signaling effectors (protein expression of AKT, AMPK, SIRT-1, TGF-β, PGC-1α, and gene expression of ERR-α) were determined in this study.
Results
The stability of DDMPlusAF was verified over 6 days without nanoparticle aggregation. DDMPlusAF release and selectivity data revealed that their release was amenable to the acidic pH of the cancer environment, and their selectivity was enhanced towards BCCs owing to CD44 and FR-α receptors-mediated uptake. After 24 h, DDMPlusAF boosted the BCC radiosensitivity to 6 Gy-FDR. Cell cycle arrest (G2/M and pre-G1), apoptosis induction, modulation of TPF mediators and signaling effectors, and suppression of aerobic glycolysis, all confirmed DDMPlusAF + 6 Gy’s anti-cancer activity.
Conclusions
It could be concluded that DDMPlusAF exerted a selective cancer radiosensitizing efficacy with targeted properties for TPF and metabolic reprogramming in BCCs therapy.
Collapse
|
15
|
Childebayeva A, Rohrlach AB, Barquera R, Rivollat M, Aron F, Szolek A, Kohlbacher O, Nicklisch N, Alt KW, Gronenborn D, Meller H, Friederich S, Prüfer K, Deguilloux MF, Krause J, Haak W. Population Genetics and Signatures of Selection in Early Neolithic European Farmers. Mol Biol Evol 2022; 39:6586604. [PMID: 35578825 PMCID: PMC9171004 DOI: 10.1093/molbev/msac108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Adam Benjamin Rohrlach
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Rodrigo Barquera
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Maïté Rivollat
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615 Pessac, France
| | - Franziska Aron
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany
| | - András Szolek
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria.,State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Kurt W Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria.,State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Detlef Gronenborn
- Römisch-Germanisches Zentralmuseum, Leibniz Research Institute for Archaeology, Ernst-Ludwig-Platz 2, 55116 Mainz, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Kay Prüfer
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | | | - Johannes Krause
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Wolfgang Haak
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
16
|
The restructure of Au@Ag nanorods for cell imaging with dark-field microscope. Talanta 2022; 244:123403. [PMID: 35349839 DOI: 10.1016/j.talanta.2022.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
The facile and noninjurious image of cells with high resolution and low toxicity is essential since imaging can offer rich and direct information and insights into metabolic activities, clinical diagnosis, drug delivery and cancer therapy. In this contribution, a smart imaging probe was employed as a contrast agent for dark-field cell imaging. Au core/Ag shell nanorods (Au@Ag NRs) that characterized by X-ray diffraction and X-ray photoelectron spectroscopy, formed Au@Ag@AgI NRs when exposed to iodine, which greatly enhanced the light scattering of nanorods. Herein, the silver shell acted as the response element for iodine as well as the protective agent for Au core. When conjugated with folate, the nanorods can be used to image human cervical cancer cells (HeLa cells) under a dark-field microscope. Nanorods were demonstrated with excellent tumor cellular uptake ability without obvious cytotoxicity, making them ideal candidates in biosensing and bioimaging applications.
Collapse
|
17
|
Zhou X, Wang J, Jiang Y, Leng G, Vasilyeva GK, Waigi MG, Gao Y. Characterization of Different Molecular Size Fractions of Glomalin-Related Soil Protein From Forest Soil and Their Interaction With Phenanthrene. Front Microbiol 2022; 12:822831. [PMID: 35281310 PMCID: PMC8905316 DOI: 10.3389/fmicb.2021.822831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 01/31/2023] Open
Abstract
As a natural organic compound secreted by arbuscular mycorrhizal fungi (AMF), glomalin-related soil protein (GRSP) is an important part in soil, affecting the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in it. Previous research have demonstrated that GRSP could enhance the availability of PAHs in the soil and favor their accumulation in plant roots. However, a scarcity of research exists on the different molecular weights of GRSP interacting with PAHs due to their complexation and heterogeneity. In this research, the extracted GRSP in soil was divided into three molecular weight (Mw) fractions of GRSP (<3,000, 3,000-10,000, and >10,000 Da), whose characteristics and binding capacity of PAHs were conducted by using UV-visible absorption, quenching fluorometry and, Fourier transform infrared spectroscopy. The results showed that the GRSP was composed of abundant compounds, it has a wide distribution of molecular weight, and the >10,000 Da Mw fraction was dominant. For three Mw fractions of GRSP, they have some difference in spectral features, for example, the >10,000 Da fraction showed higher dissolved organic carbon (DOC) contents, more phenolic hydroxyl groups, and stronger UV adsorption capacity than the low and middle Mw fractions. In addition, the interaction between GRSP and phenanthrene is related to the characteristics of the Mw fractions, especially the phenolic hydroxyl group, which has a significantly positive correlation with a binding coefficient of K A (k = 0.992, p < 0.01). Simultaneously, hydrophobic, NH-π, and H-bound also played roles in the complexation of phenanthrene with GRSP. These findings suggested that different GRSP Mw fractions could influence the fate, availability, and toxicity of PAHs in soil by their interaction.
Collapse
Affiliation(s)
- Xian Zhou
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Yi Jiang
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Ganghua Leng
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Galina K. Vasilyeva
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Moscow, Russia
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Rafie M, Meshkini A. Tailoring the proliferation of fibroblast cells by multiresponsive and thermosensitive stem cells composite F127 hydrogel containing folic acid.MgO:ZnO/chitosan hybrid microparticles for skin regeneration. Eur J Pharm Sci 2021; 167:106031. [PMID: 34601068 DOI: 10.1016/j.ejps.2021.106031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
In this study, biodegradable and thermosensitive F127 hydrogel containing folic acid.MgO:ZnO/chitosan hybrid particles (FMZC) was fabricated as a 3D mesenchymal stem cells (MSCs) delivery vehicle for regenerative medicine and wound healing purposes, in such a way to be responsive to lysozyme and UVA irradiation. The results showed that F127 hydrogel containing FMZC is a suitable and nontoxic construct for encapsulation of MSCs in the presence of lysozyme and UVA irradiation, bearing high stem cell viability and proliferation. The final hydrogel, MSC&FMZC, in response to lysozyme induced a higher proliferation rate and migration in human foreskin fibroblast cells (HFF). These phenomena were attributed to the released F.MgO:ZnO nanocomposites from chitosan microparticles and paracrine factors from MSCs within the hydrogel, resulting in synergistic biological effects. Moreover, lysozyme-treated MSC&FMZC hydrogel showed higher antibacterial and anti-biofilm activity against both Gram-positive and Gram-negative bacteria than bare hydrogel. However, a significant increase in the antibacterial activity of MSC&FMZC was observed as the treated bacteria were subjected to UVA irradiation owing to the photocatalytic activity of F.MgO:ZnO nanocomposites. Regarding the antibacterial activity and stimulating skin cell behavior of MSC&FMZC hydrogel that can promote the regenerative activities of skin, it could be considered as a promising scaffold for bacteria-accompanied wound healing.
Collapse
Affiliation(s)
- Malihe Rafie
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
19
|
Askar MA, Thabet NM, El-Sayyad GS, El-Batal AI, Abd Elkodous M, El Shawi OE, Helal H, Abdel-Rafei MK. Dual Hyaluronic Acid and Folic Acid Targeting pH-Sensitive Multifunctional 2DG@DCA@MgO-Nano-Core-Shell-Radiosensitizer for Breast Cancer Therapy. Cancers (Basel) 2021; 13:cancers13215571. [PMID: 34771733 PMCID: PMC8583154 DOI: 10.3390/cancers13215571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary In this study, we have developed CD44 and folate receptor-targeting multi-functional dual drug-loaded nanoparticles. This comprises hyaluronic acid (HA) and folic acid (FA) conjugated to 2-deoxy glucose (2DG) and a shell linked to a dichloroacetate (DCA) and magnesium oxide (MgO) core (2DG@DCA@MgO; DDM) to enhance the localized chemo-radiotherapy for effective breast cancer (BC) treatment. The physicochemical properties of nanoparticles including stability, selectivity, responsive release to pH, cellular uptake, and anticancer efficacy were comprehensively examined. Mechanistically, we identified multiple component signal pathways as important regulators of BC metabolism and mediators for the inhibitory effects exerted by DDM. Nanoparticles exhibited sustained DDM release properties in bio-relevant media, which was responsive to acidic pH providing edibility to the control of drug release from nanoparticles. DDM-loaded and HA–FA-functionalized nanoparticles exhibited increased selectivity and uptake by BC cells. Cell-based assays indicated that the functionalized DDM significantly suppressed cancer cell growth and boosted radiotherapy (RT) efficacy via inducing cell cycle arrest, enhancing apoptosis, and modulating glycolytic and OXPHOS pathways. Accordingly, the inhibition of glycolysis/OXPHOS by DDM and RT treatment may result in cancer metabolic reprogramming via a novel PI3K/AKT/mTOR/P53NF-κB/VEGF pathway in BC cells. Therefore, the dual targeting of glycolysis/OXPHOS pathways is suggested as a promising antitumor strategy. Abstract Globally, breast cancer (BC) poses a serious public health risk. The disease exhibits a complex heterogeneous etiology and is associated with a glycolytic and oxidative phosphorylation (OXPHOS) metabolic reprogramming phenotype, which fuels proliferation and progression. Due to the late manifestation of symptoms, rigorous treatment regimens are required following diagnosis. Existing treatments are limited by a lack of specificity, systemic toxicity, temporary remission, and radio-resistance in BC. In this study, we have developed CD44 and folate receptor-targeting multi-functional dual drug-loaded nanoparticles. This composed of hyaluronic acid (HA) and folic acid (FA) conjugated to a 2-deoxy glucose (2DG) shell linked to a layer of dichloroacetate (DCA) and a magnesium oxide (MgO) core (2DG@DCA@MgO; DDM) to enhance the localized chemo-radiotherapy for effective BC treatment. The physicochemical properties of nanoparticles including stability, selectivity, responsive release to pH, cellular uptake, and anticancer efficacy were thoroughly examined. Mechanistically, we identified multiple component signaling pathways as important regulators of BC metabolism and mediators for the inhibitory effects elicited by DDM. Nanoparticles exhibited sustained DDM release properties in a bio-relevant media, which was responsive to the acidic pH enabling eligibility to the control of drug release from nanoparticles. DDM-loaded and HA–FA-functionalized nanoparticles exhibited increased selectivity and uptake by BC cells. Cell-based assays revealed that the functionalized DDM significantly suppressed cancer cell growth and improved radiotherapy (RT) through inducing cell cycle arrest, enhancing apoptosis, and modulating glycolytic and OXPHOS pathways. By highlighting DDM mechanisms as an antitumor and radio-sensitizing reagent, our data suggest that glycolytic and OXPHOS pathway modulation occurs via the PI3K/AKT/mTOR/NF-κB/VEGFlow and P53high signaling pathway. In conclusion, the multi-functionalized DDM opposed tumor-associated metabolic reprogramming via multiple signaling pathways in BC cells as a promising targeted metabolic approach.
Collapse
Affiliation(s)
- Mostafa A. Askar
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt; (N.M.T.); (M.K.A.-R.)
- Correspondence: (M.A.A.); (G.S.E.-S.); Tel.: +20-010-1704-8253 (M.A.A.)
| | - Noura M. Thabet
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt; (N.M.T.); (M.K.A.-R.)
| | - Gharieb S. El-Sayyad
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt;
- Correspondence: (M.A.A.); (G.S.E.-S.); Tel.: +20-010-1704-8253 (M.A.A.)
| | - Ahmed I. El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt;
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan;
| | - Omama E. El Shawi
- Health and Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt;
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt;
| | - Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt; (N.M.T.); (M.K.A.-R.)
| |
Collapse
|
20
|
Mahmoud ME, Fekry NA, Abdelfattah AM. Novel supramolecular network of graphene quantum dots-vitamin B9-iron (III)-tannic acid complex for removal of chromium (VI) and malachite green. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Parın FN, Ullah S, Yıldırım K, Hashmi M, Kim IS. Fabrication and Characterization of Electrospun Folic Acid/Hybrid Fibers: In Vitro Controlled Release Study and Cytocompatibility Assays. Polymers (Basel) 2021; 13:3594. [PMID: 34685351 PMCID: PMC8537833 DOI: 10.3390/polym13203594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The fabrication of skin-care products with therapeutic properties has been significant for human health trends. In this study, we developed efficient hydrophilic composite nanofibers (NFs) loaded with the folic acid (FA) by electrospinning and electrospraying processes for tissue engineering or wound healing cosmetic applications. The morphological, chemical and thermal characteristics, in vitro release properties, and cytocompatibility of the resulting composite fibers with the same amount of folic acid were analyzed. The SEM micrographs indicate that the obtained nanofibers were in the nanometer range, with an average fiber diameter of 75-270 nm and a good porosity ratio (34-55%). The TGA curves show that FA inhibits the degradation of the polymer and acts as an antioxidant at high temperatures. More physical interaction between FA and matrices has been shown to occur in the electrospray process than in the electrospinning process. A UV-Vis in vitro study of FA-loaded electrospun fibers for 8 h in artificial acidic (pH 5.44) and alkaline (pH 8.04) sweat solutions exhibited a rapid release of FA-loaded electrospun fibers, showing the effect of polymer matrix-FA interactions and fabrication processes on their release from the nanofibers. PVA-CHi/FA webs have the highest release value, with 95.2% in alkaline media. In acidic media, the highest release (92%) occurred on the PVA-Gel-CHi/sFA sample, and this followed first-order and Korsmeyer-Peppas kinetic models. Further, the L929 cytocompatibility assay results pointed out that all NFs (with/without FA) generated had no cell toxicity; on the contrary, the FA in the fibers facilitates cell growth. Therefore, the nanofibers are a potential candidate material in skin-care and tissue engineering applications.
Collapse
Affiliation(s)
- Fatma Nur Parın
- Faculty of Engineering and Nature Science, Department of Polymer Materials Engineering, Mimar Sinan Campus, Bursa Technical University, Bursa 16310, Turkey;
| | - Sana Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| | - Kenan Yıldırım
- Faculty of Engineering and Nature Science, Department of Polymer Materials Engineering, Mimar Sinan Campus, Bursa Technical University, Bursa 16310, Turkey;
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| |
Collapse
|
22
|
Zhai M, Gong P, Li H, Peng J, Xu W, Song S, Liu X, Liu J, Liu J, Liu Z. Metastable interface biomimetic synthesis of a smart nanosystem for enhanced starvation/gas therapy. J Colloid Interface Sci 2021; 599:149-157. [PMID: 33940438 DOI: 10.1016/j.jcis.2021.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Glucose oxidase (GOx)-mediated starvation therapy holds great promise in cancer treatment. However, the worse hypoxia conditions result into low therapeutic efficiency, and undegradability of carriers poses potential threats to living bodies. To address this, herein a bioinspired MnO2 nanosystem with controllable surface was developed for highly efficient starvation/gas synergistic enhanced therapy. Biomimetic design and further surface modification unprecedentedly endowed the nanosystem with ultrahigh loading capacity for GOx and l-Arginine (l-Arg) and special selectivity toward cancer cells. Especially, the dissipative O2 during starvation therapy was well replenished by a positive cycle formed by the nanosystem, which continuously reproduced O2 and accelerated glucose consumption. The abundant H2O2 was further used to oxidize l-Arg into nitric oxide to realize gas therapy. In vitro and in vivo testing confirmed that this new treatment effectively blocked the nutrition and energy sources of cells to obtain excellent therapeutic effect. We reported the first experimental item of this nanosystem for inhibiting cancer cell migration. Considering the novel design concept with facile biomimetic methods, effective co-loading of endogenous substances, and good anti-tumor and anti-migration effects, this work provided new theoretical and experimental basis for starvation therapy and inspired people to design more delicate platform for cancer treatment.
Collapse
Affiliation(s)
- Mingzhu Zhai
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Peiwei Gong
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication, and Seal Materials, Northwestern Polytechnical University, 517, Xi'an 710072, PR China.
| | - Hui Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jingyi Peng
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Wenyu Xu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Shaohua Song
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xicheng Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication, and Seal Materials, Northwestern Polytechnical University, 517, Xi'an 710072, PR China.
| | - Jinfeng Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
23
|
Sensory and Physicochemical Properties and Stability of Folic Acid in a Pineapple Ready-to-Serve Beverage Fortified with Encapsulated Folic Acid. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9913884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fortification of food and beverages with folic acid is carried out frequently as a remedy to folic acid deficiency which causes serious health issues. This study was carried out to investigate the effect of incorporation of folic acid encapsulated alginate submicron particles in pineapple ready-to-serve (RTS) beverages. The encapsulation efficiency and loading capacity of the particles were 91.54 ± 0.45% and 1.02 ± 0.01%, respectively. The photostability and thermal stability studies of folic acid revealed that encapsulation poses a protective effect on folic acid and that dark and refrigerated conditions contribute to higher stability of folic acid. In this study, sensory evaluation of the RTS beverages was carried out through both ranking tests and acceptance tests using a five-point hedonic scale. The sensory panel showed the highest preference to pineapple RTS with incorporated encapsulated folic acid at a quantity of its recommended daily intake (400 µg/200 mL) before heat treatment. Shelf-life evaluations were carried out through measuring physicochemical properties, and pH, titratable acidity, and total soluble solids showed negligible or acceptable changes over two months. Folic acid degradation occurred due to heat treatment, but encapsulation in alginate submicron particles provided heat stability to folic acid. Thus, microencapsulated folic acid may be a successful carrier of folic acid which can be incorporated in beverages such as fortified pineapple RTS.
Collapse
|
24
|
Wusigale, Wang T, Hu Q, Xue J, Khan MA, Liang L, Luo Y. Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chitosan. Int J Biol Macromol 2021; 183:2282-2292. [PMID: 34102238 DOI: 10.1016/j.ijbiomac.2021.05.216] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
The carriers for hydrophobic bioactives have been extensively studied, while those for hydrophilic bioactives are still challenging. The partition of bioactives in the particles depends greatly on their solubility, interaction with carrier materials, as well as structure of carriers. In this study, chitosan-coated hollow zein particles using calcium phosphate as a sacrificing template (CS-HZ) were fabricated to co-encapsulate folic acid (FA) and caffeic acid (CA). Partition, photostability, and antioxidant capacity of bioactive compounds were also studied. The size, polydispersity index and ζ-potential of optimized CS-HZ were 176.3 nm, 0.14 and +39.3 mV, respectively, indicating their small and uniform dimension with excellent colloidal stability. FA interacted with chitosan to form complexes and then coated on the zein particles where CA was encapsulated. After co-encapsulation in CS-HZ, the photostability of both FA and CA was improved in comparison with encapsulation of single compound, with 85% of FA remaining after 240 min of UVA irradiation, and 90% of CA remaining after 80 min. Antioxidant activity of CA decreased upon encapsulation, but significantly increased after irradiation. Findings in this study shed some light on the design of carriers for co-delivery of hydrophilic compounds in acidic condition.
Collapse
Affiliation(s)
- Wusigale
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Taoran Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Qiaobin Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Muhammad Aslam Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
25
|
Zhang Y, Yu L, Zhu J, Gong R. Preparation of folate and carboxymethyl-β-cyclodextrin grafted trimethyl chitosan nanoparticles as co-carrier of doxorubicin and siRNA. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
He C, Heidari Majd M, Shiri F, Shahraki S. Palladium and platinum complexes of folic acid as new drug delivery systems for treatment of breast cancer cells. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Ghalehkhondabi V, Soleymani M, Fazlali A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Xu Z, Liu F, Zhang T, Gu Y, Lu N, Xu H, Yan X, Song Y, Xing Y, Yu D, Zhang Z, Lu P. Density Functional Theory-Assisted Electrochemical Assay Manipulated by a Donor-Acceptor Structure toward Pharmaceutical Diagnostic. Anal Chem 2020; 92:15297-15305. [PMID: 33185440 DOI: 10.1021/acs.analchem.0c01272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative stress is a state of stress injury, which leads to the pathogenesis of most neurodegenerative diseases. Moreover, this is also one of the main reasons for the loss of dopaminergic neurons and the abnormal content of dopamine (DA). In the past decades, a number of studies have found that acetaminophen (AP) is metabolized and distributed in the brain when it is used as a neuroprotective compound. In this context, we proposed an electrochemical sensor based on 9-(4-(10-phenylanthracen-9-yl)phenyl)-9H-carbazole with the goal of diagnosing these two drugs in the body. Carbazole groups can easily be formed into large π-conjugated systems by electropolymerization. The introduction of anthracene exactly combined the carbazole group to establish an efficient electron donor-acceptor pattern, which enhanced π-π interaction with the electrode surface and charge transporting ability. The diagnostic platform showed good sensing activity toward the oxidation of DA and AP. The detection range for DA and AP is from 0.2 to 300 μM and from 0.2 to 400 μM, respectively. The simultaneous detection range is from 0.5 to 250 μM, which is wider than most reports. After a series of electrochemical assessments were determined, the sensor was finally developed to the analysis of pharmaceutical and human serum, displaying a meaningful potential in clinical evaluation.
Collapse
Affiliation(s)
- Zhiqian Xu
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Futong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, P.R. China
| | - Tingting Zhang
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yue Gu
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Haixin Xu
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaoyi Yan
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yu Song
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yue Xing
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Dexun Yu
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun 130021, P.R. China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
29
|
Pellá MCG, Simão AR, Lima-Tenório MK, Scariot DB, Nakamura CV, Muniz EC, Rubira AF. Magnetic chitosan microgels: Synthesis, characterization, and evaluation of magnetic field effect over the drug release behavior. Carbohydr Polym 2020; 250:116879. [DOI: 10.1016/j.carbpol.2020.116879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
|
30
|
Pamunuwa G, Anjalee N, Kukulewa D, Edirisinghe C, Shakoor F, Karunaratne DN. Tailoring of release properties of folic acid encapsulated nanoparticles via changing alginate and pectin composition in the matrix. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors. Bioelectrochemistry 2020; 137:107685. [PMID: 33120295 DOI: 10.1016/j.bioelechem.2020.107685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Folate receptor alpha (FR-α) is a glycoprotein overexpressed in tumor cell surfaces, especially in gynecologic cancers, and can be used as a biomarker for diagnostics. Currently, FRα is quantified by positron emission tomography (PET) or fluorescence imaging techniques. However, these methods are costly and time-consuming. We report on the development of an electrochemical biosensor for FRα detection based on the use of nanostructured layer-by-layer (LbL) films as modified electrodes. Multilayer films were deposited on indium tin oxide (ITO) electrodes by the alternately assembling of positively charged polyallylamine hydrochloride (PAH) and negatively charged folic acid (FA), used as the biorecognition element. UV-vis and FTIR spectroscopies revealed the successful PAH and FA adsorption on ITO. Devices performance was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The [PAH/FA] films presented a good reproducibility (RSD of 1.12%) and stability when stored in the Tris-HCl solution (RSD 6.7%). The biosensor electrochemical response exhibited a linear relationship with FRα concentration in the range from 10 to 40 nM. The limit of detection reached for CV and EIS measurements were 0.7 and 1.5 nM, respectively. As a proof-of-concept, we show that the devices can differenciate tumor cells from healthy cell, showing an excellent selectivity. The biosensor device based on [PAH/FA] films represents a promising strategy for a simple, rapid, and low-cost cancer diagnosis through FRα quantification on the surface of cancer cells.
Collapse
Affiliation(s)
- Abilene Rodrigues Correia
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Isabella Sampaio
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil.
| | - Edson José Comparetti
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Nirton Cristi Silva Vieira
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil; Institute of Science and Technology, Federal University of São Paulo, 12231-280 São José dos Campos, SP, Brazil
| | - Valtencir Zucolotto
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
32
|
Rosch J, DuRoss AN, Landry MR, Sun C. Development of a Pemetrexed/Folic Acid Nanoformulation: Synthesis, Characterization, and Efficacy in a Murine Colorectal Cancer Model. ACS OMEGA 2020; 5:15424-15432. [PMID: 32637817 PMCID: PMC7331029 DOI: 10.1021/acsomega.0c01550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 05/07/2023]
Abstract
The folate analogue pemetrexed (PEM) is an approved therapeutic for non-small cell lung cancer and malignant pleural mesothelioma with the potential for broader application in combination therapies. Here, we report the development of a nanoformulation of PEM and its efficacy against the CT26 murine colorectal cancer cell line in vitro and in vivo. Utilizing layer-by-layer deposition, we integrate PEM, along with folic acid (FA), onto a fluorescent polystyrene nanoparticle (NP) substrate. The final nanoformulation (PEM/FA-NP) has a size of ∼40 nm and a zeta potential of approximately -20 mV. Cell uptake studies indicated increased uptake in vitro for the PEM/FA-NP compared to the uncoated NP, likely due to the presence of PEM and FA. Viability studies were performed to determine the potency of the PEM/FA-NP formulation against CT26 cells. Syngeneic CT26 tumors in BALB/c mice showed reduced growth when treated once daily (2.1 mg/kg PEM) for 3 days with PEM/FA-NP versus the vehicle (uncoated) control, with no observable signs of systemic toxicity associated with the nanoformulation. Although the current study size is limited (n = 4 animals for each group), the overall performance and biocompatibility of the PEM/FA-NP observed suggest that further optimization and larger-scale studies may be warranted for this novel formulation.
Collapse
Affiliation(s)
- Justin
G. Rosch
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Allison N. DuRoss
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Madeleine R. Landry
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Conroy Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department
of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
- . Phone: 503-346-4699
| |
Collapse
|
33
|
Li Z, Xiong X, Peng S, Chen X, Liu W, Liu C. Novel folated pluronic F127 modified liposomes for delivery of curcumin: preparation, release, and cytotoxicity. J Microencapsul 2020; 37:220-229. [PMID: 32039640 DOI: 10.1080/02652048.2020.1720030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: A novel folated pluronic F127 (FA-F127) was synthesised, so as to modify liposomes with FA group on the surface, and evaluate the effects of FA-F127 modification on the properties of the modified liposomes.Methods: FA was linked to one end of pluronic F127, via the terminal OH group, to obtain FA-F127 and the structure was characterised. FA-F127 modified curcumin liposomes (cur-FA-F127-Lps) were prepared. The physicochemical characteristics of cur-FA-F127-Lps, including morphology and particle size, were studied. The in vitro cytotoxicity of cur-FA-F127-Lps against KB cancer cells was determined by MTT tests.Results: The effects of FA-F127 modification on the average particle size, PDI, curcumin encapsulation efficiency and microstructure were not significant. Compared with nonfolated F127 liposomes (cur-F127-Lps), cur-FA-F127-Lps exhibited significantly higher cytotoxicity towards KB cells.Conclusions: Folic acid modified liposomes provide a novel strategy to improve the chemotherapeutic efficacy of hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Ziling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, PR China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiangyuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, PR China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
34
|
Falcon K, Fors M, Palacios Alvarez S, Veintimilla K, Lasso N, Navas C. Assessment of Predictors of Sun Sensitivity as Defined by Fitzpatrick Skin Phototype in an Ecuadorian Population and Its Correlation with Skin Damage. Dermatology 2019; 235:400-406. [PMID: 31288228 DOI: 10.1159/000500635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Fitzpatrick skin phototype scale (FSPTS) is a widely used instrument to assess skin type. METHODS A cross-sectional survey collected responses from 254 subjects from Quito regarding self-reported FSPTS, gender, age, education, and tobacco and alcohol consumption. Univariate and multivariate logistic regression analyses were performed to determine if ethnicity, hair color, and eye color significantly predict FSPTS. In addition, we studied the correlation between FSPTS and the SCINEXA scale with Pearson's correlation coefficient. RESULTS Ethnicity, eye color, and hair color are significant independent predictors of FSPTS (p < 0.0001). CONCLUSIONS Patient self-reported race and pigmentary phenotypes are inaccurate predictors of sun sensitivity as defined by Fitzpatrick skin phototype. Our study does not fully represent the population of the country. There are limitations to using patient-reported race and appearance in predicting individual sunburn risk.
Collapse
Affiliation(s)
| | - Martha Fors
- Universidad de Las Américas, Quito, Ecuador,
| | | | | | | | | |
Collapse
|
35
|
Zhai Z, Nie M, Guan Y, Zhang F, Chen L, Du W, Liu G, Tian Y, Huang Q. A microfluidic surface-enhanced Raman spectroscopy approach for assessing the particle number effect of AgNPs on cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:529-535. [PMID: 30015200 DOI: 10.1016/j.ecoenv.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (Ag NPs) have well-known antibacterial properties and are widely applied in various medical products and general commodities. Although many studies have addressed the toxicity of Ag NPs to mammalian cells, the direct relationship between the number of Ag NPs in living cells and the corresponding cell toxicity has not yet been explicitly demonstrated. In this work, a simple and reusable microfluidic device composed of a quartz cover slip and a glass plate with etched micro-channel and micro-wells was employed for separating and trapping single living cells. The device was silanized to render the surface hydrophobic. For simplicity, HeLa cells as the model cancer cells were used in the study, which were pipette-loaded into an array of micro wells based on dead-end filling. Surface enhanced Raman spectroscopy (SERS) was then employed to examine the living cancer cells and assessed number and distribution of Ag NPs in the cells. Combined with the cell viability assay, we therefore correlated the number of Ag NPs in the cell with the toxicity to the cell directly.
Collapse
Affiliation(s)
- Zhimin Zhai
- Key Laboratory of High Magnetic Field and IonBeam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, University of Chinese Academy of Sciences, China
| | - Mengyue Nie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Fengqiu Zhang
- Key Laboratory of High Magnetic Field and IonBeam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China; School of Physical Engineering, Zhengzhou University, Zhengzhou, China
| | - Liang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yangchao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- Key Laboratory of High Magnetic Field and IonBeam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China; University of Science and Technology of China, University of Chinese Academy of Sciences, China.
| |
Collapse
|
36
|
Wang J, Jiao Y, Shao Y. Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2041. [PMID: 30347751 PMCID: PMC6212853 DOI: 10.3390/ma11102041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/20/2023]
Abstract
Low-energy ultrasound (LEUS), exhibiting obvious advantages as a safe therapeutic strategy, would be promising for cancer therapy. We had synthesized a LEUS-responsive targeted drug delivery system based on functional mesoporous silica nanoparticle for cancer therapy. Paclitaxel (PTX) was loaded in mesoporous silica nanoparticles with a hydrophobic internal channel, and folic acid (FA) functionalized β-Cyclodextrin (β-CD) was capped on the surface of the nanoparticles (DESN), which acted as a cancer-targeting moiety and solubilizer. The existence of a hydrophobic internal channel in the DESN was beneficial to the storage of hydrophobic PTX, along with the enhancement of the cavitation effect produced by mild low-energy ultrasound (LEUS, ≤1.0 W/cm², 1 MHz). The DESN showed significantly enhanced cavitation effect, selective targeting, and achieved a rapid drug release under mild LEUS. To investigate the in vivo antitumor efficacy of the DESN upon LEUS irradiation, we established a 4T1 mammary tumor model. The DESN were confirmed to be of great biodegradability/biocompatibility. The tumor growth was significantly inhibited when the mice were treated with DESN (10 mg/kg) + LEUS with the relative tumor volume reduced to 4.72 ± 0.70 compared with the control group (V/V₀ = 17.12 ± 2.75). The DESN with LEUS represented excellent inhibiting effect on tumor cell in vivo. This work demonstrated that DESN mediating dual mode chemo-sonodynamic therapy could be triggered by extracorporeal remote control, may suggest a promising clinical application in cancer therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yajing Jiao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yiran Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
37
|
Kasprzak A, Gunka K, Fronczak M, Bystrzejewski M, Poplawska M. Folic Acid-Navigated and β-Cyclodextrin-Decorated Carbon-Encapsulated Iron Nanoparticles as the Nanotheranostic Platform for Controlled Release of 5-Fluorouracil. ChemistrySelect 2018. [DOI: 10.1002/slct.201802318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| | - Katarzyna Gunka
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| | - Maciej Fronczak
- Faculty of Chemistry, University of Warsaw; Pasteura Str. 1 02-093 Warsaw Poland
| | - Michał Bystrzejewski
- Faculty of Chemistry, University of Warsaw; Pasteura Str. 1 02-093 Warsaw Poland
| | - Magdalena Poplawska
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| |
Collapse
|
38
|
Folic acid modified copper nanoclusters for fluorescent imaging of cancer cells with over-expressed folate receptor. Mikrochim Acta 2018; 185:205. [DOI: 10.1007/s00604-018-2743-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
|
39
|
Alavi AS, Meshkini A. Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy. Eur J Pharm Sci 2018; 115:144-157. [DOI: 10.1016/j.ejps.2018.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
|
40
|
Azcona P, López-Corral I, Lassalle V. Fabrication of folic acid magnetic nanotheranostics: An insight on the formation mechanism, physicochemical properties and stability in simulated physiological media. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Deng L, Xu S. Adaptation of human skin color in various populations. Hereditas 2017; 155:1. [PMID: 28701907 PMCID: PMC5502412 DOI: 10.1186/s41065-017-0036-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. DISCUSSION Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. CONCLUSION Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.
Collapse
Affiliation(s)
- Lian Deng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China.,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438 China
| |
Collapse
|
42
|
Zhai Z, Zhang F, Chen X, Zhong J, Liu G, Tian Y, Huang Q. Uptake of silver nanoparticles by DHA-treated cancer cells examined by surface-enhanced Raman spectroscopy in a microfluidic chip. LAB ON A CHIP 2017; 17:1306-1313. [PMID: 28247889 DOI: 10.1039/c7lc00053g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports on the synthesis and application of biocompatible and sensitive SERS nanoparticles for the study of uptake of nanoparticles into living cells in a microfluidic chip through surface-enhanced Raman spectroscopy (SERS). The nanoparticles were fabricated as beta-cyclodextrin-coated silver nanoparticles (Ag@CD NPs) modified with para-aminothiophenol (p-ATP) and folic acid (FA) on the surface. The p-ATP molecules act as the Raman reporter while the FA tags have high affinity for folate receptors (FR) that are over-expressed on the surface cancerous cells, so that the nanoparticles can enter the cells and be monitored by the Raman reporter. Therefore, the nanoparticles could be utilized not only as cell invaders due to endocytosis but also as a SERS sensitive probe to monitor the effect of FR-targeted drugs such as dihydroartemisinin (DHA) that induce the population change of FR on the membrane of living cells. As a result, we have successfully demonstrated that we are able to employ the Ag@CD@p-ATP@FA NPs to evaluate the number of NPs entering living cells quantitatively and correspondingly the drug effect on cancer cells in a well-controlled way.
Collapse
Affiliation(s)
- Zhimin Zhai
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, China
| | - Fengqiu Zhang
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, China and School of Physical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Chen
- University of Science and Technology of China, Hefei 230026, China
| | - Jie Zhong
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- University of Science and Technology of China, Hefei 230026, China
| | - Yangchao Tian
- University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
43
|
Nayunigari MK, Das R, Maity A, Agarwal S, Gupta VK. Folic acid modified cross-linked cationic polymer: Synthesis, characterization and application of the removal of Congo red dye from aqueous medium. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Bettini S, Giancane G, Pagano R, Bonfrate V, Salvatore L, Madaghiele M, Buccolieri A, Manno D, Serra A, Maruccio G, Monteduro AG, Syrgiannis Z, Valli L, Prato M. A simple approach to synthetize folic acid decorated magnetite@SiO2 nanostructures for hyperthermia applications. J Mater Chem B 2017; 5:7547-7556. [DOI: 10.1039/c7tb02002c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Folic Acid decorated SPIONs selective internalization was monitored by an innovative Ellipsometry imaging approach.
Collapse
|
45
|
Gao T, Li L, Wang B, Zhi J, Xiang Y, Li G. Dynamic Electrochemical Control of Cell Capture-and-Release Based on Redox-Controlled Host–Guest Interactions. Anal Chem 2016; 88:9996-10001. [DOI: 10.1021/acs.analchem.6b02156] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tao Gao
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Liudi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Bei Wang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Jun Zhi
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Yang Xiang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Genxi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
- Center
for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
46
|
Sonmez M, Verisan C, Voicu G, Ficai D, Ficai A, Oprea AE, Vlad M, Andronescu E. Extended release of vitamins from magnetite loaded polyanionic polymeric beads. Int J Pharm 2016; 510:457-64. [DOI: 10.1016/j.ijpharm.2015.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
|
47
|
Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, Wang TW. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep 2016; 6:21170. [PMID: 26880047 PMCID: PMC4754752 DOI: 10.1038/srep21170] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Abstract
Theranostics, an integrated therapeutic and diagnostic system, can simultaneously monitor the real-time response of therapy. Different imaging modalities can combine with a variety of therapeutic moieties in theranostic nanoagents. In this study, a multi-functionalized, integrated theranostic nanoagent based on folate-conjugated reducible polyethylenimine passivated carbon dots (fc-rPEI-Cdots) is developed and characterized. These nanoagents emit visible blue photoluminescence under 360 nm excitation and can encapsulate multiple siRNAs (EGFR and cyclin B1) followed by releasing them in intracellular reductive environment. In vitro cell culture study demonstrates that fc-rPEI-Cdots is a highly biocompatible material and a good siRNA gene delivery carrier for targeted lung cancer treatment. Moreover, fc-rPEI-Cdots/pooled siRNAs can be selectively accumulated in lung cancer cells through receptor mediated endocytosis, resulting in better gene silencing and anti-cancer effect. Combining bioimaging of carbon dots, stimulus responsive property, gene silencing strategy, and active targeting motif, this multi-functionalized, integrated theranostic nanoagent may provide a useful tool and platform to benefit clinicians adjusting therapeutic strategy and administered drug dosage in real time response by monitoring the effect and tracking the development of carcinomatous tissues in diagnostic and therapeutic aspects.
Collapse
Affiliation(s)
- Yu-Fen Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsi-Chin Wu
- Department of Material Engineering, Tatung University, Taipei, Taiwan
| | - Chen-Hsiang Kuan
- Department of Plastic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jui Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
48
|
Feng X, Zhang S, Wu H, Lou X. A novel folic acid-conjugated TiO2–SiO2 photosensitizer for cancer targeting in photodynamic therapy. Colloids Surf B Biointerfaces 2015; 125:197-205. [DOI: 10.1016/j.colsurfb.2014.11.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 02/09/2023]
|
49
|
Wortmann L, Ilyas S, Niznansky D, Valldor M, Arroub K, Berger N, Rahme K, Holmes J, Mathur S. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16631-16642. [PMID: 25184762 DOI: 10.1021/am503068r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.
Collapse
Affiliation(s)
- Laura Wortmann
- Institute of Inorganic Chemistry, University of Cologne , Greinstrasse 6, Cologne 50939, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu X, Fan H, Wang L, Jin Z. Formation of Polydopamine Nanofibers with the Aid of Folic Acid. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|