1
|
Hongal AM, Shettar AK, Hoskeri JH, Vedamurthy AB. Silver nanoparticles mediated apoptosis and cell cycle arrest in lung cancer A549. 3 Biotech 2024; 14:238. [PMID: 39310035 PMCID: PMC11415561 DOI: 10.1007/s13205-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The present study was aimed to synthesize the silver nanoparticles from Alangium salvifolium Wang. and evaluating its biomedical applications. The leaves of A. salvifolium collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of A. salvifolium plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.
Collapse
Affiliation(s)
- Annapurneshwari M. Hongal
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| | - Arun K. Shettar
- Division of Pre-Clinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, Karnataka 580031 India
| | - Joy H. Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women’s University, Vijayapura, Karnataka India
| | - A. B. Vedamurthy
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
2
|
Hariharan S, Chauhan S, Velu K, Dharmaraj S, C M VK, Ganesan S. Biological Activities of Selenium Nanoparticles Synthesized from Camellia sinensis (L) Kuntze Leaves. Appl Biochem Biotechnol 2023; 195:5823-5837. [PMID: 36708493 DOI: 10.1007/s12010-023-04348-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Selenium in the form of selenoproteins is formed through a unique translocation recoding pathway and plays a vital role in human metabolism. Selenium nanoparticles (SeNPs) when synthesized using green synthesis from plant extract offer more advantages than physical and chemical methods. Previous studies have synthesized selenium nanoparticles from green tea and white tea; here, we report the synthesis of selenium nanoparticles from Camillia sinensis (L) Kuntze leaves (black tea) by green synthesis. Moreover, we have tested the antimicrobial and antioxidant activity of the plant extract, SeNPs, and combination of plant extract and SeNPs which have not been previously studied. The antimicrobial efficacy of SeNPs was tested against Klebsiella pneumonia, Candida albicans, and Staphylococcus aureus. They showed inhibitory effects against these organisms individually and in combination with Camellia sinensis leaf extract. The antioxidant properties of SeNPs were checked using FRAP and DPPH assays, where high radical scavenging activity was exhibited by SeNPs and in combination with the plant extract. Furthermore, synthesized SeNPs were examined for cytotoxicity tolerance against Vero cells and their IC50 values determine that plant-mediated SeNPs showed high cytotoxicity at minimal concentrations. If explored further, the reducing, capping, and stabilizing capabilities of SeNPs may demonstrate other inhibitory effects and could be explored for understanding the role of selenium in cellular metabolism.
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India
| | - Smarika Chauhan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India
| | - Karthick Velu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, India
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Selvakumar Dharmaraj
- Department of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research (Ooty off-campus), Karnataka, Mysuru, India
| | - Vineeth Kumar C M
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, India
| | - Swamynathan Ganesan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
3
|
Feizi S, Cooksley CM, Ramezanpour M, Nepal R, Psaltis AJ, Wormald PJ, Vreugde S. Colloidal silver against macrophage infections and biofilms of atypical mycobacteria. Biometals 2023; 36:913-925. [PMID: 36729280 PMCID: PMC10393856 DOI: 10.1007/s10534-023-00494-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Skin and soft tissue infection (SSTI) caused by atypical mycobacteria such as Mycobacterium abscessus and Mycobacterium avium intracellulare complex (MAIC) have increased in recent years. Current therapeutic options are limited, and hence new and better therapies are urgently required. Colloidal Silver (CS) has been identified for its widespread antibacterial properties and silver-impregnated dressings have been used for SSTIs caused by various pathogens. The efficacy of Green Synthesized Colloidal Silver (GSCS) was investigated for bacterial growth inhibition (BGI) using a microdilution method and minimum biofilm eradication concentration (MBEC) using resazurin assay and confocal scanning laser microscopy (CSLM) of M. abscessus (n = 5) and MAIC (n = 5). The antibacterial effect of GSCS against M. abscessus infected macrophages was also evaluated. The in vitro cytotoxicity of GSCS on a human keratinocyte cell line (HaCaT) and neonatal foreskin fibroblasts was analyzed by the crystal violet proliferation assay. Average BGI and MBEC of GSCS varied between 0.7 and 22 ppm for M. abscessus and MAIC. The concentration of 3 ppm reduced M. abscessus-infection in macrophages significantly. GSCS was not cytotoxic to HaCaT and neonatal foreskin fibroblast cells at concentrations < 3 ppm up to 2 h exposure time. GSCS therefore, has the potential for topical application against atypical mycobacterial SSTI.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Clare M Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Roshan Nepal
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia.
- The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
4
|
Karunakaran G, Sudha KG, Ali S, Cho EB. Biosynthesis of Nanoparticles from Various Biological Sources and Its Biomedical Applications. Molecules 2023; 28:molecules28114527. [PMID: 37299004 DOI: 10.3390/molecules28114527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
In the last few decades, the broad scope of nanomedicine has played an important role in the global healthcare industry. Biological acquisition methods to obtain nanoparticles (NPs) offer a low-cost, non-toxic, and environmentally friendly approach. This review shows recent data about several methods for procuring nanoparticles and an exhaustive elucidation of biological agents such as plants, algae, bacteria, fungi, actinomycete, and yeast. When compared to the physical, chemical, and biological approaches for obtaining nanoparticles, the biological approach has significant advantages such as non-toxicity and environmental friendliness, which support their significant use in therapeutic applications. The bio-mediated, procured nanoparticles not only help researchers but also manipulate particles to provide health and safety. In addition, we examined the significant biomedical applications of nanoparticles, such as antibacterial, antifungal, antiviral, anti-inflammatory, antidiabetic, antioxidant, and other medical applications. This review highlights the findings of current research on the bio-mediated acquisition of novel NPs and scrutinizes the various methods proposed to describe them. The bio-mediated synthesis of NPs from plant extracts has several advantages, including bioavailability, environmental friendliness, and low cost. Researchers have sequenced the analysis of the biochemical mechanisms and enzyme reactions of bio-mediated acquisition as well as the determination of the bioactive compounds mediated by nanoparticle acquisition. This review is primarily concerned with collating research from researchers from a variety of disciplines that frequently provides new clarifications to serious problems.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Kattakgoundar Govindaraj Sudha
- Department of Biotechnology, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India
| | - Saheb Ali
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
5
|
Patowary R, Devi A, Mukherjee AK. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:74459-74484. [PMID: 37219770 PMCID: PMC10204040 DOI: 10.1007/s11356-023-27698-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India.
| |
Collapse
|
6
|
Sampath S, Madhavan Y, Muralidharan M, Sunderam V, Lawrance AV, Muthupandian S. A review on algal mediated synthesis of metal and metal oxide nanoparticles and their emerging biomedical potential. J Biotechnol 2022; 360:92-109. [DOI: 10.1016/j.jbiotec.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
7
|
Choudhary S, Sangela V, Saxena P, Saharan V, Pugazhendhi A, Harish. Recent progress in algae-mediated silver nanoparticle synthesis. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, Ahmad I, Devkota HP. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol 2022; 86:693-705. [PMID: 34118405 DOI: 10.1016/j.semcancer.2021.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/27/2023]
Abstract
Past few years have seen a paradigm shift towards ecofriendly, green and biological fabrication of metal nanoparticles (MNPs) for diverse nanomedicinal applications especially in cancer nanotheranostics. Besides, the well-known green synthesis methods of plant materials, the potential of the microbial world (bacteria, fungi, alga, etc.) in biofabrication is equally realized. Biomolecules and enzymes in the microbial cells are capable of catalyzing the biosynthesis process. These microbial derived inorganic nanoparticles have been frequently evaluated as potential agents in cancer therapies revealing exciting results. Through, cellular and molecular pathways, these microbial derived nanoparticles are capable of killing the cancer cells. Considering the recent developments in the anticancer applications of microbial derived inorganic MNPs, a dire need was felt to bring the available information to a single document. This manuscript reviews not only the mechanistic aspects of the microbial derived MNPs but also include the diverse mechanisms that governs their anticancer potential. Besides, an updated literature review is presented that includes studies of 2019-onwards.
Collapse
Affiliation(s)
- Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Javed Iqbal
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Arbab Ali
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan.
| | | | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Hari Parsad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
9
|
Bora KA, Hashmi S, Zulfiqar F, Abideen Z, Ali H, Siddiqui ZS, Siddique KHM. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:999505. [PMID: 36262650 PMCID: PMC9574372 DOI: 10.3389/fpls.2022.999505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.
Collapse
Affiliation(s)
- Kainat Amin Bora
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
| | - Saud Hashmi
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Haibat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | | | | |
Collapse
|
10
|
Alahmad A, Al-Zereini WA, Hijazin TJ, Al-Madanat OY, Alghoraibi I, Al-Qaralleh O, Al-Qaraleh S, Feldhoff A, Walter JG, Scheper T. Green Synthesis of Silver Nanoparticles Using Hypericum perforatum L. Aqueous Extract with the Evaluation of Its Antibacterial Activity against Clinical and Food Pathogens. Pharmaceutics 2022; 14:pharmaceutics14051104. [PMID: 35631691 PMCID: PMC9144328 DOI: 10.3390/pharmaceutics14051104] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The rapid development of nanotechnology and its applications in medicine has provided the perfect solution against a wide range of different microbes, especially antibiotic-resistant ones. In this study, a one-step approach was used in preparing silver nanoparticles (AgNPs) by mixing silver nitrate with hot Hypericum perforatum (St. John’s wort) aqueous extract under high stirring to prevent agglomeration. The formation of silver nanoparticles was monitored by continuous measurement of the surface plasma resonance spectra (UV-VIS). The effect of St. John’s wort aqueous extract on the formation of silver nanoparticles was evaluated and fully characterized by using different physicochemical techniques. The obtained silver nanoparticles were spherical, monodisperse, face-centered cubic (fcc) crystal structures, and the size ranges between 20 to 40 nm. They were covered with a capping layer of organic compounds considered as a nano dimension protective layer that prevents agglomeration and sedimentation. AgNPs revealed antibacterial activity against both tested Gram-positive and Gram-negative bacterial strains causing the formation of 13–32 mm inhibition zones with MIC 6.25–12.5 µg/mL; Escherichia coli strains were resistant to tested AgNPs. The specific growth rate of S. aureus was significantly reduced due to tested AgNPs at concentrations ≥½ MIC. AgNPs did not affect wound migration in fibroblast cell lines compared to control. Our results highlighted the potential use of AgNPs capped with plant extracts in the pharmaceutical and food industries to control bacterial pathogens’ growth; however, further studies are required to confirm their wound healing capability and their health impact must be critically evaluated.
Collapse
Affiliation(s)
- Abdalrahim Alahmad
- Institut für Technische Chemie, Leibniz Universität Hannove, Callinstraße 5, 30167 Hannover, Germany; (J.-G.W.); (T.S.)
- Correspondence: or (A.A.); (W.A.A.-Z.); (O.Y.A.-M.); Tel.: +49-511-7622773 (A.A.); +962-3-2372380 (W.A.A.-Z. & O.Y.A.-M.)
| | - Wael A. Al-Zereini
- Department of Biological Sciences, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan; (T.J.H.); (O.A.-Q.)
- Correspondence: or (A.A.); (W.A.A.-Z.); (O.Y.A.-M.); Tel.: +49-511-7622773 (A.A.); +962-3-2372380 (W.A.A.-Z. & O.Y.A.-M.)
| | - Tahani J. Hijazin
- Department of Biological Sciences, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan; (T.J.H.); (O.A.-Q.)
| | - Osama Y. Al-Madanat
- Department of Chemistry, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan
- Correspondence: or (A.A.); (W.A.A.-Z.); (O.Y.A.-M.); Tel.: +49-511-7622773 (A.A.); +962-3-2372380 (W.A.A.-Z. & O.Y.A.-M.)
| | - Ibrahim Alghoraibi
- Physics Department, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria;
| | - Omar Al-Qaralleh
- Department of Biological Sciences, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan; (T.J.H.); (O.A.-Q.)
| | - Samer Al-Qaraleh
- Faculty of Medicine, Mutah University, P.O. Box 7, Mutah 61710, Jordan;
| | - Armin Feldhoff
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannove, Callinstraße 3A, 30167 Hannover, Germany;
| | - Johanna-Gabriela Walter
- Institut für Technische Chemie, Leibniz Universität Hannove, Callinstraße 5, 30167 Hannover, Germany; (J.-G.W.); (T.S.)
| | - Thomas Scheper
- Institut für Technische Chemie, Leibniz Universität Hannove, Callinstraße 5, 30167 Hannover, Germany; (J.-G.W.); (T.S.)
| |
Collapse
|
11
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
12
|
Ebrahimi A, Samari F, Eftekhar E, Yousefinejad S. Rapid and efficient colorimetric sensing of clindamycin and Fe3+ using controllable phyto-synthesized silver/silver chloride nanoparticles by Syzygium cumini fruit extract. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00318-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
The first evidence of a green, single-step, and additive-free process for the fabrication of silver/silver chloride nanoparticles (Ag/AgCl NPs) by fruit extract of Syzygium cumini (S. cumini) without the usage of any stabilizer and halide source was provided. The formation of nanoparticles was optimized to control the shape, size, and stability via various pHs of the reaction mixture, the quantity of fruit extract, temperature, concentrations of silver ion, and reaction time. The optimal conditions were determined: pH = 7.0, the quantity of the leaf extract = 3.0 mL, silver ion concentration = 1.0 mM, temperature = 60 °C, and incubation time = 40 min. As an application in colorimetric sensing, the ability of the prepared Ag/AgCl NPs to sense clindamycin and Fe3+ ion in an aqueous medium was investigated. The SPR band and color of the solution of Ag/AgCl NPs undergo dramatic changes in exposure to clindamycin with new SPR peaks appearing at 500 nm, accompanied by a color change from yellow to pink due to the aggregation of NPs. Under the optimized pH of 3.0, this sensor was shown a linear dynamic range from 10.0 to 100.0 µM with a LOD of 1.2 µM and good linear relationships (R2 = 0.99) for clindamycin. On the other hand, the quenching of the SPR peak at 412 nm was used to monitor the Fe3+ ions with wide linear ranges of 10.0–350.0 µM under the optimized pH (pH = 9) with a LOD of 5.6 µM. In addition, the proposed sensor displayed applicability in the real sample containing clindamycin (in capsules and injection ampoules) and Fe3+ ions (in water samples) detection.
Graphical Abstract
Collapse
|
13
|
Kashid Y, Ghotekar S, Bilal M, Pansambal S, Oza R, Varma RS, Nguyen VH, Ananda Murthy H, Mane D. Bio-inspired sustainable synthesis of silver chloride nanoparticles and their prominent applications. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
High-Throughput Fabrication of Antibacterial Starch/PBAT/AgNPs@SiO 2 Films for Food Packaging. NANOMATERIALS 2021; 11:nano11113062. [PMID: 34835826 PMCID: PMC8625267 DOI: 10.3390/nano11113062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
In this current work, antimicrobial films based on starch, poly(butylene adipate-co-terephthalate) (PBAT), and a commercially available AgNPs@SiO2 antibacterial composite particle product were produced by using a melt blending and blowing technique. The effects of AgNPs@SiO2 at various loadings (0, 1, 2, 3, and 4 wt%) on the physicochemical properties and antibacterial activities of starch/PBAT composite films were investigated. AgNPs@SiO2 particles were more compatible with starch than PBAT, resulting in preferential distribution of AgNPs@SiO2 in the starch phase. Infusion of starch/PBAT composite films with AgNPs@SiO2 marginally improved mechanical and water vapor barrier properties, while surface hydrophobicity increased as compared with films without AgNPs@SiO2. The composite films displayed superior antibacterial activities against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The sample loaded with 1 wt% AgNPs@SiO2 (SPA-1) showed nearly 90% inhibition efficiency on the tested microorganisms. Furthermore, a preliminary study on peach and nectarine at 53% RH and 24 °C revealed that SPA-1 film inhibited microbial spoilage and extended the product shelf life as compared with SPA-0 and commercial LDPE packaging materials. The high-throughput production method and strong antibacterial activities of the starch/PBAT/AgNPs@SiO2 composite films make them promising as antimicrobial packaging materials for commercial application.
Collapse
|
16
|
Smita KM, Abraham LS, Kumar VG, Vasantharaja R, Thirugnanasambandam R, Antony A, Govindaraju K, Velan TS. Biosynthesis of reduced graphene oxide using Turbinaria ornata and its cytotoxic effect on MCF-7 cells. IET Nanobiotechnol 2021; 15:455-464. [PMID: 34694710 PMCID: PMC8675839 DOI: 10.1049/nbt2.12057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/14/2021] [Accepted: 04/16/2021] [Indexed: 12/05/2022] Open
Abstract
Graphene‐based nanomaterials are gaining importance in biomedicine because of their large surface areas, solubility, and biocompatibility. Green synthesis is the most economical method for application, as it is rapid and sustainable. Biofunctionalized reduced graphene oxide (TrGO) nanosheets were synthesized using methanol extract of Turbinaria ornata, and bioreduction of graphene oxide was primarily confirmed and characterized using UV‐visible, Fourier transform infrared (FTIR), and X‐ray diffraction spectroscopy and further characterized by zeta potential and transmission electron microscopy. The FTIR spectra of TrGO showed a decrease in the band intensities of oxygen groups, thus confirming effective deoxygenation. The zeta potential value of −34.6 mV revealed that synthesized TrGO was highly stable. The cytotoxic effect of TrGO against MCF‐10A and MCF‐7 cells was ascertained using MTT assay, showed a greater cytotoxic effect on MCF‐7 cells. The IC50 of TrGO treatment against MCF‐7 was calculated to be 31.25 µg, which is onefold lower than the cytotoxic effect of methanolic extract of T. ornata (60.0 ± 1.14 µg/ml). In addition, there was a statistically significant difference in cell viability between MCF‐10A and MCF‐7 cells in the treatment of TrGO. Hence, this study results in an efficient green reductant for producing rGO nanosheets that possess cytotoxicity against breast cancer cells.
Collapse
Affiliation(s)
- K M Smita
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - L Stanley Abraham
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - V Ganesh Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - Raguraman Vasantharaja
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - R Thirugnanasambandam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - Ajit Antony
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - K Govindaraju
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| | - T Senthil Velan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India
| |
Collapse
|
17
|
Li SN, Wang R, Ho SH. Algae-mediated biosystems for metallic nanoparticle production: From synthetic mechanisms to aquatic environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126625. [PMID: 34329084 DOI: 10.1016/j.jhazmat.2021.126625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Driven by the growing impetus of green chemistry and environmental protection, the use of bio-based systems to produce green metallic nanomaterials used for environmental remediation has thus developed urgently. It is proposed that using algae as a living cell factory or algal extract as a natural reducing agent is a green and clean way to efficiently synthesize various metallic nanomaterials. However, studies on algal-based biological synthesis of metallic nanomaterials and their applications towards removal of toxic pollutants from wastewater are still limited, which largely discourage the sustainability. Herein, this review aims to introduce the recent advances on algae-mediated nanomaterial-producing biosystems. The corresponding synthetic mechanisms, operation parameters, and case studies on various algae-synthesized metallic nanoparticles are comprehensively discussed and summarized. More importantly, the applicability of algae-synthesized metallic nanoparticles on water treatment is introduced in-depth. To improve economic viability, the challenges and future perspectives are also considered. Taken together, this review systematically presents the achievements and current progress of algae-mediated metallic nanoparticle biosynthesis towards the aquatic pollutants treatment, which can provide new insights on promoting the algae-based nanomaterial production yield and environmental application potential.
Collapse
Affiliation(s)
- Sheng-Nan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
18
|
Rajeshkumar S, Nandhini N, Manjunath K, Sivaperumal P, Krishna Prasad G, Alotaibi SS, Roopan SM. Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS One 2021; 16:e0256748. [PMID: 34473763 PMCID: PMC8412375 DOI: 10.1371/journal.pone.0256748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
Rising incidents of urinary tract infections (UTIs) among catheterized patients is a noteworthy problem in clinic due to their colonization of uropathogens on abiotic surfaces. Herein, we have examined the surface modification of urinary catheter by embedding with eco-friendly synthesized phytomolecules-capped silver nanoparticles (AgNPs) to prevent the invasion and colonization of uropathogens. The preliminary confirmation of AgNPs production in the reaction mixture was witnessed by the colour change and surface resonance plasmon (SRP) band at 410nm by UV–visible spectroscopy. The morphology, size, crystalline nature, and elemental composition of attained AgNPs were further confirmed by the transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) technique, Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The functional groups of AgNPs with stabilization/capped phytochemicals were detected by Fourier-transform infrared spectroscopy (FTIR). Further, antibiofilm activity of synthesized AgNPs against biofilm producers such as Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were determined by viability assays and micrographically. AgNPs coated and coating-free catheters performed to treat with bacterial pathogen to analyze the mat formation and disruption of biofilm formation. Synergistic effect of AgNPs with antibiotic reveals that it can enhance the activity of antibiotics, AgNPs coated catheter revealed that, it has potential antimicrobial activity and antibiofilm activity. In summary, C. carandas leaf extract mediated synthesized AgNPs will open a new avenue and a promising template to embed on urinary catheter to control clinical pathogens.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Velmurugan Palanivel
- Centre for for Material Engineering and Regenerative Medicine Bharath Institute of Higher Education, Chennai, India
- * E-mail: (SM); (VP)
| | | | - Ragul Paramasivam
- Chimertech Innovations LLP, Tamilnadu Veterinary and Animal Science University, Chennai, India
| | - Saravanan Muthupandian
- Division of Biomedical sciences, College of Health Sciences, School of Medicine, Mekelle, Ethiopia
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- * E-mail: (SM); (VP)
| |
Collapse
|
20
|
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021; 11:886. [PMID: 34203733 PMCID: PMC8246319 DOI: 10.3390/biom11060886] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nano-sized particles/structures (~100 nm) having a high surface-to-volume ratio that can modulate the physical, chemical and biological properties of the chemical compositions. In last few decades, nanoscience has attracted the attention of the scientific community worldwide due to its potential uses in the pharmacy, medical diagnostics and disease treatment, energy, electronics, agriculture, chemical and space industries. The properties of nanoparticles (NPs) are size and shape dependent. These characteristic features of nanoparticles can be explored for various other applications such as computer transistors, chemical sensors, electrometers, memory schemes, reusable catalysts, biosensing, antimicrobial activity, nanocomposites, medical imaging, tumor detection and drug delivery. Therefore, synthesizing nanoparticles of desired size, structure, monodispersity and morphology is crucial for the aforementioned applications. Recent advancements in nanotechnology aim at the synthesis of nanoparticles/materials using reliable, innoxious and novel ecofriendly techniques. In contrast to the traditional methods, the biosynthesis of nanoparticles of a desired nature and structure using the microbial machinery is not only quicker and safer but more environmentally friendly. Various microbes, including bacteria, actinobacteria, fungi, yeast, microalgae and viruses, have recently been explored for the synthesis of metal, metal oxide and other important NPs through intracellular and extracellular processes. Some bacteria and microalgae possess specific potential to fabricate distinctive nanomaterials such as exopolysaccharides, nanocellulose, nanoplates and nanowires. Moreover, their ability to synthesize nanoparticles can be enhanced using genetic engineering approaches. Thus, the use of microorganisms for synthesis of nanoparticles is unique and has a promising future. The present review provides explicit information on different strategies for the synthesis of nanoparticles using microbial cells; their applications in bioremediation, agriculture, medicine and diagnostics; and their future prospects.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anil Kumar Poonia
- Centre for Plant Biotechnology, CCSHAU, Hisar 125004, Haryana, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
21
|
Phytochemical mediated synthesis of silver nanoparticles and their antibacterial activity. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn this present work, we described a bio-reduction method for the generation of silver nanoparticles (AgNPs) using aqueous leaf extract of Micrargeria wightii (M. wightii), which is a gifted alternative to other physicochemical routes. The prepared AgNPs were characterized by UV–visible spectroscopy (UV–vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (X-RD), Transmission Electron Microscopy (TEM) with EDX and Dynamic light scattering (DLS). UV–visible spectrum showed a characteristic absorption peak at 440 nm of synthesized AgNPs. FT-IR analysis confirmed the existence of plant metabolites, which are responsible for the reduction of Ag (I) ions into Ag (0) NPs. X-RD pattern studies confirm the presence of the pure face-centered cubiccrystalline nature of Ag. Energy-dispersive X-ray (E-DX) spectrum showed the elemental composition of synthesized nanoparticles. Furthermore, TEM images confirm the formation of spherical shaped nano-silver particles with sizes ranging from 30 to 70 nm and supported by particle size analyzer, Dynamic Light Scattering (DLS). Thus, the present investigation provides an easy, eco-friendly and straightforward route for the synthesis of the antibacterial agent against Bacillus subtilis subtilis and Pseudomonas aeruginosa, with 15 and 13 mm zone of inhibition (ZOI) respectively.
Collapse
|
22
|
Bacteria-Mediated Synthesis of Silver and Silver Chloride Nanoparticles and Their Antimicrobial Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the frame of this work, the synthesis of silver nanoparticles (Ag NPs) and silver chloride nanoparticles (AgCl NPs) as mediated by microbes has been investigated. The nanoparticles were reduced from a silver nitrate precursor by the presence of bacteria, like Raoultella planticola and Pantoea agglomerans. The results show that the characteristic surface plasmon resonance absorption band occurs at about 440 nm. Nanoparticles were also characterized with the help of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD), which showed the formation of spherical Ag/AgCl NPs with a centered cubic crystal structure and a mean particle size of around 10–50 nm. Assays for antimicrobial activity of the biosynthesized nanoparticles demonstrated meaningful results against microorganisms such as Staphylococcus aureus, Streptococcus pyogenes, Salmonella, and Bacillus amyloliquefaciens. Furthermore, this study shows that the combination of the obtained nanoparticles with standard antibiotics may be useful in the fight against emerging microbial drug resistance.
Collapse
|
23
|
Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids Surf B Biointerfaces 2021; 202:111675. [PMID: 33690064 DOI: 10.1016/j.colsurfb.2021.111675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
The emergence of antibiotic resistant bacteria requires for the development of new antimicrobial compounds one of which colloidal silver (CS) having strong bactericidal properties and being the most promising inorganic nanoparticles for the treatment of bacterial infectious diseases. However, their production can be slow and cumbersome. Here, we used Corymbia maculata aqueous leaf extract as a reducing agent to synthesize CS in a single 15-minute process. CS was physico-chemically characterized for shape, size, zeta potential and stability. The Minimal Inhibitory Concentration (MIC) and Minimum Biofilm Eradication Concentration (MBEC) of CS against planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA, n = 5), Pseudomonas aeruginosa (n = 5), Haemophilus influenzae (n = 5) and Streptococcus pneumoniae (n = 3) chronic rhinosinusitis clinical isolates were investigated using the microdilution method and resazurin assay, respectively. The in vitro cytotoxicity on bronchial epithelial cells (Nuli-1) was analyzed by the crystal violet proliferation assay. The safety and efficacy of CS was evaluated in an in vivo infection model in Caenorhabditis elegans. CS was spherical in shape with a diameter of between 11-16 nm (TEM analysis) in dried form and 40 nm (NanoSight) in colloidal form and was stable at room temperature and 4 °C for one year. Average MIC and MBEC values varied between 11 and 44 ppm for MRSA, H. influenzae and S. pneumoniae and between 0.2 and 3 ppm for P. aeruginosa. CS was not toxic to Nuli-1 cells or C. elegans at concentrations of 44 ppm and reduced the Colony Forming Units counts by 96.9 % and 99.6 % in C. elegans for MRSA and P. aeruginosa, respectively. In conclusion, a novel, green synthesis of stable CS is demonstrated with good safety and efficacy profiles, particularly against P. aeruginosa in planktonic and biofilm forms. These CS have potential applications against clinical infections, including in the context of CRS.
Collapse
|
24
|
Rajagopal G, Manivannan N, Sundararajan M, Kumar AG, Senthilkumar S, Mathivanan N, Ilango S. Biocompatibility assessment of silver chloride nanoparticles derived from Padina gymnospora and its therapeutic potential. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abd965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The objective of the present work was to improve the biological activity of Padina gymnospora. In the current study, silver chloride nanoparticles have been synthesized using the aqueous extract of Padina gymnospora and further characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, x-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy and atomic force microscope. Further, the hemolytic activity and eco-toxicity of silver chloride nanoparticles analyzed. The synthesized silver chloride nanoparticles were found to be mono-dispersed and spherical with an average size of 11.5–32.86 nm. The particles showed an anticancer effect in a dose-dependent manner against breast cancer cell line (MCF-7 cell lines) (IC50 = 31.37 μg ml−1). In addition, it showed the larvicidal activity against Aedes aegypti at a lower dose (3.92 μg ml−1) than that of the aqueous extract (13.01 μg ml−1). Nanoparticles also exhibited greater antimicrobial activity for both bacterial and fungal pathogens. The synthesized silver chloride nanoparticles showed a maximum zone of inhibition, i.e., 31 mm for Candida albicans followed and 27 mm for vancomycin resistance Enterococcus faecalis.The results suggest the possible use of synthesized silver nanoparticles with P. gymnospora as therapeutic agent for breast cancer, dengue vector control and as antimicrobial agent.
Collapse
|
25
|
Kureshi AA, Vaghela HM, Kumar S, Singh R, Kumari P. Green Synthesis of Gold Nanoparticles Mediated by Garcinia Fruits andTheir Biological Applications. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Green synthesis of gold nanoparticles (AuNPs) using medicinal plant extract is an emerging area of research due to their applicability in nanomedicines. Methods: In this study, aqueous extracts prepared from fruit-pericarps of two Garcinia species, G. indica (GI) and G. cambogia (GC) fruits which are important medicinally and commercially have been utilized for the synthesis of AuNPs. Various analytical techniques were utilized to characterize the synthesized AuNPs. The synthesized AuNPs were investigated for their biological properties such as antioxidant activity using the (2,2-diphenyl-1-picrylhydrazyl) DPPH model, cytotoxicity against MCF-7 (breast) cancer cell line, and antibacterial activity against two bacterial strains viz. B. subtilis and E. coli. Results: The absorption peak of the AuNPs is observed at 541 nm using UV–Visible spectroscopy. The high resolution – scanning electron microscopy images showed spherical with a triangular shape AuNPs and their average sizes were ranging from 2 – 10 nm and it was found to be in good agreement with the particle size of 8 – 11 nm determined using X-ray diffraction analysis. Fourier-transform infrared spectroscopy revealed that water-soluble biomolecules from the aqueous extracts of the Garcinia species played a crucial role in the formation of AuNPs. The synthesized AuNPs exhibited considerable cytotoxicity with IC50 values 34.55 µg/ml (GI) and 35.69 µg/ml (GC) against the MCF-7 cancer cell line. Furthermore, synthesized AuNPs also demonstrated significant antioxidant and antibacterial properties comparable to the standards used. Conclusion: AuNPs have been synthesized using a simple green approach. The synthesized AuNPs demonstrated promising cytotoxicity, antioxidant, and antibacterial properties.
Collapse
Affiliation(s)
- Azazahemad A Kureshi
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, India
- Organic Chemistry, Directorate of Medicinal and Aromatic Plants Research, Anand - 387310, India
| | - Hiral M Vaghela
- Department of Chemistry, Government Science College, Gandhinagar - 382016, India
| | - Satyanshu Kumar
- Organic Chemistry, Directorate of Medicinal and Aromatic Plants Research, Anand - 387310, India
| | - Raghuraj Singh
- Organic Chemistry, Directorate of Medicinal and Aromatic Plants Research, Anand - 387310, India
| | - Premlata Kumari
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, India
| |
Collapse
|
26
|
Synthesis of Ag-AgCl nanoparticles capped by calix[4]resorcinarene-mPEG conjugate and their antimicrobial activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Silva A, Silva SA, Carpena M, Garcia-Oliveira P, Gullón P, Barroso MF, Prieto M, Simal-Gandara J. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics (Basel) 2020; 9:E642. [PMID: 32992802 PMCID: PMC7601383 DOI: 10.3390/antibiotics9100642] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Macroalgae play a special role in the pursuit of new active molecules as they have been traditionally consumed and are known for their chemical and nutritional composition and their biological properties, including antimicrobial activity. Among the bioactive molecules of algae, proteins and peptides, polysaccharides, polyphenols, polyunsaturated fatty acids and pigments can be highlighted. However, for the complete obtaining and incorporation of these molecules, it is essential to achieve easy, profitable and sustainable recovery of these compounds. For this purpose, novel liquid-liquid and solid-liquid extraction techniques have been studied, such as supercritical, ultrasound, microwave, enzymatic, high pressure, accelerated solvent and intensity pulsed electric fields extraction techniques. Moreover, different applications have been proposed for these compounds, such as preservatives in the food or cosmetic industries, as antibiotics in the pharmaceutical industry, as antibiofilm, antifouling, coating in active packaging, prebiotics or in nanoparticles. This review presents the main antimicrobial potential of macroalgae, their specific bioactive compounds and novel green extraction technologies to efficiently extract them, with emphasis on the antibacterial and antifungal data and their applications.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal;
| | - Sofia A. Silva
- Departamento de Química, Universidade de Aveiro, 3810-168 Aveiro, Portugal;
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - P. Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| | - M. Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal;
| | - M.A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.S.); (M.C.); (P.G.-O.); (P.G.)
| |
Collapse
|
28
|
Das CA, Kumar VG, Dhas TS, Karthick V, Govindaraju K, Joselin JM, Baalamurugan J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101593] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Pasaribu SP, Ginting M, Masmur I, Kaban J, Hestina. Silver chloride nanoparticles embedded in self-healing hydrogels with biocompatible and antibacterial properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Dhas TS, Sowmiya P, Kumar VG, Ravi M, Suthindhiran K, Borgio JF, Narendrakumar G, Kumar VR, Karthick V, Kumar CV. Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Srasra E, Bekri-Abbes I. Bentonite Clays for Therapeutic Purposes and Biomaterial Design. Curr Pharm Des 2020; 26:642-649. [DOI: 10.2174/1381612826666200203144034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Background:Bentonite is a natural clay composed mainly of montmorillonite with other associated minerals such as feldspar, calcite and quartz. Owing to its high cation exchange, large surface area and ability to form thixotropic gels with water and to absorb large quantities of gas, it presents a large medicinal application.Objective:This review focuses on the promising potential of bentonite clays for biomaterial design and for therapeutic purposes.Methods:PubMed, ACS publications and Elsevier were searched for relevant papers. We have also evaluated the references of some pertinent articles.Results:Healing properties of bentonite are derived from the crystalline structure of the smectite group, which is composed of two octahedral alumina sheets localized between two tetrahedral silica sheets. This structure is behind the ability to intercalate cationic bioactive agents and undergoes interaction with various toxic species and exchanging in return species such as Fe3+, Cu2+, Al3+ Ca2+ or Na+, presenting antibacterial activity and providing essential minerals to the body. Furthermore, due to to its layered structure, bentonite has wide application for the design of biomaterials providing, thus, the stability of bioactive agents and preventing them from aggregation.Conclusion:Numerous publications have cited bentonite extensive applications as an alternative and complementary treatment for numerous health conditions as a detoxifying agent and for the preparation of several bionanocomposites.
Collapse
Affiliation(s)
- Ezzeddine Srasra
- Laboratory of Composite Materials and Clay Minerals National Center of Material Sciences, Technopole of Borj Cedria, Soliman, Tunisia
| | - Imene Bekri-Abbes
- Laboratory of Composite Materials and Clay Minerals National Center of Material Sciences, Technopole of Borj Cedria, Soliman, Tunisia
| |
Collapse
|
32
|
Bhangi BK, Ray SK. Nano silver chloride and alginate incorporated composite copolymer adsorbent for adsorption of a synthetic dye from water in a fixed bed column and its photocatalytic reduction. Int J Biol Macromol 2020; 144:801-812. [DOI: 10.1016/j.ijbiomac.2019.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
|
33
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
El-Maghrabey M, El-Shaheny R, Belal F, Kishikawa N, Kuroda N. Green Sensors for Environmental Contaminants. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-45116-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Chromolaena odorata extract as a green agent for the synthesis of Ag@AgCl nanoparticles inactivating bacterial pathogens. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01033-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Karimi S, Samimi T. Green and simple synthesis route of Ag@AgCl nanomaterial using green marine crude extract and its application for sensitive and selective determination of mercury. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117216. [PMID: 31176158 DOI: 10.1016/j.saa.2019.117216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Advanced exploitation in the green synthesis of nanomaterials has received considerable attention in the recent years. So that, an eco-friendly approach is proposed for the synthesis of silver‑silver chloride nanoparticles (Ag@AgCl-NPs) which does not require any external reducing & capping agents, organic solvent and external halide sources using an aqueous extract green marine alga (Chaetomorpha sp).In order to characterize the formation of Ag@AgCl-NPs, several instruments including UV-vis, FTIR, HR-TEM, EDS mapping, XRD, XPS, SAED and DLS were used. On the other hands, although numerous methods have been reported for the analysis of toxic Hg2+ in drinking water, development of simple, rapid, inexpensive, selective and sensitive sensors still remains a great challenge. Herein, the colorimetric sensor studies of this green synthesized Ag@AgCl-NPs showed an interesting feature for sensing of hazardous Hg2+ in water. The colorimetric assay is based on the concentration - dependent degradation of as-prepared Ag@AgCl-NPs in the presence of Hg2+. The detection limit of this affordable assay is 4.19 nM which is below the defined value by china agency and more importantly is below the defined by the U.S. Environmental Protection Agency for drinkable water.
Collapse
Affiliation(s)
- Sadegh Karimi
- Department of Chemistry, College of Science, Persian Gulf University, Bushehr, Iran; Oil and Gas Reserach center, Persian Gulf University, Bushehr, 75169, Iran.
| | - Tayebeh Samimi
- Department of Chemistry, College of Science, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
37
|
Muthamil Selvan S, Vijai Anand K, Govindaraju K, Tamilselvan S, Kumar VG, Subramanian KS, Kannan M, Raja K. Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnol 2019; 12:1042-1046. [PMID: 30964011 DOI: 10.1049/iet-nbt.2018.5083] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the present study, high purity copper oxide nanoparticles (NPs) were synthesised using Tridax procumbens leaf extract. Green syntheses of nano-mosquitocides rely on plant compounds as reducing and stabilising agents. Copper oxide NPs were characterised using X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR), Field-emission scanning electron microscopy with energy dispersive spectroscopy, Ultraviolet-visible spectrophotometry and fluorescence spectroscopy. XRD studies of the NPs indicate crystalline nature which was perfectly matching with a monoclinic structure of bulk CuO with an average crystallite size of 16 nm. Formation of copper oxide NPs was confirmed by FT-IR studies and photoluminescence spectra with emission peaks at 331, 411 and 433 nm were assigned to a near-band-edge emission band of CuO in the UV, violet and blue region. Gas chromatography-mass spectrometry studies inferred the phytochemical constituents of the leaf extract. Larvicidal activity of synthesised NPs using T. procumbens leaf extract was tested against Aedes aegypti species (dengue, chikungunya, zika and yellow fever transmit vector).
Collapse
Affiliation(s)
- Sekaran Muthamil Selvan
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - Kasivelu Govindaraju
- Nanoscience Division, Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Selvaraj Tamilselvan
- Nanoscience Division, Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Vijayakumar Ganesh Kumar
- Nanoscience Division, Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | | | - Malaisamy Kannan
- Department of Nanoscience and Technology, Tamilnadu Agricultural University, Coimbatore 641 003, India
| | - Kalimuthu Raja
- Department of Nanoscience and Technology, Tamilnadu Agricultural University, Coimbatore 641 003, India
| |
Collapse
|
38
|
Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 2019; 163:105656. [PMID: 31220512 DOI: 10.1016/j.mimet.2019.105656] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Nanomaterials (NMs) tailored via conventional physicochemical routes play havoc with the environment that has led to the evolution of competent green routes for the actualization of a circular economy on an industrial-scale. Algae belonging to the class Cyanophyceae, Chlorophyceae, Phaeophyceae and Rhodophyceae have been harnessed as nano-machineries through intracellular and extracellular synthesis of gold (Au), silver (Ag) and several other metallic nanoparticles. Algae are an appealing platform for the production of diverse NMs, primarily due to the presence of bioactive compounds such as pigments and antioxidants in their cell extracts that act as biocompatible reductants. Chlorella spp. and Sargassum spp. have been extensively explored for the synthesis of nanoparticles having antimicrobial properties, which can potentially substitute conventional antibiotics. Characterization of nanoparticles (NPs) synthesised from algae has been done using advanced spectroscopic, diffractographic and microscopic techniques such as UV-Vis FT-IR, DLS, XPS, XRD, SEM, TEM, AFM, HR-TEM, and EDAX. The present paper reviews the information available on algae-mediated biosynthesis of various NPs, their characterization and applications in different domains.
Collapse
Affiliation(s)
- Prerna Khanna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India
| | - Amrit Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India.
| |
Collapse
|
39
|
Sahayaraj K, Rajesh S, Rathi JAM, Kumar V. Green preparation of seaweed-based silver nano-liquid for cotton pathogenic fungi management. IET Nanobiotechnol 2019; 13:219-225. [PMID: 31051454 DOI: 10.1049/iet-nbt.2018.5007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop-damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm-1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm-1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy-dispersive X-ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml-1 against FOV and XAM, respectively. Results confirmed the anti-microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.
Collapse
Affiliation(s)
- Kitherian Sahayaraj
- Crop Protection Research Centre, St. Xavier's College (Autonomous), Palayamkottai - 627002, Tamil Nadu, India.
| | - Sathyamourthy Rajesh
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | | | - Vivek Kumar
- University of Florida, Mid-Florida Research and Education Center, 2725 S. BinionRoad, Apopka, FL 32703, USA
| |
Collapse
|
40
|
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 2019; 9:12944-12967. [PMID: 35520790 PMCID: PMC9064032 DOI: 10.1039/c8ra10483b] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metal nanoparticles have received great attention from researchers across the world because of a plethora of applications in agriculture and the biomedical field as antioxidants and antimicrobial compounds. Over the past few years, green nanotechnology has emerged as a significant approach for the synthesis and fabrication of metal nanoparticles. This green route employs various reducing and stabilizing agents from biological resources for the synthesis of nanoparticles. The present article aims to review the progress made in recent years on nanoparticle biosynthesis by microbes. These microbial resources include bacteria, fungi, yeast, algae and viruses. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as silver, gold, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide and cadmium sulphide. These nanoparticles can be used in pharmaceutical products as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, water electrolysis, waste water treatment, biosensors, biocatalysis, crop protection against pathogens, degradation of dyes etc. This review will discuss in detail various microbial modes of nanoparticles synthesis and the mechanism of their synthesis by various bioreducing agents such as enzymes, peptides, proteins, electron shuttle quinones and exopolysaccharides. A thorough understanding of the molecular mechanism of biosynthesis is the need of the hour to develop a technology for large scale production of bio-mediated nanoparticles. The present review also discusses the advantages of various microbial approaches in nanoparticles synthesis and lacuna involved in such processes. This review also highlights the recent milestones achieved on large scale production and future perspectives of nanoparticles.
Collapse
Affiliation(s)
- Geeta Gahlawat
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| |
Collapse
|
41
|
Lima MJA, Reis BF. Photogeneration of silver nanoparticles induced by UV radiation and their use as a sensor for the determination of chloride in fuel ethanol using a flow-batch system. Talanta 2019; 201:373-378. [PMID: 31122437 DOI: 10.1016/j.talanta.2019.03.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/26/2022]
Abstract
Photogeneration of silver chloride nanoparticles (AgCl-NPs) in fuel ethanol was used as a sensor for the spectrophotometric determination of chloride. A low-power UV radiation source (germicidal lamp) was placed close to a flow-batch chamber and a 3D-built support for the reaction chamber was used to couple fiber optic cables in the orthogonal direction with the UV-lamp beam, allowing the monitoring of nanoparticle formation in real-time using a spectrophotometer. The nanoparticles were characterized via high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis spectroscopy. Most of the particles exhibited a spherical shape with an average diameter of 18 nm. The absorbance maximum was observed at 440 nm and was used for chloride determination in fuel ethanol. Under the optimized working conditions, the system exhibited a linear response from 0.05 to 0.8 mg L-1 chloride, with a limit of detection (95%) and coefficient of variation (n = 8) were estimated to be 12 μg L-1 chloride and 2.2%, respectively. The intra- and inter-day precisions (coefficient of variation) were 2.4% and 2.8%, respectively. This working range (0.05-0.8 mg L-1) for the determination of chloride at low concentrations met the limit required by Brazilian legislation (limit of 1.0 mg kg-1). Analyses of fuel ethanol were performed without sample treatment and the obtained results were compared with those obtained by ion-chromatography. No significant differences were observed between the two methods at the 95% confidence level.
Collapse
Affiliation(s)
- Manoel J A Lima
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Boaventura F Reis
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil.
| |
Collapse
|
42
|
Medici S, Peana M, Nurchi VM, Zoroddu MA. Medical Uses of Silver: History, Myths, and Scientific Evidence. J Med Chem 2019; 62:5923-5943. [DOI: 10.1021/acs.jmedchem.8b01439] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Valeria M. Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | | |
Collapse
|
43
|
Martínez Y, Ayala L, Hurtado C, Más D, Rodríguez R. Effects of Dietary Supplementation with Red Algae Powder (Chondrus crispus) on Growth Performance, Carcass Traits, Lymphoid Organ Weights and Intestinal pH in Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - L Ayala
- Instituto de Ciencia Animal, Cuba
| | | | - D Más
- Universidad Autónoma de Querétaro, Mexico
| | | |
Collapse
|
44
|
Tong X, Guo N, Dang Z, Ren Q, Shen H. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize ( Zea mays L.). IET Nanobiotechnol 2018; 12:987-993. [PMID: 30247142 PMCID: PMC8676264 DOI: 10.1049/iet-nbt.2017.0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 08/02/2023] Open
Abstract
Nanoparticles (NPs), especially biosynthesised in living plants by absorbing soluble salts and reducing metal ions, are extensively used in various fields. This work aimed at investigating the in vivo biosynthesis of silver NPs (Ag-NPs) in maize and the spatial distribution of the NPs and some important nutrient elements in the plant. The content of silver in plant was examined by inductively coupled plasma-atomic emission spectrometer showing that Ag can be absorbed by plant as soluble salts. The NPs in different parts of maize plant were detected and analysed by transmission electron microscopy, demonstrating the synthesis of NPs and their transport from the root to the shoots. Two-dimensional proton induced X-ray emission of silver, chlorine and several nutrient elements elucidated the possible relationship between synthesis of NPs and several nutrient elements in plant tissues. To their knowledge, this is the first report of possibility of synthesis of Ag-NPs in living plants maize (Zea mays L.). This study presents direct evidence for synthesis of NPs and distribution of related nutrient elements in maize, which has great significance for studying synthetic application of NPs in crop plants.
Collapse
Affiliation(s)
- Xiaoli Tong
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Na Guo
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| | - Zhiyan Dang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Qingguang Ren
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China.
| | - Hao Shen
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Dixit D, Gangadharan D, Popat KM, Reddy CRK, Trivedi M, Gadhavi DK. Synthesis, characterization and application of green seaweed mediated silver nanoparticles (AgNPs) as antibacterial agents for water disinfection. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:235-246. [PMID: 30101806 DOI: 10.2166/wst.2018.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple and eco-friendly method for the synthesis of hybrid bead silver nanoparticles (AgNPs) employing the aqueous extract derived from natural and renewable source namely tropical benthic green seaweed Ulva flexuosa was developed. This route involves the reduction of Ag+ ions anchored onto macro porous methacrylic acid copolymer beads to AgNPs for employing them as antibacterial agents for in vitro water disinfection. The seaweed extract itself acts as a reducing and stabilizing agent and requires no additional surfactant or capping agent for forming the AgNPs. The nanoparticles were analyzed using high-resolution transmission electron microscopy, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy. The study elucidates that such biologically synthesized AgNPs exhibit potential antibacterial activity against two Gram positive (Bacillus subtilis, Staphylococcus aureus) and two Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains tested. The bacterial count in treated water was reduced to zero for all the strains. Atomic force microscopy was performed to confirm the pre- and post-state of the bacteria with reference to their treatment with AgNPs. Attributes like facile environment-friendly procedure, stability and high antibacterial potency propel the consideration of these AgNPs as promising antibacterial entities.
Collapse
Affiliation(s)
- D Dixit
- Department of Earth and Environmental Science, K.S.K.V. Kachchh University, Near Changleshwar Mahadev Temple, University Road, Bhuj 370001, Kachchh-Gujarat, India E-mail:
| | - D Gangadharan
- Department of Sciences, Amrita Vishwavidyapeetham University, Amritanagar, Ettimadai, Coimbatore, Tamil Nadu 641112, India
| | - K M Popat
- Membrane Science and Separation Technology Division, CSIR Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - C R K Reddy
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - M Trivedi
- Department of Earth and Environmental Science, K.S.K.V. Kachchh University, Near Changleshwar Mahadev Temple, University Road, Bhuj 370001, Kachchh-Gujarat, India E-mail:
| | - D K Gadhavi
- Kutch Ecological Research Centre - The Corbett Foundation, Khatau Makanji Bungalow, P.O. Tera, Taluka Abdasa, District Kachchh 370660, Gujarat, India
| |
Collapse
|
46
|
Synthesis of gold nanomaterials and their cancer-related biomedical applications: an update. 3 Biotech 2018; 8:113. [PMID: 29430374 DOI: 10.1007/s13205-018-1137-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, the advances in the synthesis of new types of nanomaterials have created several opportunities in drug delivery and targeted therapy applications. Among the various nanostructures, gold nanostructures with controllable physical and chemical properties have received attention for various biomedical uses, including sensing of biomolecules, in vitro and in vivo bioimaging (as advanced contrast agents for photothermal and bioimaging techniques), photothermolysis of cancer cells, and targeted drug delivery. The attractive properties of gold nanomaterials, particularly, anti-angiogenic properties, are highly useful in a variety of cancers studies. In addition, they can bind many proteins and drugs and can be actively targeted to cancer cells over-expressing cell surface receptors and they are biocompatible in nature with a high atomic number, which directs to greater absorption of kilovoltage X-rays and provides greater contrast than standard agents. In this review, we have summarized the synthesis, structure and functionalization of gold nanostructures, and their biomedical applications with special reference to cancer studies.
Collapse
|
47
|
Preparation of bismuth stannate/silver@silver chloride film samples with enhanced photocatalytic performance and self-cleaning ability. J Colloid Interface Sci 2017; 507:260-270. [PMID: 28802193 DOI: 10.1016/j.jcis.2017.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022]
Abstract
We report a novel technique to fabricate bismuth stannate/silver@silver chloride (Bi2Sn2O7/Ag@AgCl) films on conventional glass substrates. The film exhibited a remarkable self-cleaning capability against organic dyes under visible light. Porous Bi2Sn2O7 (BSO) film was first sintered on a glass substrate, followed by implantation of AgCl in it and photo-induction to produce Ag@AgCl. The degradation of organic dyes and photoelectrochemical studies indicate that, compared with BSO film, Bi2Sn2O7/Ag@AgCl film had a much improved photocatalytic ability, probably due to the enhanced electron transfer efficiency and synergistic effect of visible light absorption of the two semiconductors. The possible mechanism of this marked improvement was investigated and interpreted in terms of electrons and holes separation efficiency and charge circulation routes at the interfaces within the Bi2Sn2O7/Ag@AgCl composite film. The film provided in this study may well have practical applications due to its simplicity of preparation, excellent photocatalytic ability and reasonable stability.
Collapse
|
48
|
Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech 2017; 7:299. [PMID: 28884066 DOI: 10.1007/s13205-017-0930-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/23/2017] [Indexed: 01/21/2023] Open
Abstract
Biogenic synthesis of nanoparticles has received a tremendous attention from the past few decades. The significant progress in the field of nanotechnology has resulted in a cost-effective and eco-friendly process for nanoparticle synthesis. In the present study, the extracellular synthesis of gold nanoparticles was carried out using culture supernatant of Streptomyces griseoruber, actinomycetes isolated from the soil. Bioreduction of gold nanoparticles was confirmed by UV-visible spectrophotometer that showed the peak between 520 and 550 nm. The crystalline nature and mean size of the GNPs were confirmed using XRD. FTIR revealed the possible functional group that could be useful in immobilisation and stabilisation of GNPs. Size and distribution of the biosynthesized GNPs were analysed by HR-TEM that showed the formation of GNPs in the range of 5-50 nm. The synthesised GNPs showed good catalytic activity for the degradation of methylene blue. The study shows the rapid and eco-friendly synthesis of GNPs from Streptomyces griseoruber, and this is the first report on the catalytic activity of GNPs from actinomycetes so far.
Collapse
|
49
|
Kang JP, Kim YJ, Singh P, Huo Y, Soshnikova V, Markus J, Ahn S, Chokkalingam M, Lee HA, Yang DC. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1530-1540. [PMID: 28918663 DOI: 10.1080/21691401.2017.1376674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This research article investigates the one-pot synthesis of gold and silver chloride nanoparticles functionalized by fruit extract of Crataegus pinnatifida as reducing and stabilizing agents and their possible roles as novel anti-inflammatory agents. Hawthorn (C. pinnatifida) fruits are increasingly popular as raw materials for functional foods and anti-inflammatory potential agents because of abundant flavonoids. The reduction of auric chloride and silver nitrate by the aqueous fruit extract led to the formation of gold and silver chloride nanoparticles. The nanoparticles were further characterized by field emission transmission electron microscopy indicated that CP-AuNps and CP-AgClNps were hexagonal and cubic shape, respectively. According to X-ray diffraction results, the average crystallite sizes of CP-AuNps and CP-AgClNps were 14.20 nm and 24.80 nm. The biosynthesized CP-AgClNps served as efficient antimicrobial agents against Escherichia coli and Staphylococcus aureus. Furthermore, CP-AuNps and CP-AgClNps enhanced the DPPH radical scavenging activity of the fruit extract. Lastly, MTT assay of nanoparticles demonstrated low toxicity in murine macrophage (RAW264.7). Biosynthesized nanoparticles also reduced the production of the inflammatory cytokines including nitric oxide and prostaglandin E2 in lipopolysaccharide-induced RAW264.7 cells. Altogether, these findings suggest that CP-AuNps and CP-AgClNps can be used as novel drug carriers or biosensors with intrinsic anti-inflammatory activity.
Collapse
Affiliation(s)
- Jong Pyo Kang
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Yeon Ju Kim
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Priyanka Singh
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Yue Huo
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Veronika Soshnikova
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Josua Markus
- b Graduate School of Biotechnology and Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Sungeun Ahn
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Mohan Chokkalingam
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Hyun A Lee
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Deok Chun Yang
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea.,b Graduate School of Biotechnology and Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| |
Collapse
|
50
|
New Colorimetric Detection of Monosaccharides Based on Transformation of Silver Chloride Nanoparticles to Silver Nanoparticles Synthesized by Sargassum Alga. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|