1
|
Wang B, Zhao W, Wang L, Kang K, Li X, Zhang D, Ren J, Ji X. Binary-amplifying electrochemiluminescence sensor for sensitive assay of catechol and luteolin based on HKUST-1 derived CuO nanoneedles as a novel luminophore. Talanta 2024; 273:125836. [PMID: 38458080 DOI: 10.1016/j.talanta.2024.125836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 03/10/2024]
Abstract
Herein, a highly novel and effective electrochemiluminescence (ECL) sensor based on metal-organic framework (MOF, HKUST-1) derived CuO nanoneedles (HKUST-1 derived CuO NNs), gold nanoparticles (AuNPs) and TiO2 was developed for ultrasensitive detection of catechol and luteolin. The HKUST-1 derived CuO NNs were employed as luminophore for the first time, which were successfully fabricated by using HKUST-1 as precursor. The results revealed that the HKUST-1 derived CuO NNs exhibit excellent ECL activity ascribed to its abundant active site and the high specific surface area, thus obviously promoting the separation and transfer of charge and further improving the current density of ECL sensor. To binary-amplify the signal of the ECL sensor, the AuNPs and TiO2 nano-materials with good biocompatibility, great electron transport efficiency and high catalytic activity were used as co-reaction accelerators in the ECL process. Dependent on the above brilliant strategy, the proposed ECL sensor achieved wide linear ranges from 3 × 10-9 - 1 × 10-4 M for catechol and 1 × 10-8 - 2 × 10-4 M for luteolin, with the detection limits of 1.5 × 10-9 M for catechol and 5.3 × 10-9 M for luteolin, respectively. Furthermore, the ECL sensor exhibited outstanding selectivity, repeatability, stability and obtained great feedback on determination of catechol and luteolin in actual samples. The method not only filled a gap in the ECL application of MOF-derived materials but also provided a novel sight for design other highly efficient luminescent materials.
Collapse
Affiliation(s)
- Beibei Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenrui Zhao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lin Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kai Kang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xianrui Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Duo Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Nangare S, Patil P. Poly(allylamine) coated layer-by-layer assembly decorated 2D carbon backbone for highly sensitive and selective detection of Tau-441 using surface plasmon resonance biosensor. Anal Chim Acta 2023; 1271:341474. [PMID: 37328252 DOI: 10.1016/j.aca.2023.341474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The determination of clinically significant amounts of tau protein in bodily fluids is a major problem in Alzheimer's disease (AD) diagnosis. As a result, the present work aims to develop a simple, label-free, fast, highly sensitive, and selective 2D carbon backbone graphene oxide (GO) patterned surface plasmon resonance (SPR) mediated affinity biosensor for Tau-441 monitoring. Initially, non-plasmonic nanosized GO was made using a modified Hummers' method, whereas green synthesized gold nanoparticles (AuNPs) were subjected to a layer-by-layer (LbL) design employing anionic and cationic polyelectrolytes. Several spectroscopical evaluations were carried out to ensure the synthesis of GO, AuNPs, and LbL assembly. Following that, the Anti-Tau rabbit antibody was immobilized on the designed LbL assembly using carbodiimide chemistry, and various studies such as sensitivity, selectivity, stability, repeatability, spiked sample analysis, etc., were conducted using the constructed affinity GO@LbL-AuNPs-Anti-Tau SPR biosensor. As an output, it shows a broad concentration range and a very low detection limit of 150 ng/mL to 5 fg/mL and 13.25 fg/mL, respectively. The remarkable sensitivity of this SPR biosensor represents the merits of a combination of plasmonic AuNPs and a non-plasmonic GO. It also exhibits great selectivity for Tau-441 in the presence of interfering molecules, which may be because of the immobilization of the Anti-Tau rabbit on the surface of the LbL assembly. Furthermore, it ensured high stability and repeatability, while spiked sample analysis and AD-induced animal samples analysis confirmed the practicability of GO@LbL-AuNPs-Anti-Tau SPR biosensor for Tau-441 detection. In conclusion, fabricated sensitive, selective, stable, label-free, quick, simple, and minimally invasive GO@LbL-AuNPs-Anti-Tau SPR biosensor will provide an alternative for AD diagnosis in the future.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Dhule, MS, India.
| |
Collapse
|
3
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
4
|
Gautam S, Qureshi KA, Jameel Pasha SB, Dhanasekaran S, Aspatwar A, Parkkila S, Alanazi S, Atiya A, Khan MMU, Venugopal D. Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030541. [PMID: 36978408 PMCID: PMC10044459 DOI: 10.3390/antibiotics12030541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) and a significant health concern worldwide. The main threat to the elimination of TB is the development of resistance by MTB to the currently used antibiotics and more extended treatment methods, which is a massive burden on the health care system. As a result, there is an urgent need to identify new, effective therapeutic strategies with fewer adverse effects. The traditional medicines found in South Asia and Africa have a reservoir of medicinal plants and plant-based compounds that are considered another reliable option for human beings to treat various diseases. Abundant research is available for the biotherapeutic potential of naturally occurring compounds in various diseases but has been lagging in the area of TB. Plant-based compounds, or phytoproducts, are being investigated as potential anti-mycobacterial agents by reducing bacterial burden or modulating the immune system, thereby minimizing adverse effects. The efficacy of these phytochemicals has been evaluated through drug delivery using nanoformulations. This review aims to emphasize the value of anti-TB compounds derived from plants and provide a summary of current research on phytochemicals with potential anti-mycobacterial activity against MTB. This article aims to inform readers about the numerous potential herbal treatment options available for combatting TB.
Collapse
Affiliation(s)
- Silvi Gautam
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (D.V.)
| | | | - Sugapriya Dhanasekaran
- Department of Molecular Analytics, Institute of Bioinformatics, SSE-SIMATS, Chennai 602105, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Samyah Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Divya Venugopal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, India
- Correspondence: (K.A.Q.); (D.V.)
| |
Collapse
|
5
|
Hidangmayum A, Debnath A, Guru A, Singh BN, Upadhyay SK, Dwivedi P. Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:1-26. [PMID: 36196301 PMCID: PMC9521565 DOI: 10.1007/s13762-022-04560-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 05/09/2023]
Abstract
The rise in environmental pollutant levels in recent years is mostly attributable to anthropogenic activities such as industrial, agricultural and other activities. Additionally, these activities may produce excessive levels of dangerous toxicants such as heavy metals, organic pollutants including pesticide and herbicide chemicals, and sewage discharges from residential and commercial sources. With a focus on environmentally friendly, sustainable technology, new technologies such as combined process of nanotechnology and bioremediation are urgently needed to accelerate the cost-effective remediation process to alleviate toxic contaminants than the conventional remediation methods. Numerous studies have shown that nanoparticles possess special qualities including improved catalysis and adsorption as well as increased reactivity. Currently, microorganisms and their extracts are being used as promising, environmentally friendly catalysts for engineered nanomaterial. In the long term, this combination of both technologies called nano-bioremediation may significantly alter the field of environmental remediation since it is more intelligent, safe, environmentally friendly, economical and green. This review provides an overview of soil and water remediation techniques as well as the use of nano-bioremediation, which is made from various living organisms. Additionally, current developments related to the mechanism, model and kinetic studies for remediation of agricultural contaminants have been discussed.
Collapse
Affiliation(s)
- A Hidangmayum
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - A Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - A Guru
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - B N Singh
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - S K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - P Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Mehdizadeh F, Barzegar-Jalali M, Izadi E, Osouli-Bostanabad K, Mohaghegh S, Shakeri MS, Nazemiyeh H, Omidi Y, Adibkia K. Green and chemical reduction approaches for facile pH-dependent synthesis of gold nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Mehdizadeh
- Research Center for Pharmaceutical Nanotechnology, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ebrahim Izadi
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Iran
| | - Karim Osouli-Bostanabad
- Research Center for Pharmaceutical Nanotechnology, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seraj Mohaghegh
- Research Center for Pharmaceutical Nanotechnology, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Phytosynthesis, characterization and catalytic activity of Sacha inchi leaf-assisted gold nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02075-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Hutchinson N, Wu Y, Wang Y, Kanungo M, DeBruine A, Kroll E, Gilmore D, Eckrose Z, Gaston S, Matel P, Kaltchev M, Nickel AM, Kumpaty S, Hua X, Zhang W. Green Synthesis of Gold Nanoparticles Using Upland Cress and Their Biochemical Characterization and Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:28. [PMID: 35009978 PMCID: PMC8746345 DOI: 10.3390/nano12010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/25/2023]
Abstract
This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of -36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.
Collapse
Affiliation(s)
- Noah Hutchinson
- Department of Biomedical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53202, USA;
| | - Yuelin Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Yale Wang
- Department of Mechanical Engineering, University of Milwaukee, Milwaukee, WI 53211, USA;
| | - Muskan Kanungo
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Anna DeBruine
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Emma Kroll
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - De’Jorra Gilmore
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Zachary Eckrose
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Stephanie Gaston
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Phoebe Matel
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Matey Kaltchev
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Anne-Marie Nickel
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
| | - Subha Kumpaty
- Department of Mechanical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53202, USA;
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Wujie Zhang
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| |
Collapse
|
9
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
10
|
Qadir A, Jahan S, Aqil M, Warsi MH, Alhakamy NA, Alfaleh MA, Khan N, Ali A. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing. Gels 2021; 7:gels7040209. [PMID: 34842674 PMCID: PMC8628765 DOI: 10.3390/gels7040209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Medicinal plants have been used since ancient times for their various therapeutic activities and are safer compared to modern medicines, especially when properly identifying and preparing them and choosing an adequate dose administration. The phytochemical compounds present in plants are progressively yielding evidence in modern drug delivery systems by treating various diseases like cancers, coronary heart disease, diabetes, high blood pressure, inflammation, microbial, viral and parasitic infections, psychotic diseases, spasmodic conditions, ulcers, etc. The phytochemical requires a rational approach to deliver the compounds to enhance the efficacy and to improve patients’ compatibility. Nanotechnology is emerging as one of the most promising strategies in disease control. Nano-formulations could target certain parts of the body and control drug release. Different studies report that phytochemical-loaded nano-formulations have been tested successfully both in vitro and in vivo for healing of skin wounds. The use of nano systems as drug carriers may reduce the toxicity and enhance the bioavailability of the incorporated drug. In this review, we focus on various nano-phytomedicines that have been used in treating skin burn wounds, and how both nanotechnology and phytochemicals are effective for treating skin burns.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
- Correspondence: or
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India;
| | - Athar Ali
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
11
|
Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. NANOMATERIALS 2021; 11:nano11082033. [PMID: 34443864 PMCID: PMC8400837 DOI: 10.3390/nano11082033] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Gholam Hosein Shahidi Bonjar
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Akbar Hosseinipour
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran;
| |
Collapse
|
12
|
Abstract
The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Collapse
|
13
|
Akintelu SA, Yao B, Folorunso AS. Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon 2021; 7:e06591. [PMID: 33869841 PMCID: PMC8035509 DOI: 10.1016/j.heliyon.2021.e06591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology and nanoscience are gaining remarkable attention in this era due to their distinctive properties and multi applications. Gold nanoparticles (AuNPs) is one of the most relevant metal nanoparticles with enormous applications in various field of research and industries. The demand for AuNPs is increasing rapidly. Extensive awareness has been allotted to the development of novel approaches for the synthesis of AuNPs with quality morphological properties using biological sources due to the limitations associated with the chemical and physical methods. Several factors such as contact time, temperature, pH of solution media, concentration of gold precursors and volume of plant extract influences the synthesis, characterization and applications of AuNPs. Characterization of synthesized AuNPs is important in evaluating the morphological properties of AuNPs since the morphological properties of AuNPs affect their potential use in various applications. This review highlights various methods of synthesizing AuNPs, parameters influencing the biosynthesis of AuNPs from plant extract, several techniques used for AuNPs characterization and their potential in bioremediation and biomedical applications.
Collapse
Affiliation(s)
- Sunday Adewale Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China.,Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | | |
Collapse
|
14
|
Tiyyagura HR, Majerič P, Bračič M, Anžel I, Rudolf R. Gold Inks for Inkjet Printing on Photo Paper: Complementary Characterisation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:599. [PMID: 33670845 PMCID: PMC7997470 DOI: 10.3390/nano11030599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
Nowadays, cost-effective, available, and flexible paper-based electronics play an essential role in the electronics industry. Herein, we present gold nanoparticles (AuNPs) as a potential raw material for gold inks in the future for such purposes. AuNPs in this research were synthesised using the ultrasonic spray pyrolysis (USP) technique from two precursors: gold (III) chloride tetrahydrate and gold (III) acetate. Synthesised AuNPs were collected in a suspension composed of deionised (D.I.) water and the stabiliser polyvinylpyrrolidone (PVP). AuNPs' suspensions were subjected to the rotavapor process to obtain gold inks with higher Au concentration (>300 ppm). ICP-MS measurements, the size and shape of AuNPs, ζ-potential, Ultraviolet-visible (UV-Vis) spectrophotometry measurements, and scanning electron microscop y (SEM) of gold inks were carried out in order to find the optimal printing parameters. In the final stage, the optical contact angle measurements were performed using a set of polar to non-polar liquids, allowing for the determination of the surface free energy of gold inks. Inkjet printing of gold inks as defined stripes on photo paper were tested, based on the characterisation results.
Collapse
Affiliation(s)
- Hanuma Reddy Tiyyagura
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (H.R.T.); (P.M.); (M.B.); (I.A.)
- Zlatarna Celje d.o.o., Kersnikova ulica 19, 3000 Celje, Slovenia
| | - Peter Majerič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (H.R.T.); (P.M.); (M.B.); (I.A.)
- Zlatarna Celje d.o.o., Kersnikova ulica 19, 3000 Celje, Slovenia
| | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (H.R.T.); (P.M.); (M.B.); (I.A.)
| | - Ivan Anžel
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (H.R.T.); (P.M.); (M.B.); (I.A.)
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (H.R.T.); (P.M.); (M.B.); (I.A.)
- Zlatarna Celje d.o.o., Kersnikova ulica 19, 3000 Celje, Slovenia
| |
Collapse
|
15
|
Wan H, Liu Z, He Q, Wei D, Mahmud S, Liu H. Bioreduction (Au III to Au 0) and stabilization of gold nanocatalyst using Kappa carrageenan for degradation of azo dyes. Int J Biol Macromol 2021; 176:282-290. [PMID: 33592261 DOI: 10.1016/j.ijbiomac.2021.02.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Colloidal gold nanoparticles (AuNPs) have been used in high technology applications due to their optical and electronic properties. Unfortunately, these broader applications are severely hampered by their agglomeration tendency and instability. Therefore, in this study, highly stable and aggregation resistant AuNPs were synthesized using Kappa carrageenan (κ-car) media (as a reducing and stabilizing agent) by a green synthesis protocol. The effect of different factors of reaction such as the concentration of κ-car (Cκ-car %), reaction time (t), temperature (T), and solution pH (here after simply define to 'reaction parameters') was studied by one-variable-at-a-time technique to optimize the yield production of AuNPs. The characterization of AuNPs synthesized at optimum conditions revealed that the particles are spherical in shapes, smaller in size (13.5 ± 5.1 nm) with a narrow distribution, highly crystalline (d-spacing = 0.230 nm) in nature, well stabilized (zeta potential = -22.1 mV) by coating by a thin layer of κ-car carbohydrate. The synthesized AuNPs reveal excellent catalytic function in the degradation (up to 99%) of azo-dyes. The kinetics study in the degradation reaction revealed that the technique could be extended to real wastewater treatment applications.
Collapse
Affiliation(s)
- Hong Wan
- School of Life Science, Wuchang University of Technology, Wuhan 430223, People's Republic of China
| | - Zihao Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Qiujing He
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Sakil Mahmud
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, Wuhan 430200, People's Republic of China.
| | - Huihong Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University, Wuhan 430200, People's Republic of China.
| |
Collapse
|
16
|
Gupta A, Pandey S, Yadav JS. A Review on Recent Trends in Green Synthesis of Gold Nanoparticles for Tuberculosis. Adv Pharm Bull 2020; 11:10-27. [PMID: 33747849 PMCID: PMC7961233 DOI: 10.34172/apb.2021.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/04/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a contagious disease that has affected mankind. The anti-TB treatment has been used from ancient times to control symptoms of this disease but these medications produced some serious side effects. Herbal products have been successfully used for the treatment of TB. Gold is the most biocompatible metal among all available for biomedical purposes so Gold nanoparticles (GNPs) have sought attention as an attractive biosynthesized drug to be studied in recent years for bioscience research. GNPs are used as better catalysts and due to unique small size, physical resemblance to physiological molecules, biocompatibility and non-cytotoxicity extensively used for various applications including drug and gene delivery. Greenly synthesized GNPs have much more potential in different fields because phytoconstituents used in GNP synthesis itself act as reducing and capping agents and produced more stabilized GNPs. This review is devoted to a discussion on GNPs synthesis with herbs for TB. The main focus is on the role of the natural plant bio-molecules involved in the bioreduction of metal salts during the GNPs synthesis with phytoconstituents used as antitubercular agents.
Collapse
Affiliation(s)
- Arti Gupta
- Uka Tarsadia University, Maliba Pharmacy College, Gopal Vidhya Nagar, Bardoli, Gujarat, India
| | - Sonia Pandey
- Uka Tarsadia University, Maliba Pharmacy College, Gopal Vidhya Nagar, Bardoli, Gujarat, India
| | | |
Collapse
|
17
|
Akintelu SA, Olugbeko SC, Folorunso AS. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00317-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int J Nanomedicine 2020; 15:7553-7568. [PMID: 33116487 PMCID: PMC7548233 DOI: 10.2147/ijn.s257499] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background A diabetic ulcer is one of the major causes of illness among diabetic patients that involves severe and intractable complications associated with diabetic wounds. Hence, a suitable wound-healing agent is urgently needed at this juncture. Greener nanotechnology is a very promising and emerging technology currently employed for the development of alternative medicines. Plant-mediated synthesis of metal nanoparticles has been intensively investigated and regarded as an alternative strategy for overcoming various diseases and their secondary complications like microbial infections. Hence, we are interested in developing phyto-engineered gold nanoparticles as useful therapeutic agents for the treatment of infectious diseases and wounds effectively. Methods and Results We have synthesized phyto-engineered gold nanoparticles from the aqueous extract of Acalypha indica and characterized using advanced bio-analytical techniques. The surface plasmon resonance feature and crystalline behavior of gold nanoparticles were revealed by ultraviolet-visible spectroscopy and X-ray diffraction, respectively. High-performance liquid chromatography analysis of the extract demonstrated the presence of different constituents, while major functional groups were interpreted by the Fourier-transform infrared spectroscopy as the various stretching vibrations appeared for important O-H (3443 cm−1), C=O (1644 cm−1) and C-O (1395 cm−1) groups. Scanning electron microscopy, high-resolution transmission electron microscopy results revealed a distribution of spherical and rod-like nanostructures with 20 nm of size. The gold nanoparticle-coated cotton fabric was evaluated for the antibacterial activity against Staphylococcus epidermidis and Escherichia coli bacterial strains which revealed remarkable inhibition at the zone of inhibition of 31 mm diameter against S. epidermidis. Further, antioxidant activity was tested for their free radical scavenging property, and the maximum antioxidant activity of the extract containing gold nanoparticles was found to be 80% at 100 µg/mL. The potent free radical scavenging property of the nanoparticles is observed at IC50 value 16.25 µg/mL. Moreover, in vivo wound-healing activity was carried out using BALB/c mice model with infected diabetic wounds and observed the stained microscopic images at different time intervals (day 2, day 7 and day 15). It was noted that in 15 days, the wound area is completely re-epithelialized due to the presence of different morphologies such as spherical, needle and triangle nanoparticles. The re-epithelialization layer is fully covered by nanoparticles on the wound area and also collagen filled in the scar tissue when compared with the control group. Conclusion The pharmacological evaluation results of the study indicated an encouraging antibacterial and antioxidant activity of the greener synthesized gold nanoparticles tethered with aqueous extract of Acalypha indica. Moreover, we demonstrated enhanced in vivo wound-healing efficiency of the synthesized gold nanoparticles through the animal model. Thus, the outcome of this work revealed that the phyto-engineered gold nanoparticles could be useful for biomedical applications, especially in the development of promising antibacterial and wound-healing agents.
Collapse
Affiliation(s)
- Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramalingam Ganesan
- Department of Chemistry, Arumugam Seethaiyammal Arts and Science College, Tiruppattur, Tamil Nadu, India
| | | | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
19
|
Chen J, Wei D, Liu Y, Xiong Y, Peng J, Mahmud S, Liu H. Gold/Konjac glucomannan bionanocomposites for catalytic degradation of mono-azo and di-azo dyes. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Leaf Extract of Dillenia indica as a Source of Selenium Nanoparticles with Larvicidal and Antimicrobial Potential toward Vector Mosquitoes and Pathogenic Microbes. COATINGS 2020. [DOI: 10.3390/coatings10070626] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chikungunya, dengue, Zika, malaria, Japanese encephalitis, filariasis, West Nile, etc. are mosquito transmitted diseases that have killed millions of people worldwide, and millions of people are at risk of these diseases. Control of the mosquitoes, such as Aedes aegypti and Culex quinquefasciatus, is challenging due to their development of resistance to synthetic insecticides. The habitats of the young mosquitoes are also the habitats for foodborne pathogens like Staphylococcus aureus (MTCC96) and Serratia marcescens (MTCC4822). The present study was aimed at synthesizing eco-friendly green nanoparticles using Dillenia indica leaf broth and analyzing its efficacy in controlling the vector mosquitoes A. aegypti and C. quinquefasciatus, as well as the microbial pathogens St. aureus and Se. marcescens. The formation of selenium nanoparticles (SeNps) was confirmed using UV-Vis spectroscopy (absorption peak at 383.00 nm), Fourier transform infrared radiation (FTIR spectrum peaks at 3177, 2114, 1614, 1502, 1340, 1097, 901, 705, and 508 cm−1), X-ray diffraction (diffraction peaks at 23.3 (100), 29.6 (101), 43.5 (012), and 50.05 (201)), and scanning electron microscopy (oval shaped). The size of the nanoparticles and their stability were analyzed using dynamic light scattering (Z-Average value of 248.0 nm) and zeta potential (−13.2 mV). The SeNps disorganized the epithelial layers and have broken the peritrophic membrane. Histopathological changes were also observed in the midgut and caeca regions of the SeNPs treated A. aegypti and C. quinquefasciatus larvae. The SeNps were also active on both the bacterial species showing strong inhibitory zones. The present results will explain the ability of SeNps in controlling the mosquitoes as well as the bacteria and will contribute to the development of multi potent eco-friendly compounds.
Collapse
|
21
|
Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK, Lambat TL, Ingle PP, Abdala AA. Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects. Curr Pharm Des 2020; 25:4013-4029. [PMID: 31713480 DOI: 10.2174/1381612825666191111091326] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The ever-growing resistance of pathogens to antibiotics and crop disease due to pest has triggered severe health concerns in recent years. Consequently, there is a need of powerful and protective materials for the eradication of diseases. Metal/metal oxide nanoparticles (M/MO NPs) are powerful agents due to their therapeutic effects in microbial infections. In this context, the present review article discusses the toxicity, fate, effects and applications of M/MO NPs. This review starts with an introduction, followed by toxicity aspects, antibacterial and testing methods and mechanism. In addition, discussion on the impact of different M/MO NPs and their characteristics such as size, shape, particle dissolution on their induced toxicity on food and plants, as well as applications in pesticides. Finally, prospective on current and future issues are presented.
Collapse
Affiliation(s)
- Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Commerce and Science, Kamptee, (Maharashtra)- 441001, India
| | - Ganesh S Bhusari
- Research and Development Division, Apple Chemie India Private Limited, Nagpur-441108, (Maharashtra), India
| | - Ashish D Tiple
- Department of Zoology, Vidyabharti College, Seloo, Wardha (Maharashtra), India
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts, Commerce and Science, Kamptee, (Maharashtra)-441001, India
| | - Subhash R Somkuvar
- Department of Botany, Dr. Ambedkar College, Nagpur, (Maharashtra)-440 010, India
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Commerce and Science, Kamptee, (Maharashtra)- 441001, India
| | - Trimurti L Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, Gondia 441901, Maharashtra, India
| | - Prashant P Ingle
- Saibaba Arts and Science College, Parseoni, (Maharashtra)-441105, India
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, POB 23784, Doha, Qatar
| |
Collapse
|
22
|
Boomi P, Poorani GP, Selvam S, Palanisamy S, Jegatheeswaran S, Anand K, Balakumar C, Premkumar K, Prabu HG. Green biosynthesis of gold nanoparticles using
Croton sparsiflorus leaves
extract and evaluation of UV protection, antibacterial and anticancer applications. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pandi Boomi
- Department of BioinformaticsAlagappa University Karaikudi 630003 Tamil Nadu India
| | | | - Samayanan Selvam
- Department of Chemical and Biochemical EngineeringDongguk University‐Seoul Seoul 04620 Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon 210‐702 Republic of Korea
| | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and TextileZhejiang Sci‐Tech University, Xiasha Higher Education Park Hangzhou 310018 P.R. China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory ServiceUniversity of the Free State Bloemfontein South Africa
| | - Chandrasekaran Balakumar
- Faculty of Pharmacy, Philadelphia University, P. O. Box ‐ 1Philadelphia University (19392) Jordan
| | - Kumpati Premkumar
- Department of Biomedical ScienceBharathidasan University Tiruchirappalli 620024 India
| | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical SciencesAlagappa University Karaikudi 630003 Tamil Nadu India
| |
Collapse
|
23
|
A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules 2019; 24:molecules24234354. [PMID: 31795265 PMCID: PMC6930476 DOI: 10.3390/molecules24234354] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.
Collapse
|
24
|
Sivasankar P, Poongodi S, Seedevi P, Kalaimurugan D, Sivakumar M, Loganathan S. Nanoparticles from Actinobacteria: A Potential Target to Antimicrobial Therapy. Curr Pharm Des 2019; 25:2626-2636. [PMID: 31603056 DOI: 10.2174/1381612825666190709221710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Nanoparticles have gained significant importance in the past two decades, due to their multifaceted applications in the field of nanomedicine. As our ecosystems and habitats are changing due to global warming, many new diseases are emerging continuously. Treating these costs a lot of money and mostly ends up in failure. In addition, frequent use of antibiotics to control the emerging diseases has led the pathogens to develop resistance to antibiotics. Hence, the nanoparticles are targeted to treat such diseases instead of the costly antibiotics. In particular, the biosynthesized nanoparticles have received considerable attention due to their simple, eco-friendly and promising activity. To highlight, microbial mediated nanoparticles have been found to possess higher activity and thus have a promising role in antimicrobial therapy to fight against the emerging drug-resistant pathogens. In this context, this review article is aimed at highlight the role of nanoparticles in the field of nanomedicine and importance of actinobacteria in the nanoparticle synthesis and their need in antimicrobial therapy. This is a comprehensive review, focusing on the potential of actinobacteria-mediated nanoparticles in the field of nanomedicine.
Collapse
Affiliation(s)
- Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Subramaniam Poongodi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Palaniappan Seedevi
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Murugesan Sivakumar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Sivakumar Loganathan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| |
Collapse
|
25
|
Gold Nanoparticles Biosynthesized Using Ginkgo biloba Leaf Aqueous Extract for the Decolorization of Azo-Dyes and Fluorescent Detection of Cr(VI). J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01673-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Boomi P, Ganesan R, Poorani G, Gurumallesh Prabu H, Ravikumar S, Jeyakanthan J. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:202-210. [DOI: 10.1016/j.msec.2019.01.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
|
27
|
Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00006-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Rapid Room-Temperature Synthesis of Gold Nanoparticles Using Sargentgloryvine Stem Extract and Their Photocatalytic Activity. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0985-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Metabolite Profiles, Bioactivity, and HPLC Fingerprint of Different Varieties of Eucommia ulmoides Oliv.: Towards the Utilization of Medicinal and Commercial Chinese Endemic Tree. Molecules 2018; 23:molecules23081898. [PMID: 30061494 PMCID: PMC6222369 DOI: 10.3390/molecules23081898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022] Open
Abstract
Eucommia ulmoides Oliv. is widely regarded in China as a precious medicinal and commercial endemic tree. Due to cross-breeding or natural variation of E. ulmoides, the metabolite composition may vary significantly, making control of the medical quality difficult. In order to improve the rational development and utilization, the quality of seven varieties of E. ulmoides were evaluated based on metabolite profiles (total phenolic, total flavonoid, gutta-percha, aucubin, geniposidic acid, chlorogenic acid, geniposide, pinoresinol diglucoside, rutin, hyperoside, and astragalin), bioactivities (in vitro, in vivo antioxidant activities, and antibacterial activities) and HPLC fingerprint combined with chemometrics analysis. On this basis, the differences of medicinal parts (leaf and bark) were further carried out. For the traditional use of bark, Purple-leaf E. ulmoides was the most suitable. For the use of leaf, Qinzhong 1 and Purple-leaf E. ulmoides were appropriate. HPLC fingerprint analysis showed that significant differences in metabolite profiles exist among seven varieties of E. ulmoides. Combined with chemometrics analysis, seven varieties of E. ulmoides were divided into three groups from the use of leaf and bark. The analysis not only evaluated quality of seven varieties of E. ulmoides, but also could distinguish different varieties and different regions of origin. The results can provide theoretical basis for E. ulmoides resources utilization and cultivation of fine varieties.
Collapse
|
30
|
Luo Q, Su W, Li H, Xiong J, Wang W, Yang W, Du J. Antibacterial activity and catalytic activity of biosynthesised silver nanoparticles by flavonoids from petals of
Lilium casa blanca. MICRO & NANO LETTERS 2018. [DOI: 10.1049/mnl.2018.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qiushui Luo
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of NanchangNanchang330045People's Republic of China
| | - Weiwei Su
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
| | - Haimin Li
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
| | - Jianhua Xiong
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of NanchangNanchang330045People's Republic of China
| | - Wenjun Wang
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of NanchangNanchang330045People's Republic of China
| | - Wuying Yang
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of NanchangNanchang330045People's Republic of China
| | - Juan Du
- College of Food Science and EngineeringJiangxi Agricultural UniversityNanchang330045People's Republic of China
- Key Lab for Agro‐products Processing & Quality Control of NanchangNanchang330045People's Republic of China
| |
Collapse
|
31
|
Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10164-10183. [PMID: 28815433 DOI: 10.1007/s11356-017-9912-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 05/02/2023]
Abstract
Nanotechnology is a rapidly growing scientific field and has attracted a great interest over the last few years because of its abundant applications. Green nanotechnology is a multidisciplinary field that has emerged as a rapidly developing research area, serving as an important technique that emphasize on making the procedure which are clean, non-hazardous, and especially environmentally friendly, in contrast with chemical and physical methods currently employed for nanosynthesis. The biogenic routes could be termed green as these do not involve the use of highly toxic chemicals or elevated energy inputs during the synthesis. Differences in the bio-reducing agents employed for nanosynthesis can lead to the production of nanoparticles (NPs) having distinct shapes, sizes, and bioactivity. The exquitiveness of the green fabricated NPs have capacitated their potential applications in various sectors such as biomedicine, pharmacology, food science, agriculture, and environmental engineering. The present review summarizes current knowledge on various biogenic synthesis methods, relying on plants, waste biomass, and biopolymers and their reducing and stabilizing agents to fabricate nanomaterials. The main emphasis has been given on the current status and future challenges related to the wide-scale fabrication of nanoparticles for environmental remediation, pathogenicity, and agricultural applications.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jaya Mary Jacob
- Department of Biotechnology and Biochemical Engineering, Sree Buddha College of Engineering, APJ Abdul Kalam Kerala Technological University, Thiruvananthapuram, India
| | - Arivalagan Pugazhendhi
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mukesh Bhaisare
- Department of Marine Environmental Engineering, National Kaoshung Marine University, Kaohsiung City, Taiwan
| | - Gopalakrishanan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
32
|
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184:537-556. [PMID: 29674080 DOI: 10.1016/j.talanta.2018.02.088] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology are as a result of the development of engineered nanoparticles. Efficiently, metallic nanoparticles have been widely exploited for biomedical application and among them, gold nanoparticles (AuNPs) are highly remarkable. Consequent upon their significant nature, spherical and gold nanorods (Au NRs) nanoparticles attract extreme attention. Their intrinsic features such as optical, electronic, physicochemical and, surface plasmon resonance (SPR); which can be altered by changing the characterizations of particles such as shape, size, aspect ratio, or environment; ease of synthesis and functionalization properties have resulted to various applications in different fields of biomedicine such as sensing, targeted drug delivery, imaging, photothermal and photodynamic therapy as well as the modulation of two or three applications. This article reviewed the popular AuNPs synthesis methods and mentioned their established applications in various demands, especially in biological sensing.
Collapse
Affiliation(s)
- Narges Elahi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:33-39. [DOI: 10.1016/j.jphotobiol.2017.10.017] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 01/18/2023]
|
34
|
Gold-Carboxymethyl Cellulose Nanocomposites Greenly Synthesized for Fluorescent Sensitive Detection of Hg(II). J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1317-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Thangaraj V, Mahmud S, Li W, Yang F, Liu H. Greenly synthesised silver‐alginate nanocomposites for degrading dyes and bacteria. IET Nanobiotechnol 2017; 12:47-51. [PMCID: PMC8676198 DOI: 10.1049/iet-nbt.2017.0074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 08/15/2023] Open
Abstract
The environmentally friendly synthesis of silver nanoparticles (AgNPs) has been achieved employing silver nitrate and sodium alginate (SA) without using other chemicals except for sodium hydrate. In the synthesis process, SA functions as both reductive and stabilising agent. The as‐synthesised AgNPs size can be controlled just changing the reactive parameters such as the concentration of silver nitrate and SA, the solution pH, the reaction temperature and time. Formation of AgNPs was observed by the colour change in the reaction medium which was further established with UV–Vis spectroscopy. The characterisation of AgNPs infers that the as‐synthesised AgNPs with an average size of 8.2 nm were spherical in shape and a face cubic crystal structure. The AgNPs‐SA beads were easily prepared using AgNPs‐SA nanocomposites due to SA crosslinking with metal ions. The catalytic efficiency of the resulting AgNPs beads is evaluated for the reduction of dyes such as 4‐nitrophenol, methylene blue and reactive red in the presence of NaBH4. Antibacterial efficacy of AgNPs was analysed against gram‐negative Escherichia Coli and gram‐positive Staphylococcus aureus by measuring the zones of inhibition on the solid growth medium. The as‐synthesised AgNPs have shown efficient inhibitory activity against the tested bacterial strains.
Collapse
Affiliation(s)
- Venkatesh Thangaraj
- Center of Analysis and MeasurementWuhan Textile UniversityWuhan430200People's Republic of China
| | - Skail Mahmud
- Center of Analysis and MeasurementWuhan Textile UniversityWuhan430200People's Republic of China
| | - Wei Li
- Center of Analysis and MeasurementWuhan Textile UniversityWuhan430200People's Republic of China
| | - Feng Yang
- Center of Analysis and MeasurementWuhan Textile UniversityWuhan430200People's Republic of China
| | - Huihong Liu
- Center of Analysis and MeasurementWuhan Textile UniversityWuhan430200People's Republic of China
| |
Collapse
|
36
|
Du J, Zhou Z, Zhang X, Wu S, Xiong J, Wang W, Luo Q. Biosynthesis of Gold Nanoparticles by Flavonoids from Lilium casa blanca. J CLUST SCI 2017. [DOI: https://doi.org/10.1007/s10876-017-1282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Du J, Zhou Z, Zhang X, Wu S, Xiong J, Wang W, Luo Q. Biosynthesis of Gold Nanoparticles by Flavonoids from Lilium casa blanca. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1282-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Santhoshkumar J, Rajeshkumar S, Venkat Kumar S. Phyto-assisted synthesis, characterization and applications of gold nanoparticles - A review. Biochem Biophys Rep 2017; 11:46-57. [PMID: 28955767 PMCID: PMC5614687 DOI: 10.1016/j.bbrep.2017.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology is the formation, running and use of operation at the nanomaterial size scale (1-100 nm). Nanoscale materials can also be obtained by biological synthesis materials via eco-friendly green chemistry based technique. Current development and numerous strategies involved in the green synthesis of nanoparticles were focussed. This review mainly focused on plants which include scientific name, family name, common name, plant parts, its characterization, size and shape of the nanoparticles. Plant extract which was done experimentally gives its various characterization which leads to the identification of compounds of different nano size and shape. Biosynthesis of gold nanoparticles is in different shapes like spherical, rod, cubic, triangle and also in different sizes. Various application and importance of gold nanoparticles in numerous fields were discussed. The mark of the review is to provide an overview of recent learning in biosynthesized nanoparticles, its characterization and their potential applications.
Collapse
Affiliation(s)
- J Santhoshkumar
- School of Bio-Sciences and Technology, VIT University, Vellore 632014, TN, India
| | - S Rajeshkumar
- School of Bio-Sciences and Technology, VIT University, Vellore 632014, TN, India
| | - S Venkat Kumar
- School of Bio-Sciences and Technology, VIT University, Vellore 632014, TN, India
| |
Collapse
|
39
|
Keshavamurthy M, Srinath BS, Rai VR. Phytochemicals-mediated green synthesis of gold nanoparticles using Pterocarpus santalinus L. (Red Sanders) bark extract and their antimicrobial properties. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2017.1302533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Keshavamurthy
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - B. S. Srinath
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - V. Ravishankar Rai
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| |
Collapse
|
40
|
Elbagory AM, Cupido CN, Meyer M, Hussein AA. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles Using Microtitre-Plate Method. Molecules 2016; 21:E1498. [PMID: 27834835 PMCID: PMC6273790 DOI: 10.3390/molecules21111498] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
The preparation of gold nanoparticles (AuNPs) involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly nanoparticles. One approach to achieve this is the use of plant-derived phytochemicals that are capable of reducing gold ions to produce AuNPs. The aim of this study was to implement a facile microtitre-plate method to screen a large number of aqueous plant extracts to determine the optimum concentration (OC) for the bio-synthesis of the AuNPs. Several AuNPs of different sizes and shapes were successfully synthesized and characterized from 17 South African plants. The characterization was done using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy. We also studied the effects of temperature on the synthesis of the AuNPs and showed that changes in temperatures affect the size and dispersity of the generated AuNPs. We also evaluated the stability of the synthesized AuNPs and showed that some of them are stable in biological buffer solutions.
Collapse
Affiliation(s)
- Abdulrahman M Elbagory
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa.
| | - Christopher N Cupido
- South African National Biodiversity Institute, Compton Herbarium, Private bag X7, Claremont 7735, South Africa.
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa.
| | - Ahmed A Hussein
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa.
| |
Collapse
|
41
|
Ahmed S, Annu, Ikram S, Yudha S S. Biosynthesis of gold nanoparticles: A green approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:141-53. [PMID: 27236049 DOI: 10.1016/j.jphotobiol.2016.04.034] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022]
Abstract
Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Bio/polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| | - Annu
- Bio/polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Saiqa Ikram
- Bio/polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| | - Salprima Yudha S
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Indonesia
| |
Collapse
|
42
|
Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine 2016; 11:1899-906. [PMID: 27217752 PMCID: PMC4862354 DOI: 10.2147/ijn.s98339] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods, Arthroderma fulvum was identified as the most effective fungal strain for synthesizing AgNPs. The UV-visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including Candida spp., Aspergillus spp., and Fusarium spp., especially Candida spp.
Collapse
Affiliation(s)
- Baiji Xue
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Song Gao
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Dongyang Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Koji Yokoyama
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
43
|
Ramalingam V, Revathidevi S, Shanmuganayagam T, Muthulakshmi L, Rajaram R. Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells. RSC Adv 2016. [DOI: 10.1039/c5ra26781a] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of biogenic synthesized AuNPs have been proven to have excellent anticancer activity against A549 human lung cancer cells.
Collapse
Affiliation(s)
- V. Ramalingam
- DNA Barcoding and Marine Genomics Laboratory
- Department of Marine Science
- School of Marine Sciences
- Bharathidasan University
- Tiruchirappalli – 620 024
| | - S. Revathidevi
- Department of Genetics
- Institute of Basic Medical Sciences
- Madras University
- Chennai – 600 113
- India
| | | | | | - R. Rajaram
- DNA Barcoding and Marine Genomics Laboratory
- Department of Marine Science
- School of Marine Sciences
- Bharathidasan University
- Tiruchirappalli – 620 024
| |
Collapse
|
44
|
Gan J, Wei X, Li Y, Wu J, Qian K, Liu B. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1715-23. [DOI: 10.1016/j.nano.2015.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
|