1
|
Wang Z, Zhang CM, Li YF. Influence of suspended particles and dissolved organic matters on virus enrichment in reclaimed water by two-step tangential flow ultrafiltration: Phenomena and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134494. [PMID: 38703688 DOI: 10.1016/j.jhazmat.2024.134494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Enteric virus concentration in large-volume water samples is crucial for detection and essential for assessing water safety. Certain dissolution and suspension components can affect the enrichment process. In this study, tangential flow ultrafiltration (TFUF) was used as an enrichment method for recovering enteric virus in water samples. Interestingly, the bacteriophage MS2 recovery in reclaimed water and the reclaimed water without particles were higher than that in ultrapure water. The simulated reclaimed water experiments showed that humic acid (HA) (92.16% ± 4.32%) and tryptophan (Try) (81.50 ± 7.71%) enhanced MS2 recovery, while the presence of kaolin (Kaolin) inhibited MS2 recovery with an efficiency of 63.13% ± 11.17%. Furthermore, Atomic force microscopy (AFM) revealed that the MS2-HA cluster and the MS2-Try cluster had larger roughness values on the membrane surface, making it difficult to be eluted, whereas MS2-Kaolin cluster had compact surfaces making it difficult to be eluted. Additionally, the MS2-HA cluster is bound to the membrane by single hydrogen bond with SO, whereas both the MS2-Try cluster and the MS2-Kaolin cluster are bound to the membrane by two hydrogen bonds, making eluting MS2 challenging. These findings have potential implications for validating standardized methods for virus enrichment in water samples.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yong-Fu Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Davies-Jones J, Davies PR, Graf A, Hewes D, Hill KE, Pascoe M. Photoinduced force microscopy as a novel method for the study of microbial nanostructures. NANOSCALE 2023; 16:223-236. [PMID: 38053416 DOI: 10.1039/d3nr03499b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A detailed comparison of the capabilities of electron microscopy and nano-infrared (IR) microscopy for imaging microbial nanostructures has been carried out for the first time. The surface sensitivity, chemical specificity, and non-destructive nature of spectroscopic mapping is shown to offer significant advantages over transmission electron microscopy (TEM) for the study of biological samples. As well as yielding important topographical information, the distribution of amides, lipids, and carbohydrates across cross-sections of bacterial (Escherichia coli, Staphylococcus aureus) and fungal (Candida albicans) cells was demonstrated using PiFM. The unique information derived from this new mode of spectroscopic mapping of the surface chemistry and biology of microbial cell walls and membranes, may provide new insights into fungal/bacterial cell function as well as having potential use in determining mechanisms of antimicrobial resistance, especially those targeting the cell wall.
Collapse
Affiliation(s)
- Josh Davies-Jones
- Cardiff Catalysis Institute, Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3A, UK.
| | - Philip R Davies
- Cardiff Catalysis Institute, Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3A, UK.
| | - Arthur Graf
- Cardiff Catalysis Institute, Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3A, UK.
| | - Dan Hewes
- Cardiff Catalysis Institute, Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3A, UK.
| | - Katja E Hill
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK.
| | - Michael Pascoe
- Cardiff Catalysis Institute, Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3A, UK.
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3BN, UK.
| |
Collapse
|
3
|
Zhou F, Liu Y, Xie W, Huang J, Liu F, Kong W, Zhao Z, Peng J. Recent advances and applications of laser-based imaging techniques in food crops and products: a critical review. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 37983168 DOI: 10.1080/10408398.2023.2283579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
To meet the growing demand for food quality and safety, there is a pressing need for fast and visible techniques to monitor the food crop and product production processing, and to understand the chemical changes that occur during these processes. Herein, the fundamental principles, instruments, and characteristics of three major laser-based imaging techniques (LBITs), namely, laser-induced breakdown spectroscopy, Raman spectroscopy, and laser ablation-inductively coupled plasma-mass spectrometry, are introduced. Additionally, the advances, challenges, and prospects for the application of LBITs in food crops and products are discussed. In recent years, LBITs have played a crucial role in mapping primary metabolites, secondary metabolites, nanoparticles, toxic metals, and mineral elements in food crops, as well as visualizing food adulteration, composition changes, pesticide residue, microbial contamination, and elements in food products. However, LBITs are still facing challenges in achieving accurate and sensitive quantification of compositions due to the complex sample matrix and minimal laser sampling quantity. Thus, further research is required to develop comprehensive data processing strategies and signal enhancement methods. With the continued development of imaging methods and equipment, LBITs have the potential to further explore chemical distribution mechanisms and ensure the safety and quality of food crops and products.
Collapse
Affiliation(s)
- Fei Zhou
- College of Standardization, China Jiliang University, Hangzhou, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Weiyue Xie
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China
| | - Zhangfeng Zhao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Fang C, Luo Y, Naidu R. Super-resolution Raman imaging towards visualisation of nanoplastics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5300-5310. [PMID: 37740357 DOI: 10.1039/d3ay01176c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Confocal Raman imaging can potentially identify and visualise microplastics and nanoplastics, but the imaging lateral resolution is hampered by the diffraction of the laser, making it difficult to analyse nanoplastics that are smaller than the laser spot and the lateral resolution limit (λ/2NA). Fortunately, once a nanoplastic is scanned to collect the spectrum via a position/pixel array as a spectrum matrix, akin to a hyperspectral matrix, the nanoplastic can be imaged by mapping the spectrum intensity as a pattern that is transcended axially and can be fitted as a 2D Gaussian surface. The Gaussian fitting and image re-construction by deconvolution can precisely predict the nanoplastic's position and approximate size, and potentially enhance the signal intensity. Several algorithms are also employed to decode the spectrum matrix, to improve the Raman images before the subsequent image re-construction. Overall, general confocal microscopy can also break through the diffraction limit of the excitation light by using algorithms, resulting in super-resolution Raman imaging to capture nanoplastics.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
5
|
Dumitru AC, Koehler M. Recent advances in the application of atomic force microscopy to structural biology. J Struct Biol 2023; 215:107963. [PMID: 37044358 DOI: 10.1016/j.jsb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The application of atomic force microscopy (AFM) for (functional) imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data on the system under study.
Collapse
Affiliation(s)
- Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany.
| |
Collapse
|
6
|
|
7
|
Structural and physicochemical properties of composites between starch nanoparticles and β-carotene prepared via nanoprecipitation. Int J Biol Macromol 2022; 214:100-110. [PMID: 35705125 DOI: 10.1016/j.ijbiomac.2022.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022]
Abstract
To apply starch nanoparticles (SNP) as host materials for β-carotene encapsulation, aqueous SNP dispersions (10, 25, 50, and 100 mg/10 mL) and β-carotene in acetone (10, 50, 100, 150, and 200 μg/mL) were mixed. The acetone in the mixture was evaporated to prepare SNP and β-carotene composites, which were homogeneously dispersed in aqueous media with over 90 % solubility. When SNP content was higher than 50 mg, over 80 % of β-carotene was encapsulated in the composite matrix. X-ray diffraction, nuclear magnetic resonance spectroscopy, and transmission electron microscopic analyses confirmed the micellar-shaped composite particles with diameters <120 nm and an amorphous structure. High SNP content in the composites enhanced β-carotene stability under extremely hot and acidic conditions as well as against ultraviolet rays and oxidation reactions. The encapsulated β-carotene was not readily released in simulated gastric fluid, but was gradually released in simulated intestinal fluid via SNP digestion in the composites.
Collapse
|
8
|
Thermal-induced impact on physicochemical property and bioaccessibility of β-carotene in aqueous suspensions fabricated by wet-milling approach. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Oleszkiewicz T, Kruczek M, Baranski R. Repression of Carotenoid Accumulation by Nitrogen and NH 4+ Supply in Carrot Callus Cells In Vitro. PLANTS (BASEL, SWITZERLAND) 2021; 10:1813. [PMID: 34579346 PMCID: PMC8471744 DOI: 10.3390/plants10091813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/15/2023]
Abstract
The effect of mineral nutrition on the accumulation of the main health beneficial compounds in carrots, the carotenoid pigments, remains ambiguous; here, a model-based approach was applied to reveal which compounds are responsible for the variation in carotenoid content in carrot cells in vitro. For this purpose, carotenoid-rich callus was cultured on either BI (modified Gamborg B5) or R (modified Murashige and Skoog MS) mineral media or on modified media obtained by exchanging compounds between BI and R. Callus growing on the BI medium had abundant carotene crystals in the cells and a dark orange color in contrast to pale orange callus with sparse crystals on the R medium. The carotenoid content, determined by HPLC and spectrophotometrically after two months of culture, was 5.3 higher on the BI medium. The replacement of media components revealed that only the N concentration and the NO3:NH4 ratio affected carotenoid accumulation. Either the increase of N amount above 27 mM or decrease of NO3:NH4 ratio below 12 resulted in the repression of carotenoid accumulation. An adverse effect of the increased NH4+ level on callus growth was additionally found. Somatic embryos were formed regardless of the level of N supplied. Changes to other media components, i.e., macroelements other than N, microelements, vitamins, growth regulators, and sucrose had no effect on callus growth and carotenoid accumulation. The results obtained from this model system expand the range of factors, such as N availability, composition of N salts, and ratio of nitrate to ammonium N form, that may affect the regulation of carotenoid metabolism.
Collapse
Affiliation(s)
- Tomasz Oleszkiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland; (M.K.); (R.B.)
| | | | | |
Collapse
|
10
|
Novikov VS, Kuzmin VV, Kuznetsov SM, Darvin ME, Lademann J, Sagitova EA, Ustynyuk LY, Prokhorov KA, Nikolaeva GY. DFT study of Raman spectra of polyenes and ß-carotene: Dependence on length of polyene chain and isomer type. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119668. [PMID: 33761387 DOI: 10.1016/j.saa.2021.119668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We carried out calculations of non-resonance Raman spectra of ß-carotene and polyenes CH2(CHCH)n-2CHCH2 using the density functional theory (DFT). We revealed that the peak positions and intensities of the CC and CC stretching bands depend on length of the polyene chain and type of the isomer. Our experimental non-resonance Raman spectra of ß-carotene powder match well the DFT-simulated Raman spectrum of ß-carotene in the all-trans form. The peak positions and relative intensities of the CC and CC stretching bands of ß-carotene turned out to be similar in the resonance and non-resonance Raman spectra. An increase in the number of conjugated double bonds (n = 3-30) in a polyene structure results in a monotonous shift of the positions of the most intense CC and CC bands towards lower wavenumbers with an increase in the band intensities. An increase in the isomer number results in the monotonous decrease of the CC stretching band intensity for polyenes with 9, 10, 11, 15 and 24 double bonds. An increase in the isomer number inhomogeneously influences the form, position and intensity of the CC stretching band.
Collapse
Affiliation(s)
- V S Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia.
| | - V V Kuzmin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - S M Kuznetsov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Sagitova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - L Yu Ustynyuk
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1(3), 119991 Moscow, Russia
| | - K A Prokhorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - G Yu Nikolaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
11
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
12
|
Miranda A, Gómez-Varela AI, Stylianou A, Hirvonen LM, Sánchez H, De Beule PAA. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology? NANOSCALE 2021; 13:2082-2099. [PMID: 33346312 DOI: 10.1039/d0nr07203f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal. and Department of Applied Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Humberto Sánchez
- Faculty of Applied Sciences, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| |
Collapse
|
13
|
Yang X, Liang J, Wu Q, Li M, Shan W, Zeng L, Yao L, Liang Y, Wang C, Gao J, Guo Y, Liu Y, Liu R, Luo Q, Zhou Q, Qu G, Jiang G. Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1134-1144. [PMID: 33356192 DOI: 10.1021/acs.est.0c05724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) has extensive applications in various fields. The release of BP into aquatic ecosystems and the potential toxic effects on aquatic organisms are becoming major concerns. Here, we investigated the developmental toxicity of few-layered BP toward the zebrafish. We found that BP could adsorb on the surface of the chorion and could subsequently penetrate within the embryo. After exposure of embryos to 10 mg/L BP, developmental malformations appeared at 96 hpf, especially heart deformities such as pericardial edema and bradycardia, accompanied by severe circulatory system failure. Using transgenic zebrafish larvae, we further characterized cardiovascular defects with cardiac enlargement and impaired cardiac vessels as indicators of damage to the cardiovascular system upon BP exposure. We performed transcriptomic analysis on zebrafish embryos treated with a lower concentration of 2 mg/L. The results showed disruption in genes associated with muscle development, oxygen involved processes, focal adhesion, and VEGF and MAPK signaling pathways. These alterations also indicated that BP carries a risk of developmental perturbation at lower concentrations. This study provides new insights into the effects of BP on aquatic organisms.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Light Microscopy and Raman Imaging of Carotenoids in Plant Cells In Situ and in Released Carotene Crystals. Methods Mol Biol 2021; 2083:245-260. [PMID: 31745927 DOI: 10.1007/978-1-4939-9952-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Light microscopy with a bright field mode offers an easy and fast examination of plant specimen for carotenoid presence in its cells. Using basic techniques such as hand sectioned or squashed preparations, carotenoid-rich chromoplasts can be identified without applying any staining procedure and their localization within the cell, their shape and number can be assessed. More detailed information can be obtained by using Raman spectroscopy which is suitable for the analysis of carotenoids due to their unique Raman spectra and allows semiquantification of their contents. Raman imaging (mapping) can be additionally used to show the distribution of carotenoids within the sample. Raman spectra can be taken from extracted carotenoids but can be also obtained directly from plant tissues or cells as Raman measurements are nondestructive for the sample. Here we describe preparations of intact tissue samples, monolayer cell samples, isolated protoplasts as well as carotene crystals released from chromoplasts that are suitable for subsequent observations using light microscopy and for analysis using Raman spectroscopy.
Collapse
|
15
|
Maia LF, De Oliveira VE, Edwards HGM, De Oliveira LFC. The Diversity of Linear Conjugated Polyenes and Colours in Nature: Raman Spectroscopy as a Diagnostic Tool. Chemphyschem 2020; 22:231-249. [PMID: 33225557 DOI: 10.1002/cphc.202000818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Indexed: 01/15/2023]
Abstract
This review is centered on the linear conjugated polyenes, which encompasses chromatic biomolecules, such as carotenoids, polyunsaturated aldehydes and polyolefinic fatty acids. The linear extension of the conjugated double bonds in these molecules is the main feature that determines the spectroscopic properties as light-absorbing. These classes of compounds are responsible for the yellow, orange, red and purple colors which are observed in their parent flora and fauna in nature. Raman spectroscopy has been used as analytical tool for the characterization of these molecules, mainly due to the strong light scattering produced by the delocalized pi electrons in the carbon chain. In addition, conjugated polyenes are one of the main target molecular species for astrobiology, and we also present a brief discussion of the use of Raman spectroscopy as one of the main analytical tools for the detection of polyenes extra-terrestrially.
Collapse
Affiliation(s)
- Lenize F Maia
- Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Universidade Federal de Juiz de Fora, Campus Universitário s/n - Martelos, Juiz de Fora-MG, 36033-620, Brazil
| | - Vanessa E De Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Campus Universitário de Rio das Ostras, Rua Recife, Lotes 1-7, Jardim Bela Vista, Rio das Ostras, RJ, 28895-532, Brazil
| | - Howell G M Edwards
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Luiz Fernando C De Oliveira
- Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Universidade Federal de Juiz de Fora, Campus Universitário s/n - Martelos, Juiz de Fora-MG, 36033-620, Brazil
| |
Collapse
|
16
|
Afrin S, Uddin MK, Rahman MM. Microplastics contamination in the soil from Urban Landfill site, Dhaka, Bangladesh. Heliyon 2020; 6:e05572. [PMID: 33294704 PMCID: PMC7701196 DOI: 10.1016/j.heliyon.2020.e05572] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Microplastics (MP) pollution has become a matter of global concern because of its several deleterious effects on environmental health, especially on the terrestrial environment. The evidence of MP contamination in terrestrial environment is less explored compared to aquatic bodies. However, in Bangladesh despite having high possibility of MP contamination, there is lacking of available research-based evidence. Urban areas soil is subjected to act as a major environmental reservoir for MPs. Thus, this study was carried out to investigate the presence of MP contamination in constructed landfill sites near Dhaka city, Bangladesh. Ten unmixed soil samples were collected from the Aminbazar Sanitary landfill sites, from that thirty replicated samples were investigated via Fourier Transform Infrared Spectroscopy (FT-IR) analysis and Stereomicroscope. The range of physicochemical parameters were found in the soil samples as follows: moisture content; 15.84%-56.54%; soil pH; 5.76-6.02, electric conductivity; 0.1 μs/cm - 2.43 μs/cm, alkalinity; 6.7 ± 1.528-14.33 ± 0.577, TOC; 0.18% ± 0.02-1.09 ± 0.03. Among the ten samples, 3 samples were identified to have the presence of MP in the form of Low density polyethylene (LDPE), High density polyethylene (HDPE), and Cellulose acetate (CA) respectively. The detection limit ranged from 1 - 2000 μm. Hence, the results show that the procurement and discharge of MPs in the landfills is an overlong process. The results of this study provide an initial evidence and affirm that landfill can be a potential source of MPs. This study indicates that MPs are comparatively overlong outcome of human induced activities which can significantly cause changes in terrestrial ecosystems.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
17
|
Fang C, Sobhani Z, Zhang X, Gibson CT, Tang Y, Naidu R. Identification and visualisation of microplastics/ nanoplastics by Raman imaging (ii): Smaller than the diffraction limit of laser? WATER RESEARCH 2020; 183:116046. [PMID: 32629180 DOI: 10.1016/j.watres.2020.116046] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
We recently reported (Sobhani et al., 2020) that when a confocal Raman microscope imaged a nanoplastic with the diameter of 100 nm, the imaging lateral size was 300-400 nm, due to the diffraction limit of the laser spot. In this study, we examine the lateral intensity distribution of the Raman signal emitted by nanoplastics (diameters ranging ∼30-600 nm) within the excitation laser spot. We find that the Raman emission intensity, similar to the excitation power density distributed within a laser spot, also follows a lateral Gaussian distribution. To image and visualise individual nanoplastics, we (i) decrease the mapping pixel size, in a hope to generate an image with high-resolution and simultaneously to pick up items from the "blind point". We can then either (ii) offset the colour to intentionally image only the high-intensity portion of the Raman signal (emitted from the centre of the laser spot), to localise the exact position of the nanoplastic; or (iii) categorise the imaged nanoplastics to different groups via their Raman intensity, to simultaneously and separately visualise large nanoplastics/strong Raman signals, medium nanoplastics and small nanoplastics, in an effort to avoid the shielding and overlooking of weak signals. We (iv) also cross-check multi-images simultaneously mapped at two or three characteristic peaks via either a logic-OR or a logic-AND algorithm. Thus the imaging uncertainty can be significantly reduced from a statistical point of view.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Zahra Sobhani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Christopher T Gibson
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
| | - Youhong Tang
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
18
|
Silva HRP, Iwassa IJ, Marques J, Postaue N, Stevanato N, Silva C. Enrichment of sunflower oil with β‐carotene from carrots: Maximization and thermodynamic parameters of the β‐carotene extraction and oil characterization. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Isabela Julio Iwassa
- Programa de Pós‐Graduação em Engenharia Química Universidade Estadual do Maringá (UEM) Maringá Brazil
| | - Janaina Marques
- Programa de Pós‐Graduação em Ciências Agrárias Universidade Estadual do Maringá (UEM) Estrada da Paca s/n (UEM – Fazenda) Umuarama Brazil
| | - Najla Postaue
- Programa de Pós‐Graduação em Bioenergia Universidade Estadual do Maringá (UEM) Maringa Brazil
| | - Natália Stevanato
- Programa de Pós‐Graduação em Bioenergia Universidade Estadual do Maringá (UEM) Maringa Brazil
| | - Camila Silva
- Departamento de Tecnologia Universidade Estadual de Maringá (UEM) Umuarama Brazil
- Programa de Pós‐Graduação em Engenharia Química Universidade Estadual do Maringá (UEM) Maringá Brazil
- Programa de Pós‐Graduação em Ciências Agrárias Universidade Estadual do Maringá (UEM) Estrada da Paca s/n (UEM – Fazenda) Umuarama Brazil
- Programa de Pós‐Graduação em Bioenergia Universidade Estadual do Maringá (UEM) Maringa Brazil
| |
Collapse
|
19
|
Beć KB, Grabska J, Bonn GK, Popp M, Huck CW. Principles and Applications of Vibrational Spectroscopic Imaging in Plant Science: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1226. [PMID: 32849759 PMCID: PMC7427587 DOI: 10.3389/fpls.2020.01226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
Detailed knowledge about plant chemical constituents and their distributions from organ level to sub-cellular level is of critical interest to basic and applied sciences. Spectral imaging techniques offer unparalleled advantages in that regard. The core advantage of these technologies is that they acquire spatially distributed semi-quantitative information of high specificity towards chemical constituents of plants. This forms invaluable asset in the studies on plant biochemical and structural features. In certain applications, non-invasive analysis is possible. The information harvested through spectral imaging can be used for exploration of plant biochemistry, physiology, metabolism, classification, and phenotyping among others, with significant gains for basic and applied research. This article aims to present a general perspective about vibrational spectral imaging/micro-spectroscopy in the context of plant research. Within the scope of this review are infrared (IR), near-infrared (NIR) and Raman imaging techniques. To better expose the potential and limitations of these techniques, fluorescence imaging is briefly overviewed as a method relatively less flexible but particularly powerful for the investigation of photosynthesis. Included is a brief introduction to the physical, instrumental, and data-analytical background essential for the applications of imaging techniques. The applications are discussed on the basis of recent literature.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| | - Justyna Grabska
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | - Günther K. Bonn
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- ADSI, Austrian Drug Screening Institute, Innsbruck, Austria
| | - Michael Popp
- Michael Popp Research Institute for New Phyto Entities, University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| |
Collapse
|
20
|
Dudek M, Machalska E, Oleszkiewicz T, Grzebelus E, Baranski R, Szcześniak P, Mlynarski J, Zajac G, Kaczor A, Baranska M. Chiral Amplification in Nature: Studying Cell‐Extracted Chiral Carotenoid Microcrystals via the Resonance Raman Optical Activity of Model Systems. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Monika Dudek
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Cracow Poland
| | - Ewa Machalska
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Cracow Poland
| | - Tomasz Oleszkiewicz
- Institute of Plant Biology and BiotechnologyFaculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow AL. 29 Listopada 54 31-425 Cracow Poland
| | - Ewa Grzebelus
- Institute of Plant Biology and BiotechnologyFaculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow AL. 29 Listopada 54 31-425 Cracow Poland
| | - Rafal Baranski
- Institute of Plant Biology and BiotechnologyFaculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow AL. 29 Listopada 54 31-425 Cracow Poland
| | - Piotr Szcześniak
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jacek Mlynarski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Grzegorz Zajac
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Cracow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian University Bobrzynskiego 14 30-348 Cracow Poland
| | - Agnieszka Kaczor
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Cracow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian University Bobrzynskiego 14 30-348 Cracow Poland
| | - Malgorzata Baranska
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Cracow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian University Bobrzynskiego 14 30-348 Cracow Poland
| |
Collapse
|
21
|
Dudek M, Machalska E, Oleszkiewicz T, Grzebelus E, Baranski R, Szcześniak P, Mlynarski J, Zajac G, Kaczor A, Baranska M. Chiral Amplification in Nature: Studying Cell-Extracted Chiral Carotenoid Microcrystals via the Resonance Raman Optical Activity of Model Systems. Angew Chem Int Ed Engl 2019; 58:8383-8388. [PMID: 30974037 DOI: 10.1002/anie.201901441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β-carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α-carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant-and-soldier behavior, a small number of chiral sergeants (α-carotene or astaxanthin) force the achiral soldier molecules (β- or 11,11'-[D2 ]-β-carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co-crystallization of chiral and achiral analogues.
Collapse
Affiliation(s)
- Monika Dudek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Ewa Machalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Tomasz Oleszkiewicz
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Cracow, Poland
| | - Ewa Grzebelus
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Cracow, Poland
| | - Rafal Baranski
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Cracow, Poland
| | - Piotr Szcześniak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Grzegorz Zajac
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Cracow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Cracow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Cracow, Poland
| |
Collapse
|
22
|
Oleszkiewicz T, Klimek-Chodacka M, Milewska-Hendel A, Zubko M, Stróż D, Kurczyńska E, Boba A, Szopa J, Baranski R. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus. PLANTA 2018; 248:1455-1471. [PMID: 30132151 PMCID: PMC6244651 DOI: 10.1007/s00425-018-2988-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/15/2018] [Indexed: 05/17/2023]
Abstract
MAIN CONCLUSION The new model orange callus line, similar to carrot root, was rich in carotenoids due to altered expression of some carotenogenesis-associated genes and possessed unique diversity of chromoplast ultrastructure. Callus induced from carrot root segments cultured in vitro is usually pale yellow (p-y) and poor in carotenoids. A unique, non-engineered callus line of dark orange (d-o) colour was developed in this work. The content of carotenoid pigments in d-o callus was at the same level as in an orange carrot storage root and nine-fold higher than in p-y callus. Carotenoids accumulated mainly in abundant crystalline chromoplasts that are also common in carrot root but not in p-y callus. Using transmission electron microscopy, other types of chromoplasts were also found in d-o callus, including membranous chromoplasts rarely identified in plants and not observed in carrot root until now. At the transcriptional level, most carotenogenesis-associated genes were upregulated in d-o callus in comparison to p-y callus, but their expression was downregulated or unchanged when compared to root tissue. Two pathway steps were critical and could explain the massive carotenoid accumulation in this tissue. The geranylgeranyl diphosphate synthase gene involved in the biosynthesis of carotenoid precursors was highly expressed, while the β-carotene hydroxylase gene involved in β-carotene conversion to downstream xanthophylls was highly repressed. Additionally, paralogues of these genes and phytoene synthase were differentially expressed, indicating their tissue-specific roles in carotenoid biosynthesis and metabolism. The established system may serve as a novel model for elucidating plastid biogenesis that coincides with carotenogenesis.
Collapse
Affiliation(s)
- Tomasz Oleszkiewicz
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Kraków, Poland
| | - Magdalena Klimek-Chodacka
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Kraków, Poland
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Maciej Zubko
- Institute of Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzow, Poland
| | - Danuta Stróż
- Institute of Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzow, Poland
| | - Ewa Kurczyńska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Szopa
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24A, 50-363, Wrocław, Poland
| | - Rafal Baranski
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Kraków, Poland.
| |
Collapse
|