1
|
Kim D, Kim NW, Kim TG, Lee J, Jung JY, Hur S, Lee J, Lee K, Park SA. Surface Functionalization of 3D-Printed Scaffolds with Seed-Assisted Hydrothermally Grown ZnO Nanoarrays for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45389-45398. [PMID: 39150145 DOI: 10.1021/acsami.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers. To address these issues, we propose a metal-assisted hydrothermal synthesis method to modify 3D printed polycaprolactone (PCL) scaffolds with ZnO nanoparticles (NPs), facilitating the growth of ZnO nanoarrays (NAs) at a low-temperature (55 °C). Physicochemical characterizations revealed that the ZnO NPs form both physical and chemical bonds with the PCL surface; chemical bonding occurs between the carboxylate groups of PCL and Zn(OH)2 during seed deposition and hydrothermal synthesis. The ZnO NPs and NAs grown for a longer time (18 h) on the surface of PCL scaffolds exhibit significant proliferation and early differentiation of osteoblast-like cells. The proposed method is suitable for the surface modification of thermally degradable polymers, opening up new possibilities for the deposition of diverse metals.
Collapse
Affiliation(s)
- Dahong Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Woon Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Tae Gun Kim
- Center for Analysis and Evaluation, National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jihye Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Joo-Yun Jung
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Shin Hur
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jaejong Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| |
Collapse
|
2
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
3
|
Wang Y, Tang J, Zeng Y, Liu X, Chen M, Dai J, Li S, Qin W, Liu Y. Nanofibrous composite membranes based on chitosan-nano zinc oxide and curcumin for Kyoho grapes preservation. Int J Biol Macromol 2023; 242:124661. [PMID: 37119898 DOI: 10.1016/j.ijbiomac.2023.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), sodium alginate (SA), chitosan-nano zinc oxide nanoparticles (CS-Nano-ZnO) and curcumin (Cur) were prepared by ultrasonic processing and electrospinning. When the ultrasonic power was set to 100 W, the prepared CS-Nano-ZnO had a minimum size (404.67 ± 42.35 nm) and a generally uniform particle size distribution (PDI = 0.32 ± 0.10). The composite fiber membrane with Cur: CS-Nano-ZnO mass ratio of 5:5 exhibited the best water vapor permeability, strain and stress. Furthermore, the inhibitory rates against Escherichia coli and Staphylococcus aureus were 91.93 ± 2.07 % and 93.00 ± 0.83 %, respectively. The Kyoho grape fresh-keeping trial revealed that grape berries wrapped with composite fiber membrane still maintained good quality and a higher rate of good fruit (60.25 ± 1.46 %) after 12 days of storage. The shelf life of grape was extended by at least 4 days. Thus, nanofibrous composite membranes based on CS-Nano-ZnO and Cur was expected to be used as an active material for food packaging.
Collapse
Affiliation(s)
- Yue Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jinhui Tang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuanbo Zeng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xuemei Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
4
|
Yang F, Song Y, Hui A, Mu B, Wang A. Phyto-Mediated Controllable Synthesis of ZnO Clusters with Bactericidal Activity. ACS APPLIED BIO MATERIALS 2023; 6:277-287. [PMID: 36576779 DOI: 10.1021/acsabm.2c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rapid development of antibiotic resistance has been considered a major threat to public health. Nanomaterials have risen to be an effective weapon to tackle this problem through multiple antibacterial mechanisms. The improved and tailored physiochemical properties of fine-tuned secondary nanoarchitectures contribute to the superior bactericidal actions of metal oxide structures. However, it is still challenging to construct secondary structures through mild green manufacturing methods. Here, we report the preferred antibacterial ZnO nanocrystal clusters formed by a green structure-tuning synthesis process, in which the primary ZnO nanoparticles with sizes <10 nm were assembled into different forms of clusters depending on the zinc salt concentration and temperature. ZnO clusters with a stable loose-assembly structure and a rougher surface exhibited better bactericidal ability with minimal inhibitory concentrations of 0.5 and 0.1 mg/mL against Escherichia coli and Staphylococcus aureus, respectively. The underlying mechanism is related to enhancing contact with bacteria, releasing small ZnO nanoparticles, and generating additional reactive oxygen species, which could aggravate the damage to bacterial cell membrane and eventually lead to bacterial death. Furthermore, attachment of phenolic compounds from olive leaf extract would promote membrane penetration by ZnO nanoparticles, resulting in the improvement of antibacterial activities, which profit from the green route mediated by Olea europaea leaf extract that could structure-tune ZnO nanocrystal clusters in one simple step that retains the active ingredients on the nanoparticles. This work proposes a feasible and clean strategy to improve the structure-bioactivity relationship of ZnO by controlling its growth into a preferable structure, and the developed ZnO clusters have a good prospect in antibacterial applications because of their excellent performance and green fabrication method.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yameng Song
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Wai HS, Li C. Fabrication of Well-Aligned ZnO Nanorods with Different Reaction Times by Chemical Bath Deposition Method Applying for Photocatalysis Application. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010397. [PMID: 36615591 PMCID: PMC9822363 DOI: 10.3390/molecules28010397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Zinc oxide nanorods were grown on an aluminum-doped zinc oxide seeds layer using the chemical bath deposition method. The effects of growth reaction time on the structural, optical, and photocatalytic properties of zinc oxide nanorods were investigated. It was clearly observed that the growth direction of zinc oxide nanorods were dependent on the crystallinity of the as-deposited aluminum-doped zinc oxide seed layer. The crystallinity of the obtained zinc oxide nanorods was improved with the increase in reaction times during the chemical bath deposition process. The mechanism of zinc oxide nanorod growth revealed that the growth rate of nanorods was influenced by the reaction times. With increasing reaction times, there were much more formed zinc oxide crystalline stacked growth along the c-axis orientation resulting in an increase in the length of nanorods. The longest nanorods and the high crystallinity were obtained from the zinc oxide nanorods grown within 5 h. The optical transmittance of all zinc oxide nanorods was greater than 70% in the visible region. Zinc oxide nanorods grown for 5 h showed the highest degradation efficiency of methyl red under ultraviolet light and had a high first-order degradation rate of 0.0051 min-1. The photocatalytic mechanism was revealed as well.
Collapse
Affiliation(s)
- Htet Su Wai
- School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada cho, Kami City 782-8502, Kochi, Japan
| | - Chaoyang Li
- School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada cho, Kami City 782-8502, Kochi, Japan
- Center of Nanotechnology, Kochi University of Technology, 185 Miyanokuchi, Tosayamada cho, Kami City 782-8502, Kochi, Japan
- Correspondence: ; Tel.: +81-887-57-2106
| |
Collapse
|
6
|
X-Ray Diffraction Analysis by Modified Scherrer, Williamson–Hall and Size–Strain Plot Methods of ZnO Nanocrystals Synthesized by Oxalate Route: A Potential Antimicrobial Candidate Against Foodborne Pathogens. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Almansour AI, Arumugam N, Prasad S, Kumar RS, Alsalhi MS, Alkaltham MF, Al-Tamimi HBA. Investigation of the Optical Properties of a Novel Class of Quinoline Derivatives and Their Random Laser Properties Using ZnO Nanoparticles. Molecules 2021; 27:145. [PMID: 35011374 PMCID: PMC8746827 DOI: 10.3390/molecules27010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
Quinoline Schiff bases display potential applications in optoelectronics and laser fields because of their unique optical properties that arise from extensive delocalization of the electron cloud, and a high order of non-linearity. In this context, a new class of conjugated quinoline-derivative viz. N-(quinolin-3-ylmethylene)anilines were synthesized from 2-hydroxyquinoline-3-carbaldehyde in two good yielding steps. The ability of these imines to accept an electron from a donor is denoted by their electron acceptor number and sites, which is calculated using density functional theory (DFT). The optical properties such as FT-IR, Raman, UV-VIS, and EDS spectra were calculated using TD-DFT, which also provided the energy gap, HOMO-LUMO structure. The optical properties of the synthesized imino quinolines were experimentally studied using photoluminescence and absorption spectroscopy. The properties such as Stokes shift and quantum yield were calculated using experimental data. Furthermore, the compound bearing a methyl group on the aryl ring and ZnO nanoparticles (hydrothermally synthesized) were dissolved in toluene, and optically excited with a 355 nm nanosecond laser, which produced a random laser.
Collapse
Affiliation(s)
- Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.P.); (M.S.A.); (H.b.A.A.-T.)
- Research Chair for Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Mohamad S. Alsalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.P.); (M.S.A.); (H.b.A.A.-T.)
- Research Chair for Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal Fahad Alkaltham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Haya bint Abdulaziz Al-Tamimi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.P.); (M.S.A.); (H.b.A.A.-T.)
| |
Collapse
|
8
|
Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021; 7:275. [PMID: 34940335 PMCID: PMC8700921 DOI: 10.3390/gels7040275] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sol-Gel is a low cost, well-established and flexible synthetic route to produce a wide range of micro- and nanostructures. Small variations in pH, temperature, precursors, time, pressure, atmosphere, among others, can lead to a wide family of compounds that share the same molecular structures. In this work, we present a general review of the synthesis of LaMnO3, SrTiO3, BaTiO3 perovskites and zinc vanadium oxides nanostructures based on Sol-Gel method. We discuss how small changes in the parameters of the synthesis can modify the morphology, shape, size, homogeneity, aggregation, among others, of the products. We also discuss the different precursors, solvents, working temperature, reaction times used throughout the synthesis. In the last section, we present novel uses of Sol-Gel with organic materials with emphasis on carbon-based compounds. All with a perspective to improve the method for future applications in different technological fields.
Collapse
Affiliation(s)
- Daniel Navas
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Sandra Fuentes
- Departamento de Ciencias Farmaceúticas, Facultad de Ciencias, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta 1270709, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Libertador Bernardo O’Higgins 3363, Santiago 9160000, Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Emigdio Chavez-Angel
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
9
|
Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. Int J Biol Macromol 2021; 182:1915-1930. [PMID: 34058213 DOI: 10.1016/j.ijbiomac.2021.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The food packaging industry is rapidly growing as a consequence of the development of nanotechnology and changing consumers' preferences for food quality and safety. In today's globalization of markets, active packaging has achieved many advantages with the capability to absorb or release substances for prolonging the food shelf life over the traditional one. Therefore, it is critical to developing multifunctional active packaging materials from biodegradable polymers with active agents to decrease environmental challenges. This review article addresses the recent advances in nanocelluloses (NCs)- baseds nanohybrids with new function features in packaging, focusing on the various synthesis methods of NCs-based nanohybrids, and their reinforcing effects as active agents on food packaging properties. The applications of NCs-based nanohybrids as antioxidants, antimicrobial agents, and UV blocker absorbers for prolonging food shelf-life are also reviewed. Overall, these advantages make the CNs-based nanohybrids with versatile properties promising in food and packaging industries, which will impact more readership with concern for future research.
Collapse
|
10
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
11
|
Kamyabi MA, Moharramnezhad M. An ultra-sensitive electrochemiluminescence platform based on ZnONPs/Ni-foam and K2S2O8 for detection of chlorpyrifos. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Zhang R, Wang Y, Ma D, Ahmed S, Qin W, Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. ULTRASONICS SONOCHEMISTRY 2019; 59:104731. [PMID: 31442767 DOI: 10.1016/j.ultsonch.2019.104731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 05/04/2023]
Abstract
Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), graphene oxide (GO), and zinc oxide nanoparticles (ZnO NPs) were prepared by and ultrasonic processing, and electrospinning. The performance of the membranes containing different GO-to-ZnO NP mass ratios was comprehensively investigated in terms of density, mechanical properties, water vapor permeability, optical property, biodegradability and antimicrobial properties. The results showed that an appropriate sonication time (30 min) improved the membrane performance; the composite nanofibrous membrane with a GO-to-ZnO NP mass ratio of 3:7 and 30 min sonication exhibited the best performance with a water vapor permeability of (0.62 ± 0.01) × 10-2 g·h-1 m-2 pa-1, and strain and stress values of 307.84 ± 2.96% and 12.82 ± 0.56 MPa, respectively. Particularly, the UV barrier property of the composite nanofibrous membrane was enhanced. Furthermore, the membrane exhibited strong antibacterial activity against foodborne pathogenic and spoilage bacteria. Thu, it can thus be used as an active food packaging material to ensure the safety of food products and to extend their shelf-life.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Anžlovar A, Primožič M, Švab I, Leitgeb M, Knez Ž, Žagar E. Polyolefin/ZnO Composites Prepared by Melt Processing. Molecules 2019; 24:molecules24132432. [PMID: 31269674 PMCID: PMC6651218 DOI: 10.3390/molecules24132432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022] Open
Abstract
Composites of polyolefin matrices (HDPE and PP) were prepared by melt processing using two commercially available nano ZnO powders (Zinkoxyd aktiv and Zano 20). The mechanical and thermal properties, UV-Vis stability, and antibacterial activity of composites were studied. Tensile testing revealed that both nano ZnO types have no particular effect on the mechanical properties of HDPE composites, while some positive trends are observed for the PP-based composites, but only when Zano 20 was used as a nanofiller. Minimal changes in mechanical properties of composites are supported by an almost unaffected degree of crystallinity of polymer matrix. All polyolefin/ZnO composites exposed to artificial sunlight for 8–10 weeks show more pronounced color change than pure matrices. This effect is more evident for the HDPE than for the PP based composites. Color change also depends on the ZnO concentration and type; composites with Zano 20 show more intense color changes than those prepared with Zinkoxyd aktiv. Results of the antibacterial properties study show very high activity of polyolefin/ZnO composites against Staphylococcus aureus regardless of the ZnO surface modification, while antibacterial activity against Escherichia coli shows only the composites prepared with unmodified ZnO. This phenomenon is explained by different membrane structure of gram-positive (S. aureus) and gram-negative (E. coli) bacteria.
Collapse
Affiliation(s)
- Alojz Anžlovar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Iztok Švab
- ISOKON d.o.o., Industrijska cesta 16, SI-3210 Slovenske Konjice, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Biswas N, Samanta A, Podder S, Ghosh CK, Ghosh J, Das M, Mallik AK, Mukhopadhyay AK. Phase pure, high hardness, biocompatible calcium silicates with excellent anti-bacterial and biofilm inhibition efficacies for endodontic and orthopaedic applications. J Mech Behav Biomed Mater 2018; 86:264-283. [PMID: 30006276 DOI: 10.1016/j.jmbbm.2018.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Here we report for the very first time the synthesis of 100% phase pure calcium silicate nanoparticles (CSNPs) of the α-wollastonite phase without using any surfactant or peptizer at the lowest ever reported calcination temperature of 850 °C. Further, the phase purity is confirmed by quantitative phase analysis. The nano-network like microstructure of the CSNPs is characterized by FTIR, Raman, XRD, FESEM, TEM, TGA, DSC etc. techniques to derive the structure property correlations. The performance efficacies of the CSNPs against gram-positive e.g., S. pyogenes and S. aureus (NCIM2127) and gram-negative e.g., E. coli (NCIM2065) bacterial strains are studied. The biocompatibility of the CSNPs is established by using the conventional mouse embryonic osteoblast cell line (MC3T3). In addition, the biofilm inhibition efficacies of two varieties of CSNPs e.g., CSNPs(W) and CSNPs(WC) are investigated. Further, the interconnection between ROS e.g., superoxide (O2.-) and hydroxyl radical (.OH) generation capabilities of CSNPs and their biofilm inhibition efficacies is clearly established for the very first time. Finally, the mechanical responses of the CSNPs at the microstructural length scale are investigated by nanoindentation. The results confirm that the α-wollastonite phases present in CSNPs(W) and CSNPs(WC) possess extraordinarily high nanohardness and Young's moduli values. Therefore, these materials are well suited for orthopaedic and endodontic applications.
Collapse
Affiliation(s)
- Nilormi Biswas
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aniruddha Samanta
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700032, India; Department of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032, India.
| | - Soumik Podder
- Department of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032, India
| | - Chandan Kumar Ghosh
- Department of Material Science and Nanotechnology, Jadavpur University, Kolkata 700032, India
| | - Jiten Ghosh
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mitun Das
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Awadesh Kumar Mallik
- Fuel Cell & Battery Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Anoop Kumar Mukhopadhyay
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
15
|
Revathi T, Thambidurai S. Immobilization of ZnO on Chitosan-Neem seed composite for enhanced thermal and antibacterial activity. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Zheng M, Wang PL, Zhao SW, Guo YR, Li L, Yuan FL, Pan QJ. Cellulose nanofiber induced self-assembly of zinc oxide nanoparticles: Theoretical and experimental study on interfacial interaction. Carbohydr Polym 2018; 195:525-533. [PMID: 29805007 DOI: 10.1016/j.carbpol.2018.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/26/2023]
Abstract
In-depth understanding of interfacial behavior between biopolymer and semiconductor metal oxides is crucial to developing potential applications of their composites. A structure-ordered cellulose/zinc oxide composite was synthesized and systematically examined by a relativistic density functional theory. The prepared composite shows a hierarchical structure. ZnO nanoparticles of around 30 nm in size are found to uniformly grow along the cellulose fiber, which together construct the primary-structure unit. Associated with experimental characterizations, calculations unravel that the electrostatic attraction between cellulose and ZnO is the main driving force to form the primary structure and the subsequent electron transfer from cellulose to ZnO enhances their interfacial interaction; moreover, an exothermic process was computed. The interfacial interaction is mainly contributed by Zn-Oc (Oc denotes the cellulose oxygen atom), which is intrinsically of a dative bond; the interaction was calculated between -1.39 and -1.83 eV in strength and dominated by orbital attractions.
Collapse
Affiliation(s)
- Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng-Li Wang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Si-Wei Zhao
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fu-Long Yuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
17
|
Oxidized guar gum–ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0747-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Dastafkan K, Kiani A, Obeydavi A, Rahimi M. Crystallization and solid solution attainment of samarium doped ZnO nanorods via a combined ultrasonic-microwave irradiation approach. ULTRASONICS SONOCHEMISTRY 2018; 42:97-111. [PMID: 29429739 DOI: 10.1016/j.ultsonch.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
An advanced sol-gel method is developed via combined ultrasound-microwave irradiation and utilized for the crystallization of pristine and samarium doped zinc oxide nanorods. Organic structure directing agents directed one dimensional growth and air-annealing was applied as post-thermal treatment. Microstructural, optical, and solid state survey was pursued by PXRD, FESEM, TEM, EDS, FTIR, DRS, PL, micro-Raman, H2-TPR, and ESR techniques. Phase analysis by diffraction patterns confirmed the efficacy of irradiation strategy as it improves the crystallinity degree, expedites the hexagonal close pack morphology, and conducts lattice imperfection. Accordingly, aspect ratio and electronic evolution parallel to dopant content is favored. Electron microscopy demonstrated the flake-like rearrangement of nanorods as well as a structure-related growth where a direct proportion exists between atomic packing factor in lattice and aspect ratio. Textural investigation by EDS and FTIR rejected the presence of any impurity verifying an integrated composition. Reflectance and luminescence spectra exhibited characteristic optical behavior with shifts corresponding to dopant concentration. Also, band gap energies increased with samarium addition depicting an opposite trend with respect to unit cell variation. Finally, Raman, TPR, and ESR spectra provided detailed dopant-dependent trends on the internal solid state and defect chemistry of the nanorods. In this regard, maximum shifts in E2high and E1LO phonon modes duly correlated with the vibrations of zinc and oxygen atoms, surface oxygen and bulk ZnO reduction bands, emergence and alteration of samarium centers, along with the dominance of zinc and oxygen vacancies were all resulted due to the utmost lattice imperfection in SZO1.
Collapse
Affiliation(s)
- Kamran Dastafkan
- Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Armin Kiani
- Research Center for Analytical Sciences, KAVA Research Institute, Tehran, Iran
| | - Ali Obeydavi
- Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | |
Collapse
|
19
|
Electrogenerated chemiluminescence of ZnO nanorods and its sensitive detection of cytochrome C. Talanta 2018; 179:139-144. [DOI: 10.1016/j.talanta.2017.10.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/20/2017] [Accepted: 10/28/2017] [Indexed: 11/23/2022]
|
20
|
Abstract
AbstractThe infectious diseases caused by various bacteria pose serious threat to human health. To solve this problem, antibacterial agents have been widely used in people’s daily life to deactivate or kill these bacteria. Among the antibacterial agents, ZnO is one of the most promising metal oxide antibacterial agents due to its non-toxic nature and safe properties. To expand its application, many composites of ZnO have been widely studied. Cellulose, as one of the most abundant biopolymers, has many merits like biodegradability, biocompatibility and low cost. Thus, many studies focus on synthesized cellulose/ZnO. The synthetic strategy includes both chemical and physical methods. Many of them have been shown that cellulose/ZnO composites have excellent antibacterial activity and are environment-friendly and have many applications for example food packing, antibacterial fibers and so on. This review mainly discusses the preparation methods of cellulose/ZnO and their effect on the morphology and properties.
Collapse
|
21
|
Hou J, Wu Y, Li X, Wei B, Li S, Wang X. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. CHEMOSPHERE 2018; 193:852-860. [PMID: 29874759 DOI: 10.1016/j.chemosphere.2017.11.077] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 05/22/2023]
Abstract
Concerns about the potential environmental risks of zinc oxide nanoparticles (ZnO NPs) are becoming an important issue because of their rapid growth in different fields. ZnO NPs are inevitably released in the environment during the production, transport, use and disposal process. Therefore, it is necessary to understand their toxicities and mode of actions. This review summarizes the toxic effects of ZnO NPs with different properties and exposed conditions on different species. The mechanisms of ZnO NPs on living organisms could be mainly attributed to one or more of the following aspects: the physical damage of direct contact, the dissolved zinc ions and the ROS-mediated mechanism. This paper systematically reviews the toxic effects of ZnO NPs on organisms and puts forward the existing problems, which are helpful for the safe and efficient use of ZnO NPs, providing the basis for further study of the toxic effects of ZnO NPs and establishing a comprehensive and safe evaluation system.
Collapse
Affiliation(s)
- Jing Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yazhou Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xin Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Benben Wei
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
22
|
Pandimurugan R, Thambidurai S. UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int J Biol Macromol 2017; 105:788-795. [DOI: 10.1016/j.ijbiomac.2017.07.097] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/02/2017] [Accepted: 07/15/2017] [Indexed: 12/11/2022]
|
23
|
Samanta A, Podder S, Ghosh CK, Bhattacharya M, Ghosh J, Mallik AK, Dey A, Mukhopadhyay AK. ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide. J Mech Behav Biomed Mater 2017; 72:110-128. [DOI: 10.1016/j.jmbbm.2017.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
|
24
|
Shaheen T, El-Naggar ME, Abdelgawad AM, Hebeish A. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. Int J Biol Macromol 2016; 83:426-32. [DOI: 10.1016/j.ijbiomac.2015.11.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 02/08/2023]
|
25
|
Ma YY, Ding H, Xiong HM. Folic acid functionalized ZnO quantum dots for targeted cancer cell imaging. NANOTECHNOLOGY 2015; 26:305702. [PMID: 26148516 DOI: 10.1088/0957-4484/26/30/305702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aqueous stable luminescent ZnO quantum dots (QDs) were successfully synthesized with primary amine groups on the surface, which were designed to conjugate with folic acid (FA) to produce the final ZnO-FA QDs. Such ZnO-FA QDs were able to target some specific cancer cells with overexpressed FA receptors on the membranes and thus differentiate the MCF-7 cancer cells from the normal 293T cells. The nanoparticle uptaking experiments by different cells were carried out in parallel and tracked by confocal laser microscopy dynamically. The results confirmed the specificity of our ZnO-FA QDs towards the FA-receptor overexpressed cancer cells, which had potential for diagnosing cancers in vitro.
Collapse
Affiliation(s)
- Ying-Ying Ma
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | | | | |
Collapse
|