1
|
Ramadan RM, El-Shalakany HH, Sayed MA. Structural and biomedical investigations of novel ruthenium schiff base complexes. Sci Rep 2025; 15:18546. [PMID: 40425702 PMCID: PMC12117082 DOI: 10.1038/s41598-025-03147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Ruthenium(III) complexes with Schiff base ligands bearing diverse functional groups remain extensively underexplored, despite their promising potential in therapeutic applications. To address this gap, we designed and synthesized a new series of mononuclear octahedral Ru(III) complexes with the general formula [RuL1-3], where L1, L2, and L3 are deprotonated Schiff bases derived from functionalized aromatic precursors. These complexes were characterized through a suite of physicochemical and spectroscopic techniques, including FT-IR, 1H-NMR, UV-Vis spectroscopy, mass spectrometry, TGA, and elemental analysis, to confirm their structural features and coordination environment. To complement experimental findings, density functional theory (DFT/B3LYP) calculations were conducted, revealing stable, distorted octahedral geometries and supporting the proposed molecular configurations. Building upon the structural insights, we evaluated the biological activity of the complexes through in vitro cytotoxicity assays against HCT-116 (colorectal), MCF-7 (breast), and HepG2 (liver) cancer cell lines. Among them, RuL2 exhibited the most potent activity against HCT-116 (IC₅₀ = 4.97 µg/mL), comparable to the standard drug Vinblastine. Finally, molecular docking simulations were employed to investigate the interaction of these complexes with key biological targets from Escherichia coli (PDB IDs: 4BJP and 1BNA), offering further insights into their potential modes of action. Together, these results demonstrate the importance of ligand design in tuning the coordination behavior and bioactivity of ruthenium complexes, highlighting their promise in anticancer and antimicrobial drug development.
Collapse
Affiliation(s)
- Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Mostafa A Sayed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Karikalan A, Sambamoorthy S, Thamaraichelvan G, Venkatesan A. 5-Chlorosalicylaldehyde Based New Chromo-Fluorogenic Schiff base Probes for Cu(II), Mn(II), CN -, S 2- and CO 32- ions - Appositeness in Bioimaging and Molecular Logic Gate. J Fluoresc 2025:10.1007/s10895-025-04211-3. [PMID: 39998785 DOI: 10.1007/s10895-025-04211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Two new multifunctional fluorescent Schiff base chemosensors 2,2'-(4-chlorophenyl)methylene)bis(azanylylidene))bis(methanylylidene))bis(4-chlorophenol) (CSCB) and 2,2'-(4-methoxyphenyl)methylene)bis(azanylylidene))bis(methanylylidene))bis(4-chlorophenol) (CSMB) were synthesized by following solvent free one pot synthesis approach for the colorimetric detection of Cu(II), Mn(II), CO32-, S2- and CN- ions. The Schiff base chemosensors showed a colorimetric response towards the ions, where there was appearance of yellow color over colorless Schiff base solution. The detection process was accomplished by absorption and emission methods in aqueous methanol medium. The binding modes of the cations and anions towards both the Schiff bases were explored by IR, 1H NMR and Mass titrations. The detection limit of the Schiff bases CSCB and CSMB towards the different detected ions was found to be in the order of 10-6 M for Cu(II), Mn(II), CN-, CO32- ions and 10-5 M for S2- ion. DFT studies of the Schiff bases CSCB and CSMB were performed with respect to Mulliken charge analysis, HOMO-LUMO energy gap, Molecular Electrostatic Potential and Total density for the substantial support of structure and interaction with various ions. Electronic spectral transitions of the Schiff bases are endorsed by TDDFT calculations. The sensing property was applied in bioimaging study on HeLa cell lines and logic gate construction.
Collapse
Affiliation(s)
- Abinaya Karikalan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, 620 002, Tamil Nadu, India
| | - Santhi Sambamoorthy
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, 620 002, Tamil Nadu, India.
| | - Geetha Thamaraichelvan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, 620 002, Tamil Nadu, India
| | - Anuradha Venkatesan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, 620 002, Tamil Nadu, India
| |
Collapse
|
3
|
Dhanya TM, Prathapachandra Kurup MR, Rajimon KJ, Anjali Krishna G, Varughese JK, Raghu KG, Philip S, Divya KM, Augustine M, Mohanan PV. Unveiling the multifaceted bioactivity of copper(II)-Schiff base complexes: a comprehensive study of antioxidant, anti-bacterial, anti-inflammatory, enzyme inhibition and cytotoxic potentials with DFT insights. Dalton Trans 2025; 54:3216-3234. [PMID: 39820950 DOI: 10.1039/d4dt02486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[b]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses. Density functional theory (DFT) calculations were used to optimize the theoretical molecular orbital energies of the copper complexes. The complexes exhibited square pyramidal and square planar geometries. Biological assays demonstrated that these complexes generally outperformed the Schiff base ligands for various activities. The antioxidant capacity, measured via the DPPH assay in methanol, was comparable to those of the BHT and ascorbic acid standards, with 4BNPC showing the lowest IC50 value, which was attributed to the free OH group rather than coordination to the metal center. The anti-bacterial activity was assessed using the agar disc diffusion method against E. coli, P. aeruginosa, B. subtilis, and S. aureus, with BAC showing the largest inhibition zone compared to the others and ciprofloxacin as the reference. The anti-inflammatory activity, evaluated by the HRBC membrane stabilization method, showed that the 4BNPC Cu(II) complex had moderate activity similar to that of diclofenac. Enzyme inhibition studies against α-amylase revealed that the BAC complexes had the highest inhibition values, surpassing those of the Schiff base ligands. Cytotoxicity was assessed using Trypan blue exclusion for DLA and HepG2 cancer cell lines, and the MTT assay for H9c2 human cells. BMPC demonstrated superior cytotoxicity at both high and low concentrations against the normal H9c2 cell line. Among the tested compounds, BNPC showed moderate inhibition against HepG2 cells, while BMPC exhibited the greatest cytotoxicity at higher concentrations, particularly reaching nearly 100% cell death at 200 μg mL-1 in DLA cell lines. This suggests that BMPC is a promising candidate for further pharmacological research, particularly against DLA cells.
Collapse
Affiliation(s)
- T M Dhanya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| | - M R Prathapachandra Kurup
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| | - K J Rajimon
- Department of Chemistry, St Berchmans College, Changanacherry, Kerala, India.
| | - G Anjali Krishna
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
- Department of Science and Humanities, Mar Baselios Institute of Technology and Science, Nellimattom, Kothamangalam, Kerala, India.
| | | | - K G Raghu
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India.
| | - Sachin Philip
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| | - K M Divya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
- Department of Chemistry, NSS College, Cherthala, Kerala, India.
| | - Maria Augustine
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
- Department of Chemistry, St Paul's College, Kalamassery, Kerala, India.
| | - P V Mohanan
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| |
Collapse
|
4
|
Jayachandiran K, Esha S, Savitha Lakshmi M, Mahalakshmi S, Arockiasamy S. Synthesis and structural insights of bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato) nickel (II) complex through DFT and docking investigations. Sci Rep 2025; 15:1751. [PMID: 39799238 PMCID: PMC11724891 DOI: 10.1038/s41598-025-85465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties. The ScXRD showed a square planar geometry, and monoclinic crystal system with a space group P21/n. The TG analysis revealed its thermal durability pre and post-melting up to 225 oC with a weight loss of only 2%. The optimized molecular structure, energy gap between HOMO and LUMO, and intermolecular interactions were studied by computational methods. The microbial activity evaluation showed significant anti-bacterial activity against E. coli and S. aureus when the concentration exceeded 40 µg/mL, and a prominent anti-fungal activity over C. albicans and C. tropicalis above 30 µg/mL. The values of minimum inhibitory concentration (MIC) for bacteria (MIB) and fungi (MIF) implied its potential to inhibit the growth of microbes. Docking studies revealed that the molecule binds well with proteins such as PDB: 2W9H for Dihydrofolate Reductase of S.aureus as shown by its binding energy of -8.62 kcal.mol- 1.
Collapse
Affiliation(s)
- K Jayachandiran
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - Sv Esha
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - M Savitha Lakshmi
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - S Mahalakshmi
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - S Arockiasamy
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
| |
Collapse
|
5
|
Hijazi AK, Taha ZA, Issa DK, Alshare HM, Al-Momani WM, Elrashidi A, Barham AS. Synthesis, Characterization and Catalytic/Antimicrobial Activities of Some Transition Metal Complexes Derived from 2-Floro-N-((2-Hydroxyphenyl)Methylene)Benzohydrazide. Molecules 2024; 29:5758. [PMID: 39683915 DOI: 10.3390/molecules29235758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic-metal substances and different industrial and medicinal properties is well established. METHODS A Schiff base ligand (2-fluoro-N'-[(E)-2-hydroxyphenyl) methylene] benzohydrazide) was reacted with a series of transition metals to produce complexes with a general formula [ML2(NO3)]NO3.nH2O, where [M = Zn, Cu, Co, Ni, Mn], and [n = 0, 1], corresponding to complexes 1-5. The nature of the bond was determined in the solid state and solution using spectral studies (1H-NMR, 13C-NMR, UV-Vis and FT-IR), TGA, EPR, elemental analysis and molar conductivity measurement. RESULTS All M(II) complexes are 1:1 electrolytes, as illustrated by their molar conductivities. The results demonstrate that all synthesized complexes present a coordination number of six by the bonding of the bidentate ligand via its azomethine nitrogen atoms and carbonyl oxygen atoms, as well as with one nitrate group as a bidentate ligand via two oxygen atoms. The DPPH radical scavenging technique was used to investigate the antioxidant activities of the ligand [L] and the metal complexes. It is clear that the activity increased in M (II) complexes compared to the Schiff base ligand. Complex 5 showed the highest activity, with an excellent activity of 90.4%, while complex 4 showed the lowest. The antibacterial activities of the Schiff base and its complexes have been examined against various pathogenic bacteria to measure their inhibition potential. Complex 2 showed remarkable activity against Gram (+) bacteria and fungi with an MIC value of 8 μg/mL, which is greater than that of the positive controls, oxytetracycline and fluconazole. The catalytic activities of all complexes were examined in the oxidation of aniline, and the results illustrated that all complexes had a 100% selectivity in producing only azobenzene, and complex 4 had the highest activity (91%). CONCLUSION The obtained results from this study show that the antioxidant and antibacterial properties of both the Schiff base ligand and its derived complexes are promising, with some demonstrating remarkable activities. Moreover, the catalytic activities and selectivities of the prepared complexes in aniline oxidation are interesting.
Collapse
Affiliation(s)
- Ahmed K Hijazi
- Department of Chemistry, College of Arts and Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan
- Department of Chemical Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ziyad A Taha
- Department of Chemical Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dua'a K Issa
- Department of Chemical Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Heba M Alshare
- Department of Chemical Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Waleed M Al-Momani
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ali Elrashidi
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah 23435, Saudi Arabia
- Engineering Mathematics Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Ahmad S Barham
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Arjunan A, Sebastian A. Synthesis, crystal structure, biological and docking studies of 5-hydroxy-2-{[(2-methylpropyl)iminio]methyl}phenolate. Future Med Chem 2024; 16:1983-1997. [PMID: 39258968 PMCID: PMC11486094 DOI: 10.1080/17568919.2024.2389763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Abstract
Background: Schiff base compounds are potential drugs.Results: A Schiff base compound prepared by condensing 2,4-dihydroxy benzaldehyde and isobutylamine was characterized for structure, thermal, physicochemical and biological properties. The keto-enol tautomerism and azomethine functionality enhances electron delocaliZation and biological activity. The compound showed good antibacterial and antifungal activity at 40 μg/ml against bacteria such as Escherichia coli and Staphylococcus aureus and fungi like Candida albicans and Candida tropicalis. The docking study exhibits a moderate binding affinity for the GyrB protein in E. coli with a binding energy of -4.26 kcal/mol.Conclusion: The compound exhibits enhanced biological activity and suppression of cell growth at concentrations as low as 30 μg/ml. The IC50 for MFC-7 was found to be 41.5 μg/ml.
Collapse
Affiliation(s)
- Ayyappan Arjunan
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology, Chennai-127, India
| | - Arockiasamy Sebastian
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology, Chennai-127, India
| |
Collapse
|
7
|
Majumdar D, Chatterjee A, Feizi-Dehnayebi M, Kiran NS, Tuzun B, Mishra D. 8-Aminoquinoline derived two Schiff base platforms: Synthesis, characterization, DFT insights, corrosion inhibitor, molecular docking, and pH-dependent antibacterial study. Heliyon 2024; 10:e35591. [PMID: 39170410 PMCID: PMC11336723 DOI: 10.1016/j.heliyon.2024.e35591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The current research divulges the synthesis of two new Schiff base (SB) (L NAPH /L O-VAN ) derived from 8-aminoquinoline (8-AMQ) in the presence of 2-hydroxy naphthaldehyde (NAPH) and ortho-vanillin (O-VAN) in CH3OH solvent. They are structurally characterized by spectroscopic methods (IR/Raman/UV-vis/DRS/NMR) and SEM-EDX. SB compounds have a biologically active avenue of azomethine/imine group (H-C=N) that can donate N e's to Mn + ions, showing coordinating flexibility. The -OH and imine (H-C=N) groups are stable in air, light, and alkalis but undergo acidic environments hydrolysis, separating -NH2 and carbonyl compounds. Moreover, buffer solutions with a pH range of 4-6 release aldehyde. Molecular electrostatic potential (MEP), Frontier molecular orbitals (FMO), Fukui function, and Non-linear optical (NLO) were conducted to elucidate SBs chemical potency, optoelectronic significance, and corrosion inhibitor. Accordingly, the calculated ΔE of FMO for L NAPH and L O-VAN is 3.82 and 4.08 eV, ensuring potent biological function. DFT supported the experimental and theoretical IR spectral correlation to enrich better structural insights. NLO-based polarizability (α) and hyperpolarizability (β) factors successfully explore the potential optoelectronic significance. Molecular docking experiments were simulated against DNA, anti-COVID-19, and E. coli. The potential microbiological activity was screened against the bacterial strains E. coli, Klebsiella, Bacillus, and Pseudomonas sp. based on zone of inhibition and MIC values. These experiments also explored the fact that L NAPH and L O-VAN discourage microbial cell biofilms and corrosion. We extensively covered the as-prepared compounds' pH-dependent bacterial effects.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka, India, 560064
| | | | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka, India, 560064
| | - Burak Tuzun
- Sivas Cumhuriyet University, Sivas Vocational School, Department of Plant and Animal Production, TR-58140, Sivas, Turkey
| | - Dipankar Mishra
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| |
Collapse
|
8
|
Dar OA, Hashmi AA, Al-Bogami AS, Ahmad A, Wani MY. Heteroleptic cobalt complex augments antifungal activity with fluconazole and causes membrane disruption in Candida albicans. Dalton Trans 2024; 53:11720-11735. [PMID: 38932585 DOI: 10.1039/d4dt01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Heteroleptic metal complexes containing CuII, CoII, and ZnII, incorporating curcumin and a Schiff base ligand (L), were synthesized and characterized, and their antifungal activity was evaluated. Their antifungal activities were investigated individually and in combination with fluconazole. Utilizing various analytical techniques such as UV-Vis, FT-IR, NMR, ESI-MS, TGA-DTG, elemental analyses, conductance, and magnetic susceptibility measurements, complex C1 ([Cu(Cur)LCl(H2O)]) was assigned a distorted octahedral geometry, while complexes C2 ([Co(Cur)LCl(H2O)]) and C3 ([Zn(Cur)LCl(H2O)]) were assigned octahedral geometries. Among these complexes, C2 exhibited the highest inhibitory activity against both FLC-susceptible and resistant strains of Candida albicans. Furthermore, C2 demonstrated candidicidal activity and synergistic interactions with fluconazole, effectively inhibiting the growth and survival of both FLC-resistant and FLC-sensitive C. albicans strains. The complex displayed a dose-dependent inhibition of drug efflux pumps in FLC-resistant C. albicans strains, indicating its potential to disrupt the cell membrane of these strains. The significant role of membrane efflux transporters in the development of antifungal drug resistance within Candida species has been extensively documented and our findings indicate that complex C2 specifically targets this crucial factor, thereby playing a pivotal role in mitigating drug resistance in C. albicans.
Collapse
Affiliation(s)
- Ovas Ahmad Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Athar Adil Hashmi
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Azadi S, Azizipour E, Amani AM, Vaez A, Zareshahrabadi Z, Abbaspour A, Firuzyar T, Dortaj H, Kamyab H, Chelliapan S, Mosleh-Shirazi S. Antifungal activity of Fe 3O 4@SiO 2/Schiff-base/Cu(II) magnetic nanoparticles against pathogenic Candida species. Sci Rep 2024; 14:5855. [PMID: 38467729 PMCID: PMC10928175 DOI: 10.1038/s41598-024-56512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 μg/mL with the lowest MIC (8 μg/mL) observed against C. parapsilosis. The result showed the MIC of 32 μg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.
Collapse
Affiliation(s)
- Sedigheh Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Esmat Azizipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Abbaspour
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Firuzyar
- Department of Nuclear Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
- Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Shreeshivadasan Chelliapan
- Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
10
|
Keypour H, Zeynali H, Fatemikia H, Ranjbar N, Karamian R, Rezaei MT, Gable RW. Anticancer, antioxidant, and antimicrobial studies and molecular docking of a new hexanuclear Zn(II) complex, together with its X-ray crystal analysis. Dalton Trans 2024; 53:4512-4525. [PMID: 38348683 DOI: 10.1039/d3dt03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A new hexanuclear Zn(II) complex with the ligand 2,2'-(piperazine-1,4-diyl)bis(ethan-1-amine), [L3Zn6(OH)6][ClO4]6·3MeOH·7H2O, was synthesized. The crystal structure of this complex showed that each Zn atom is in a distorted tetrahedral coordination environment, surrounded by two nitrogen atoms from each ligand and two hydroxide groups, each of which bridges to another Zn atom. The anticancer activities of the ligand and its metal complex against the breast cancer cell line (MCF-7) indicated that the zinc complex had a greater anticancer activity. The free ligand and its metal complex were evaluated for antioxidant activity using the DPPH scavenging method. In addition, the antibacterial activities of both compounds were screened against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The interaction of these compounds with DNA and AChE was also investigated using molecular docking.
Collapse
Affiliation(s)
- Hassan Keypour
- Faculty of Chemistry, Bu-Ali Sina University, 65174 Hamedan, Iran
| | - Hamid Zeynali
- Faculty of Chemistry, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roya Karamian
- Department of Biology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
11
|
Synthesis, Characterization, Pharmacological Screening, Molecular Docking, DFT, MESP, ADMET Studies of Transition Metal(II) Chelates of Bidentate Schiff Base Ligand. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
12
|
Kumar B, Devi J, Manuja A. Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
G S, K D, P S, N B. DFT calculations, molecular docking, in vitro antimicrobial and antidiabetic studies of green synthesized Schiff bases: as Covid-19 inhibitor. J Biomol Struct Dyn 2023; 41:12997-13014. [PMID: 36752337 DOI: 10.1080/07391102.2023.2175039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023]
Abstract
In this investigation, we synthesized Schiff bases 2-(2-methoxyphenoxy)-N-(4-methylbenzylidene)ethanamine, N-(4-methoxybenzylidene)-2-(2-methoxyphenoxy)ethanamine and 2-(2-methoxyphenoxy)-N-(4-nitrobenzylidene)ethanamine from 2-(2-methoxyphenoxy)ethanamine and various aromatic aldehydes by the environmentally friendly sonication method. The B3LYP method with a 6-311++G (d, p) basis set was used in the DFT calculation to obtain the optimized structure of the Schiff base MPEA-NIT. The compounds were tested in vitro for inhibition of bacterial growth (disc well method) and inhibition of α-amylase (starch-iodine method). The compounds tested showed inhibitory activities. In addition, they were subjected to PASS analysis, drug likeness, and bioactivity score predictions using online software. To confirm the experimental findings, molecular docking analyses of synthesized compounds on α-amylase (PDB ID: 1SMD), tRNA threonylcarbamoyladenosine (PDB ID: 5MVR), glycosyl transferase (PDB ID: 6D9T), and peptididoglycan D,D-transpeptidase (PDB ID: 6HZQ) were performed. The emergence of a new coronavirus epidemic necessitates the development of antiviral medications (SARS-CoV-2). Docking active site interactions were investigated to predict compounds' activity against COVID-19 by binding with the SARS-CoV-2 (PDB ID: 6Y84).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saranya G
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| | | | - Shanmugapriya P
- Department of Chemistry, KSR College of Engineering, Thiruchengode, India
| | - Bhuvaneshwari N
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| |
Collapse
|
14
|
Jindal A, Kapoor S, Verma I, Raju A, Arora H, Tyagi P. Synthesis, Characterization and Antibacterial Investigation of Mononuclear Copper (II) Complexes of Amine-phenolate Based Ligands. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2169720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ambika Jindal
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Gurugram, Haryana, India
| | - Sumeet Kapoor
- Department of Biochemical Engineering and Biotechnology, Hauz Khas, Indian Institute of Technology Delhi, New Delhi, Delhi, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anish Raju
- Department of Biochemical Engineering and Biotechnology, Hauz Khas, Indian Institute of Technology Delhi, New Delhi, Delhi, India
| | - Himanshu Arora
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Gurugram, Haryana, India
| |
Collapse
|
15
|
Saranya G, Devendraprasad K, Jayanthi P, Shanmugapriya P, Bhuvaneshwari N. Greener and rapid synthesis of benzal-based Schiff base ligands as an efficient antibacterial, antioxidant, and anticancer agent. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G. Saranya
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| | | | - P. Jayanthi
- KSR College of Engineering, Tiruchengode, India
| | | | - N. Bhuvaneshwari
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| |
Collapse
|
16
|
Synthesis, spectroscopic, quantum, thermal and kinetics, antibacterial and antifungal studies: Novel Schiff base 5-methyl-3-((5-bromosalicylidene) amino)- pyrazole and its transition metal complexes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
Vhanale BT, Shinde AT. Synthesis, Characterization, Powder X-Ray Diffraction Analysis, ESR Study, Thermal Stability of Ni(II) and Fe(III) Schiff Base Ligand Complexes and Potency Study as Antibacterial and Antioxidant Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2158886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bhagwat T. Vhanale
- P.G. Department of Chemistry, S.C.S. College, Omerga, India
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, India
| | - Avinash T. Shinde
- P.G. Department of Chemistry, S.C.S. College, Omerga, India
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, India
| |
Collapse
|
18
|
Pinheiro AC, Nunes IJ, Ferreira WV, Tomasini PP, Trindade C, Martins CC, Wilhelm EA, Oliboni RDS, Netz PA, Stieler R, Casagrande ODL, Saffi J. Antioxidant and Anticancer Potential of the New Cu(II) Complexes Bearing Imine-Phenolate Ligands with Pendant Amine N-Donor Groups. Pharmaceutics 2023; 15:pharmaceutics15020376. [PMID: 36839698 PMCID: PMC9960331 DOI: 10.3390/pharmaceutics15020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Cu(II) complexes bearing NNO-donor Schiff base ligands (2a, b) have been synthesized and characterized. The single crystal X-ray analysis of the 2a complex revealed that a mononuclear and a dinuclear complex co-crystallize in the solid state. The electronic structures of the complexes are optimized by Density Functional Theory (DFT) calculations. The monomeric nature of 2a and 2b species is maintained in solution. Antioxidant activities of the ligands (1a, b) and Cu(II) complexes (2a, b) were determined by in vitro assays such as 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS+). Our results demonstrated that 2a showed better antioxidant activity. MTT assays were performed to assess the toxicity of ligands and Cu(II) complexes in V79 cells. The antiproliferative activity of compounds was tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and SW620 (colorectal carcinoma) and on MRC-5 (normal lung fibroblast). All compounds showed high cytotoxicity in the all-cell lines but showed no selectivity for tumor cell lines. Antiproliferative activity by clonogenic assay 2b showed a more significant inhibitory effect on the MCF-7 cell lines than on MRC-5. DNA damage for the 2b compound at 10 µM concentration was about three times higher in MCF-7 cells than in MRC-5 cells.
Collapse
Affiliation(s)
- Adriana Castro Pinheiro
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ianka Jacondino Nunes
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Wesley Vieira Ferreira
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Cristiano Trindade
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Carolina Cristóvão Martins
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Robson da Silva Oliboni
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paulo Augusto Netz
- Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Rafael Stieler
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Correspondence:
| |
Collapse
|
19
|
Ayari C, Alotaibi AA, Baashen MA, Perveen F, Almarri AH, Alotaibi KM, Abdelbaky MSM, Garcia-Granda S, Othmani A, Nasr CB, Mrad MH. A New Zn(II) Metal Hybrid Material of 5-Nitrobenzimidazolium Organic Cation (C 7H 6N 3O 2) 2[ZnCl 4]: Elaboration, Structure, Hirshfeld Surface, Spectroscopic, Molecular Docking Analysis, Electric and Dielectric Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7973. [PMID: 36431459 PMCID: PMC9697581 DOI: 10.3390/ma15227973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The slow solvent evaporation approach was used to create a single crystal of (C7H6N3O2)2[ZnCl4] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P21/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl42- anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C-H…π). Hirshfeld's surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (C7H6N3O2)2[ZnCl4]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius' law. The frequency-temperature dependence of AC conductivity for the studied sample shows one region (Ea = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level.
Collapse
Affiliation(s)
- Chaima Ayari
- Materials Chemistry Laboratory, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Abdullah A. Alotaibi
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| | - Mohammed A. Baashen
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| | - Fouzia Perveen
- School of Interdisciplinary Engineering and Sciences (SINES), NUST, H-12, Islamabad 44000, Pakistan
| | - Abdulhadi H. Almarri
- Department of Chemistry, University College of Al-Wajah, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Khalid M. Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 12271, Saudi Arabia
| | | | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, University of Oviedo-CINN, 33006 Oviedo, Spain
| | - Abdelhak Othmani
- Laboratory of Material Physics: Structures and Properties, LR01 ES15, Faculty of Sciences, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Cherif Ben Nasr
- Materials Chemistry Laboratory, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Mohamed Habib Mrad
- Materials Chemistry Laboratory, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| |
Collapse
|
20
|
Khalaf MM, Abd El-Lateef HM, Gouda M, Sayed FN, Mohamed GG, Abu-Dief AM. Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. MATERIALS 2022; 15:ma15144842. [PMID: 35888309 PMCID: PMC9317992 DOI: 10.3390/ma15144842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023]
Abstract
Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5).
Collapse
Affiliation(s)
- Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Fatma N. Sayed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (F.N.S.); (G.G.M.)
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (F.N.S.); (G.G.M.)
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria 21934, Egypt
| | - Ahmed M. Abu-Dief
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Department of Chemistry, College of Science, Taibah University, Madinah 344, Saudi Arabia
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| |
Collapse
|
21
|
Huang L, Qiu Z, Wang S. Prevention and mechanism effect of Zn(II) coordination complex on oral implant restoration. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Treatment activity of Co(II)-based coordination polymers on polycystic ovary syndrome. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Deghadi RG, Mohamed GG, Mahmoud NF. Bioactive La (III), Er (III), Yb (III), Ru (III) and Ta(V) Complexes of New Organometallic Schiff Base: Preparation, Structural Characterization, Antibacterial, Anticancer activities and MOE Studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | - Nessma F. Mahmoud
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
24
|
Hema M, Karthik C, Mahesha, Pampa K, Mallu P, Lokanath N. 4,4,4-trifluoro-1-phenylbutane-1,3-dione metal [Cu(II) and Ni(II)] complexes as an superlative antibacterial agent against MRSA: Synthesis, structural quantum-chemical and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Ramadan RM, Abo-Aly MM, Lasheen AAM. Molecular structural, vibrational assignments, electronic structure and DFT calculations, and molecular docking of N-benzylideneaniline and N-salicylidene-o-aminoaphenol Schiff bases. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1988976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ramadan M. Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed M. Abo-Aly
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Alaa A. M. Lasheen
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Ghanghas P, Choudhary A, Kumar D, Poonia K. Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108710] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
El-Gammal OA, Mohamed FS, Rezk GN, El-Bindary AA. Structural characterization and biological activity of a new metal complexes based of Schiff base. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115522] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
El-Gammal OA, Mohamed FS, Rezk GN, El-Bindary AA. Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115223] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Lupașcu G, Pahonțu E, Shova S, Bărbuceanu ȘF, Badea M, Paraschivescu C, Neamțu J, Dinu M, Ancuceanu RV, Drăgănescu D, Dinu‐Pîrvu CE. Co (II), Cu (II), Mn (II), Ni (II), Pd (II), and Pt (II) complexes of bidentate Schiff base ligand: Synthesis, crystal structure, and acute toxicity evaluation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gina Lupașcu
- Physiology Department, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Elena Pahonțu
- Inorganic Chemistry Department, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Sergiu Shova
- Bioinorganic Chemistry Laboratory Institute of Macromolecular Chemistry “Petru Poni” Iasi Romania
| | - Ștefania Felicia Bărbuceanu
- Organic Chemistry Department, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Mihaela Badea
- Inorganic Chemistry Department, Faculty of Chemistry University of Bucharest Bucharest Romania
| | - Codruța Paraschivescu
- Organic Chemistry Department, Faculty of Chemistry University of Bucharest Bucharest Romania
| | - Johny Neamțu
- Pharmacy Department I University of Medicine and Pharmacy Craiova Craiova Romania
| | - Mihaela Dinu
- Pharmaceutical Botany and Cell Biology Department, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Robert Viorel Ancuceanu
- Pharmaceutical Botany and Cell Biology Department, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Doina Drăgănescu
- Pharmaceutical Physics Department, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Cristina Elena Dinu‐Pîrvu
- Physical and Colloidal Chemistry Department, Carol Davila Carol Davila University of Medicine and Pharmacy Bucharest Romania
| |
Collapse
|
30
|
Mohamed SF, Shehab WS, Abdullah AM, Sliem MH, El-Shwiniy WH. Spectral, thermal, antimicrobial studies for silver(I) complexes of pyrazolone derivatives. BMC Chem 2020; 14:69. [PMID: 33292420 PMCID: PMC7719257 DOI: 10.1186/s13065-020-00723-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Synthesize new complexes of Ag(I) to enhance efficacy or stability and also, pharmacological activities on the operation of pyrazolone's biological properties. Results Efficient and high yielding pathways starting from the versatile and readily available 3-methyl-1-phenyl-5-pyrazolone by Knoevenagel condensation of a sequence of 4-arylidene-3-methyl-1-phenyl-5-pyrazolone derivatives (2a-c) have been formed by the reaction of various substituted aromatic aldehydes Used as ligands to synthesize Ag(I) chelates. Synthesized compounds and their complexes have been characterized by elemental analysis, magnetic and spectroscopic methods (IR, 13C, 1HNMR, mass) and thermal analysis. The spectrophotometric determinations suggest distorted octaedral geometry for all complexes. Both ligands and their metal complexes have also been tested for their antibacterial and antifungal efficacy. Conclusions Newly synthesized compounds have shown potent antimicrobial activity. The results showed that the complex 's high activity was higher than its free ligands, and that Ag(I)-L3 had the highest activity.
Collapse
Affiliation(s)
- Soha F Mohamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Aboubakr M Abdullah
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mostafa H Sliem
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Walaa H El-Shwiniy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt. .,Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia.
| |
Collapse
|
31
|
Nano-Azo Ligand and Its Superhydrophobic Complexes: Synthesis, Characterization, DFT, Contact Angle, Molecular Docking, and Antimicrobial Studies. J CHEM-NY 2020. [DOI: 10.1155/2020/6382037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metal complexes of the 2,2'-(1,3-phenylenebis(diazene-2,1-diyl))bis(4-aminobenzoic acid) diazo ligand (H2L) derived from m-phenylenediamine and p-aminobenzoic acid were synthesized and characterized by different spectral, thermal, and analytical tools. The H2L ligand reacted with the metal ions Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) as 1 : 1 stoichiometry. All complexes displayed an octahedral geometry according to the electronic and magnetic moment measurements. The IR spectra revealed the binding of the azo ligand to the metal ions via two azo nitrogen atoms and protonated carboxylate O in a neutral tetradentate manner. Both IR and 1H NMR spectra documented the involvement of the carboxylate group without proton displacement. The thermal studies pointed out that the complexes had higher thermal stability comparable with that of the free ligand. SEM images revealed the presence of the diazo ligand and its Cd(II) complex in a nanostructure form. The contact angle measurements proved that the Cd(II) complex can be considered as a superhydrophobic material. The molecular and electronic structure of H2L and [Cd(H2L)Cl2].H2O were optimized theoretically, and the quantum chemical parameters were calculated. The biological activities of the ligand, as well as its metal complexes, have been tested in vitro against some bacteria and fungi species. The results showed that all the tested compounds have significant biological activities with different sensitivity levels. The binding between H2L and its Cd(II) complex with receptors of the crystal structure of S. aureus (PDB ID: 3Q8U), crystal structure of protein phosphatase (PPZ1) of Candida albicans (PDB ID: 5JPE), receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), and crystal structure of Escherichia coli (PDB ID: 3T88) was predicted and given in detail using molecular docking.
Collapse
|
32
|
Hassen S, Chebbi H, Arfaoui Y, Robeyns K, Steenhaut T, Hermans S, Filinchuk Y. Spectroscopic and structural studies, thermal characterization, optical proprieties and theoretical investigation of 2-aminobenzimidazolium tetrachlorocobaltate(II). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118612. [PMID: 32604047 DOI: 10.1016/j.saa.2020.118612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/24/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In this study we present the crystal structure, spectroscopic and thermal behavior, Hirshfeld surface analysis, and DFT calculations of a new organic-inorganic hybrid compound (C7H8N3)2[CoCl4]. This compound crystallizes in the centrosymmetric space group P1¯. Single-crystal X-ray diffraction analysis indicates that structure consists of a succession of mixed layers formed by organic cations and inorganic anions parallel to the (001) plane and propagate according to the c-axis. Layers further are assembled into a 3D supramolecular architecture through N-H…Cl hydrogen bonds and π…π interactions. The peak positions of the experimental PXRD pattern are in agreement with the simulated ones from the crystal structure, indicating phase purity of the title compound. The presence of the different functional groups and the nature of their vibrations were identified by ATR-FTIR and FT-Raman spectroscopies. The tetrahedral environment of Co2+ was confirmed by UV-visible spectroscopy, where the spectrum shows three weak absorption bands in the visible range due to d-d electronic transitions 4A2(F) → 4T2(F), 4A2(F) → 4T1(F) and 4A2(F) → 4T1(P) typical of Co(II) coordination compounds. The direct and indirect optical band gap values were determined by Tauc method. The optimized structure and calculated vibrational frequencies were obtained by density functional theory (DFT) using B3LYP functional. TGA and DSC coupled to mass spectrometry (MS) experiments under argon atmosphere in the temperature range (25-950 °C) were carried out in order to determine the thermal stability of the title compound.
Collapse
Affiliation(s)
- S Hassen
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, 2092 El Manar II, Tunis, Tunisia
| | - H Chebbi
- University of Tunis, Preparatory Institute for Engineering Studies of Tunis, Street Jawaher Lel Nehru, 1089 Montfleury, Tunis, Tunisia; University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia.
| | - Y Arfaoui
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, 2092 El Manar II, Tunis, Tunisia
| | - K Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - T Steenhaut
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - S Hermans
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Y Filinchuk
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Oprea S, Potolinca VO, Oprea V, Diaconu LI. Structure–properties relationship of the polyurethanes that contain Schiff base in the main chain. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008319901152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article studies the diversification of useful properties of polyurethane (PU) structures by the inclusion of new components. PUs containing a Schiff base in the main chain were synthesized by using N, N′-bis(salicylidene)-1,3-propanediamine as a chain extender. Novel Schiff base PUs were synthesized via a two-step polymerization starting from a Schiff base derivative diol chain extender with different molar ratios or by cross-linking with various natural raw materials. The sought after structures was confirmed by Fourier transform infrared spectra that showed the disappearance of the signals of both the hydroxyl and isocyanate groups. The thermal properties of these PUs were investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The initial degradation temperatures of the obtained PUs were found to be in the range of 300–350°C. Based on the results from DMA, the rigid structure of the Schiff base from the backbone of the PUs presented a higher storage modulus, results which may be connected to the physical cross-linking process of the macromolecules. Their optical properties were determined by fluorescence spectroscopy. The incorporation of Schiff base structures into the main PU chain generates new PU structures with improved thermomechanical properties, which includes possible bioactive Schiff base moieties, widening the range of practical applications for such polymers.
Collapse
Affiliation(s)
- Stefan Oprea
- Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| | | | - Veronica Oprea
- Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | | |
Collapse
|
34
|
Dos Santos TM, Martins CC, Bueno DT, Nunes IJ, Busatto FF, Cargnelutti R, Luchese C, de Lazaro Casagrande O, Saffi J, Wilhelm EA, Pinheiro AC. Synthesis, molecular structure and antioxidant activity of bis [L(μ 2-chloro)copper(II)] supported by phenoxy/naphthoxy-imine ligands. J Inorg Biochem 2020; 210:111130. [PMID: 32563104 DOI: 10.1016/j.jinorgbio.2020.111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
A new series of Cu(II) complexes [bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2,4-tert-butyl-2-OC6H2)}Cu(II)] (Cu1); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu2); bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2-(OC10H6)} Cu(II)] (Cu3); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2-(OC10H6)}Cu(II)] complex (Cu4); bis[{2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu5)] have been synthesized and characterized by elemental analysis, IR, UV-Visible and by X-ray crystallography for Cu1, Cu4 and Cu5. In the solid state, Cu1 features of a chloro-bridged dimer complex with κ2 coordination of the monoanionic phenoxy-imine ligand onto the copper center. On the other hand, the molecular structure of Cu4 reveals the naphthoxy-imine ligand with pendant S-group coordinated to the copper atom in tridentate meridional fashion. Treatment of [Cu(OAc)2·H2O] with two equiv. of [2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(HOC6H2)] led to a monomeric complex Cu5, with the ONS-donor Schiff base acting as a bidentate ligand. The redox behavior was explored by cyclic voltammetry. The reduction/oxidation potential of Cu(II) complexes depends on the structure and conformation of the central atom in the coordination compounds. Antioxidant activities of the complexes, Cu1 - Cu5, were determined by in vitro assays such as 1,1-diphenyl-2-picryl-hydrazyl free radicals (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS+). The dinuclear compounds Cu1-Cu4, from the concentration of 5 μM, presented a good activity in scavenging DPPH radical. In addition, most of the Cu(II) complexes showed ABTS.+ radical-scavenging activity. The monomeric complex Cu5 at all concentrations tested showed antioxidant inability. The cytotoxicity of the Cu1 and Cu3 was determined in V79 cell line by reduction of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Tamara Machado Dos Santos
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Carolina Cristovão Martins
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Danielle Tapia Bueno
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Ianka Jacondino Nunes
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Franciele Faccio Busatto
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratório de Catálise Molecular, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 90501-970, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Adriana Castro Pinheiro
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil.
| |
Collapse
|
35
|
Radha VP, Chitra S, Jonekirubavathi S, Chung IM, Kim SH, Prabakaran M. Transition metal complexes of novel binuclear Schiff base derived from 3,3′-diaminobenzidine: synthesis, characterization, thermal behavior, DFT, antimicrobial and molecular docking studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1752372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Subramanian Chitra
- Department of Chemistry, P.S.G.R. Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | | | - Ill-Min Chung
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul, South Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul, South Korea
| | - Mayakrishnan Prabakaran
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
36
|
El-Shwiniy WH, Shehab WS, Zordok WA. Spectral, thermal, DFT calculations, anticancer and antimicrobial studies for bivalent manganese complexes of pyrano [2,3-d]pyrimidine derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Salih PAŞA. Synthesis and characterization of di-Schiff based boronic structures: Therapeutic investigation against cancer and implementation for antioxidant. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Nartop D, Özkan EH, Gündem M, Çeker S, Ağar G, Öğütcü H, Sarı N. Synthesis, antimicrobial and antimutagenic effects of novel polymeric-Schiff bases including indol. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Dar OA, Lone SA, Malik MA, Wani MY, Talukdar MIA, Al‐Bogami AS, Hashmi AA, Ahmad A. Heteroleptic transition metal complexes of Schiff‐base‐derived ligands exert their antifungal activity by disrupting membrane integrity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ovas Ahmad Dar
- Department of ChemistryJamia Millia Islamia New Delhi 110025 India
| | - Shabir Ahmad Lone
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg 2193 South Africa
| | | | - Mohmmad Younus Wani
- Chemistry Department, Faculty of ScienceUniversity of Jeddah Jeddah Kingdom of Saudi Arabia
| | | | | | | | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg 2193 South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic HospitalNational Health Laboratory Service Johannesburg 2193 South Africa
| |
Collapse
|
40
|
Paşa S, Erdoğan Ö, Yenisey Ç. Synthesis and structural identification of boron based Schiff compounds with Ishikawa endometrial cancer and antioxidant activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Abstract
Two diazine Schiff base ligands, HLa and HLb, derived from thiocarbohydrazide and salicylaldehyde derivatives were synthesized using the microwave-assisted synthesis approach. The confirmation of both ligands was elucidated through physiochemical and spectroscopy techniques as well as single X-ray crystallography diffraction. The analyses showed that the ligands synthesized were formed as azine instead of thiocarbohydrazone based on the missing thione, C=S moiety, throughout FTIR and NMR spectrascopic data. This finding was further concluded by X-ray crystal analysis. The biological properties of these ligands were screened using the disc diffusion method. The result shows that HLb shows significant inhibition towards all of the bacteria tested.
Collapse
|
42
|
Novel benzildihydrazone based Schiff bases: Syntheses, characterization, thermal properties, theoretical DFT calculations and biological activity studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Assembly and weak interactions in the crystal structure of 2-amino-4-(3-bromophenyl)-1,3,5-triazinobenzimidazolium chloride studied by X-ray diffraction, vibrational spectroscopy, Hirshfeld surface analysis and DFT calculations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Dar OA, Lone SA, Malik MA, Wani MY, Ahmad A, Hashmi AA. New transition metal complexes with a pendent indole ring: insights into the antifungal activity and mode of action. RSC Adv 2019; 9:15151-15157. [PMID: 35514852 PMCID: PMC9064211 DOI: 10.1039/c9ra02600b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Development of new chemotherapeutic agents to treat multidrug-resistant fungal infections to augment the current treatment options is a must. In this direction, a series of mixed ligand complexes was synthesized from a Schiff base (L) obtained by the condensation of 2-hydroxynapthaldehyde and tryptamine, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. Based on spectral characterization and physical measurements an octahedral geometry was assigned to [Co(phen)LClH2O] (C2), [Ni(phen)LClH2O](C3), and [Zn(phen)LClH2O](C4) complexes while a distorted octahedral geometry was assigned to the [Cu(phen)LClH2O](C1) complex. All the synthesized compounds were tested for antifungal activity against 11 Candida albicans isolates, including fluconazole (FLC) resistant isolates, by determining minimum inhibitory concentrations and studying growth curves. MIC results suggest that all the newly synthesized compounds have potent antifungal activity at varying levels. The rapid action of these compounds on fungal cells suggested a membrane-located target for their action. Mixed ligand complexes containing a pendent indole showed significant proton pump ATPase targeted antifungal activity.![]()
Collapse
Affiliation(s)
- Ovas Ahmad Dar
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Shabir Ahmad Lone
- Clinical Microbiology and Infectious Diseases
- School of Pathology
- Faculty of Health Sciences
- University of the Witwatersrand
- Johannesburg
| | | | - Mohmmad Younus Wani
- Chemistry Department
- Faculty of Science
- University of Jeddah
- Jeddah 21589
- Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases
- School of Pathology
- Faculty of Health Sciences
- University of the Witwatersrand
- Johannesburg
| | | |
Collapse
|
45
|
Synthesis, characterization, anticancer and antibacterial evaluation of Schiff base ligands derived from hydrazone and their transition metal complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Mohapatra RK, Das PK, Pradhan MK, Maihub AA, El-ajaily MM. Biological aspects of Schiff base–metal complexes derived from benzaldehydes: an overview. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018; 15:2193-2227. [DOI: 10.1007/s13738-018-1411-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/25/2018] [Indexed: 01/26/2023]
|
47
|
El-Attar MS. Spectroscopic, thermal analysis, and nematicidal evaluation of new mixed ligand complexes of bidentate Schiff base and 1,10 phenanthroline with some transition metals. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mohamed S. El-Attar
- Chemistry Department, Faculty of Science; Zagazig University; Zagazig Egypt
- Chemistry Department, Faculty of Science; Jazan University; Jazan Saudi Arabia
| |
Collapse
|
48
|
Synthesis, crystal structure, electrochemical properties and DFT calculations of three new Zn(II), Ni(II) and Co(III) complexes based on 5-bromo-2-((allylimino)methyl)phenol Schiff-based ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Dehkhodaei M, Sahihi M, Rudbari HA, Gharaghani S, Azadbakht R, Taheri S, Kajani AA. Studies of DNA- and HSA-binding properties of new nano-scale green synthesized Ni (II) complex as anticancer agent using spectroscopic methods, viscosity measurement, molecular docking, MD simulation and QM/MM. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Abd El-Halim HF, Mohamed GG, Anwar MN. Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3899] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- H. F. Abd El-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy; Misr International University; Cairo Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | - Mahmoud N. Anwar
- Chemist; El-Nasr Co. for Intermediate Chemicals (NCIC); Giza Egypt
| |
Collapse
|