1
|
Tamrakar A, Asthana S, Kumar P, Garg N, Pandey MD. Design of C2-symmetric pseudopeptides for in vivo detection of Cu(II) through controlled supramolecular nano-assembly. Org Biomol Chem 2024; 22:6409-6418. [PMID: 39069889 DOI: 10.1039/d4ob01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pseudopeptides are emerging next-generation soft bioinspired materials for biological applications. Therefore, a new class of C2-symmetric L-valine-derived pseudopeptides has been designed and developed. The newly developed pseudopeptides exhibit intracellular Cu(II) ion detection in live-cell fluorescence studies on RAW264.7 cells. We find that the changes in the amino acid side chain in desired pseudopeptidic moieties lead to a drastic change in their selectivity towards different metal ions. The L-valine-derived pseudopeptides exhibit selectivity towards Cu(II) ions through turn-off fluorescence, and the L-phenylalanine-derived pseudopeptides exhibit selectivity towards Zn(II) ions through turn-on fluorescence. In addition, the L-valine-derived pseudopeptides show an increase in spherical-shaped structures upon incubation with Cu(II) ions during supramolecular nano-assembly formation. In contrast, the L-phenylalanine-derived pseudopeptides show a decrease in spherical-shaped structures upon adding Zn(II) ions. The judiciously designed L-valine-derived and L-phenylalanine-derived bioinspired pseudopeptides are promising for exploring similar effects in various peptidomimetics in advanced biological applications.
Collapse
Affiliation(s)
- Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005, India.
| | - Surabhi Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005, India.
| | - Praveen Kumar
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005, India.
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
4
|
An Y, Li L, Li L, Sun Y, Li B, Wang P. Peptide-based probe for colorimetric and fluorescent detection of Cu 2+ and S 2- in environmental and biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133192. [PMID: 38070265 DOI: 10.1016/j.jhazmat.2023.133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Pollution caused by Copper and hydrogen sulfide pollution has severe adverse effects on the environment and organisms. Real-time, fast and accurate monitoring of Cu2+ and S2- faces serious challenges. In this study, we designed a novel biosensor and synthesized it by mimicking the structure of the main Cu(II)-binding site on bovine serum albumin. As a peptide-based sensor, FGGH (FITC-Gly-Gly-His-NH2) can perform the sequential detection of Cu2+ and S2- by fluorescence and colorimetry. The high water solubility and selectivity make it suitable for monitoring Cu2+ and S2- in environmental water samples with high sensitivity; its limit of detection (LOD) is as low as 1.42 nM for Cu2+ and 22.2 nM for S2-. The paper-based sensing platform of this probe was found to be a promising tool for the on-site visualization of real-time quantitative analysis of Cu2+ and S2- due to its rapid response and recyclable detection characteristics. Additionally, FGGH was successfully used to image Cu2+ and S2- in living cells and zebrafish models with adequate fluorescence stability and low cytotoxicity, providing the first visual evidence of the effect of the interactions between Cu2+ and S2- on the redox homeostasis of organisms.
Collapse
Affiliation(s)
- Yong An
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Linyu Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Lepeng Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Yongqiang Sun
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Bo Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China.
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, PR China.
| |
Collapse
|
5
|
An active ESIPT based molecular sensor aided with sulfonate ester moiety to track the presence of H2S analyte in realistic samples and HeLa cells. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Xiao L, Wei P, He F, Gou Y, Ge Y, Liu Y, Wang P, Liao Y. Peptide-based fluorescent and colorimetric dual-functional probe for visual detection of Cu2+, Hg2+ and S2− in 100% aqueous media, living cells and paper test strips. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Liu G, Xia N, Tian L, Sun Z, Liu L. Progress in the Development of Biosensors Based on Peptide-Copper Coordination Interaction. BIOSENSORS 2022; 12:bios12100809. [PMID: 36290946 PMCID: PMC9599103 DOI: 10.3390/bios12100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 05/17/2023]
Abstract
Copper ions, as the active centers of natural enzymes, play an important role in many physiological processes. Copper ion-based catalysts which mimic the activity of enzymes have been widely used in the field of industrial catalysis and sensing devices. As an important class of small biological molecules, peptides have the advantages of easy synthesis, excellent biocompatibility, low toxicity, and good water solubility. The peptide-copper complexes exhibit the characteristics of low molecular weight, high tenability, and unique catalytic and photophysical properties. Biosensors with peptide-copper complexes as the signal probes have promising application prospects in environmental monitoring and biomedical analysis and diagnosis. In this review, we discussed the design and application of fluorescent, colorimetric and electrochemical biosensors based on the peptide-copper coordination interaction.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| | - Linxu Tian
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Zhifang Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| |
Collapse
|
8
|
Wang P, Xue S, Zhou D, Guo Z, Wang Q, Guo B, Yang X, Wu J. Peptide-based colorimetric and fluorescent dual-functional probe for sequential detection of copper(Ⅱ) and cyanide ions and its application in real water samples, test strips and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121222. [PMID: 35413531 DOI: 10.1016/j.saa.2022.121222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
A novel dual-functional peptide probe FLH based on fluorescent "on-off-on" strategy and colorimetric visualization method was designed and synthesized. This new probe exhibited highly selective and rapid detection of Cu2+ with significant fluorescent "turn-off" response, with a visible colorimetric change from yellow to orange. The combination ratio of FLH to Cu2+ (1:1) was determined using ESI-HRMS spectra and Job's plot. The fluorescent emission showed a good linear response (R2 = 0.9986) with a low detection limit of 1.5 nM. In addition, the FLH-Cu2+ complex displayed colorimetric changes and a fluorescent "off-on" response toward CN- over a wide pH range from 7 to 12. This detection behavior was observed within 20 s, with a limit of detection (LOD) for CN- at 12.7 nM. Based on stability and accuracy, FLH was next developed as dual-functional test strips, and was also successfully applied to detect Cu2+ and CN- in two actual water samples. More importantly, the cytotoxicity studies indicated that FLH had good biocompatibility and low toxicity, and was successfully utilized for monitoring Cu2+ and CN- in living cells through fluorescence imaging.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Shirui Xue
- School of Journalism and Communications, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Dagang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Bingxue Guo
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China.
| |
Collapse
|
9
|
Wei P, Xiao L, Gou Y, He F, Zhou D, Liu Y, Xu B, Wang P, Zhou Y. Fluorescent “on–off–on” probe based on copper peptide backbone for specific detection of Cu(II) and hydrogen sulfide in 100% aqueous medium and application in cell imaging, real water samples and test strips. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Mantle D, Yang G. Hydrogen sulfide and metal interaction: the pathophysiological implications. Mol Cell Biochem 2022; 477:2235-2248. [PMID: 35461429 DOI: 10.1007/s11010-022-04443-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
Hydrogen sulfide (H2S), previously recognized as a toxic gas, has emerged as an important gaseous signaling molecule along with nitric oxide, carbon monoxide and also hydrogen. H2S can be endogenously produced in the mammalian body at a very low level for various pathophysiological processes. Notably, H2S can interact with several essential metals in the body such as iron, copper, nickel, and zinc to carry out specific functions. The interactions of H2S with metal-binding proteins have been shown to aid in its signal transduction and cellular metabolism. In addition, H2S is capable of providing a cytoprotective role against metal toxicity. As the research in the field of H2S signaling in biology and medicine increases, much progresses have been developed for detecting H2S via interaction with metals. In this review, the interaction of H2S with metals, specifically in regard to metal-driven metabolism of H2S, the protection against metal toxicity by H2S and the detection of H2S using metals will be discussed. Discovering the interactions of this gasotransmitter with metals is important for determining the mechanisms underlying the cellular functions of H2S as well as developing novel therapeutic avenues.
Collapse
Affiliation(s)
- Devin Mantle
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada.
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
11
|
Wang P, Wang Q, Guo Z, Xue S, Chen B, Liu Y, Ren W, Yang X, Wen S. A bifunctional peptide-based fluorescent probe for ratiometric and "turn-on" detection of Zn(II) ions and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120653. [PMID: 34838424 DOI: 10.1016/j.saa.2021.120653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In this work, a bifunctional peptide-based fluorescent probe L containing a tetrapeptide scaffold (Pro-Gly-His-Trp-NH2) and a dansyl group was synthesized using solid phase peptide synthesis (SPPS) technology. As designed, L, based on a FRET mechanism, exhibited high selectivity, excellent ratiometric signals, and fast response to Zn2+ in aqueous solutions at an excitation wavelength of 280 nm. In addition, when excited at 320 nm, L exhibited a fluorescent "turn-on" response towards Zn2+ based on PET mechanism. More importantly, the stoichiometry of L and Zn2+ was determined to be 2:1 by fluorescent titration, Job's plot method, and ESI-MS spectrometry. The association constant for Zn2+ ions was determined to be 6.26 × 108 M-2, while the limit of detection (LOD) of L was estimated as 5.43 nM, which is a much lower value than WHO and EPA guidelines for drinking water. Moreover, L was successfully applied to detect both Zn2+ and Cu2+ in living cells due to good biocompatibility and excellent low toxicity.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Shirui Xue
- School of Journalism and Communications, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wang Ren
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| | - Shaohua Wen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| |
Collapse
|
12
|
Wang P, Zhou D, Xue S, Chen B, Wen S, Yang X, Wu J. Rational design of dual-functional peptide-based chemosensor for sequential detection of Ag+ (AgNPs) and S2- ions by fluorescent and colorimetric changes and its application in live cells, real water samples and test strips. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Ahmed N, Zareen W, Zhang D, Yang X, Ye Y. Irreversible coumarin based fluorescent probe for selective detection of Cu 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120313. [PMID: 34474223 DOI: 10.1016/j.saa.2021.120313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Copper ion (Cu2+) is an essential part of the living organisms. Cu2+ ions play a vital role in many biotic processes. An abnormal amount of Cu2+ ions may result in serious diseases. Herein, a novel "fluorescent ON" probe NC-Cu to trace minute levels of Cu2+ ions in presence of various biological active species has been developed. Lysosomal cells targeting group (Morpholine) was added to the probe. The spectral properties of probe NC-Cu were recorded in HEPES buffer (0.01 M, pH = 7.4, comprising 50% CH3CN, λex = 430 nm, slit: 5 nm). The synthesized probe NC-Cu work based on copper promoted catalytic hydrolysis of hydrazone and shows remarkable fluorescence enhancement. The reaction of the probe with Cu2+ ions was completed within 20 min. An excellent linear relationship (R2 = 0.9952) was found and the limit of detection (LOD, according to the 3σ/slope) for Cu2+ ions was calculated to be 5.8 µM. Furthermore, NC-Cu was effectively functional in the living cells (KYSE30 cells) to trace Cu2+ ions.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wajeeha Zareen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Guo Z, Wang Q, Zhou D, An Y, Wang P, Liao F. A novel peptide-based fluorescent probe with a large stokes shift for rapid and sequential detection of Cu 2+ and CN - in aqueous systems and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120257. [PMID: 34411770 DOI: 10.1016/j.saa.2021.120257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A novel fluorescent probe (DSD) was reasonably designed and synthesized with dansyl-labeled dipeptide (Dan-Ser-Asp-NH2). DSD featured remarkably large Stokes shift (230 nm) and perfect water solubility, and exhibited high selectivity and rapid recognition toward Cu2+via fluorescence quenching. The detection limit of DSD for Cu2+ was 2.4 nM, indicated that DSD has excellent sensitivity. In addition, the stoichiometry between DSD and Cu2+ were detected as 1:1 by fluorescence titration, Job's plot and ESI-HRMS data. As designed, DSD-Cu2+ system was able to sequentially detect CN- according to the displacement approach with fluorescence "off-on" response, and the detection limit for CN- was calculated to be 41.9 nM. Specifically, the response time of DSD with Cu2+ and CN- was less than 40 s, which rendered it suitable for real time detection in actual water samples. In addition, with the alternate addition of Cu2+ and CN-, the reversible cycles could be repeated for at least 10 times, indicated that DSD was a promising reversibility probe. DSD showed low toxicity and good biocompatibility, and was successfully applied to detect Cu2+ and CN- in living cells.
Collapse
Affiliation(s)
- Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Dagang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| | - Fang Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| |
Collapse
|
15
|
Dhivya R, Kavitha V, Gomathi A, Keerthana P, Santhalakshmi N, Viswanathamurthi P, Haribabu J. Dinitrobenzene ether reactive turn-on fluorescence probes for the selective detection of H 2S. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:58-66. [PMID: 34889907 DOI: 10.1039/d1ay01700d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two novel fluorescent probes, namely, 3-(2,4-dinitrophenoxy)-2-(4-(diphenylamino)phenyl)-4H-chromen-4-one (P1) and 3-(2,4-dinitrophenoxy)-2-(pyren-1-yl)-4H-chromen-4-one (P2), were designed and synthesized here. The probes (P1 and P2) were found to be highly selective and sensitive toward hydrogen sulfide (H2S) in the presence of a wide range of anions. The new probes (P1 and P2) were fully characterized by analytical, NMR spectroscopy (1H and 13C), and ESI mass spectrometry. The sensing capability of chemodosimeters (P1 and P2) toward H2S was confirmed by fluorescence studies. The 'turn-on' fluorescence was used to calculate the detection limit of probes (LOD), which were found to be 2.4 and 1.2 μM for P1 and P2, respectively. Moreover, the probes were tested for their cytotoxicity against HeLa cells using the MTT assay and found to be non-cytotoxic in nature; hence, the probes P1 and P2 were successfully utilized to visualize H2S in the living cells.
Collapse
Affiliation(s)
- Rajasekaran Dhivya
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | | | - Asaithambi Gomathi
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | - Ponmudi Keerthana
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | | | | | | |
Collapse
|
16
|
A novel fluorescent probe for highly selective and sensitive detection of sulfur ions in real samples and living cells based on the tripeptide-Cu2+ ensemble system. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wang Y, Wang Y, Guo F, Wang Y, Xie P. A new naked-eye fluorescent chemosensor for Cu(II) and its practical applications. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04489-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
A novel peptide-based fluorescent chemosensor for detection of zinc (II) and copper (II) through differential response and application in logic gate and bioimaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Wang P, Wang S, Chen L, Wang W, Wang B, Liao Y. A novel peptide-based fluorescent probe for sensitive detection of zinc (II) and its applicability in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118549. [PMID: 32526399 DOI: 10.1016/j.saa.2020.118549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
In this work, we report SPSS synthesis of a new peptide-based fluorescent probe (L) capable of detecting Zn2+ with little interference in 100% aqueous solutions at physiological pH. Furthermore, L showed excellent sensitivity, with a detection limit of 26.77 nM. The 2:1 binding ratio between L and Zn2+ was determined using fluorometric titration, Job's plot and ESI-MS analyses. The "off-on-off" type fluorescence change of L was demonstrated by alternately adding Zn2+ and EDTA based on a formation-separation process of the complex, indicating that L could serve as a reversible probe. Moreover, MTT studies demonstrated that L has low biotoxicity, and could be successfully used for detection of Zn2+ and EDTA in live cells.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Sihan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Li Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Wenting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Baohui Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| |
Collapse
|
21
|
Li C, Wang YT, Chen Y, Wang Y. Hyperbranched Poly(amido amine) Entrapped Tetraphenylethene as a Fluorescence Probe for Sequential Quadruple-Target Detection and Its Potential as a Chemical Logic Gate. Anal Chem 2020; 92:9755-9763. [PMID: 32575978 DOI: 10.1021/acs.analchem.0c01155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluorescence sensors exhibit great potential as molecular logic gates to perform computation on a nanometer scale. For achieving the more complex artificial intelligence activities, developing complex logic gates using multitarget sensing systems with multi-input characteristics is highly desirable. Herein, a water-soluble quadruple-target fluorescence sensor that embeds a small amount (4.1 wt %) of tetraphenylethene (TPE) units into hyperbranched poly(amido amine) (TPE-HPA) has been designed. The nonfluorescent TPE-HPA could experience the fluorescence "off-on-off-on-off" by sequential addition of sodium hexametaphosphate (SHMP), Fe3+, ascorbic acid (AA), and H2O2. The as-prepared quadruple-target sensor showed good sensitivity and selectivity to SHMP, Fe3+, AA, and H2O2, and the limit of detection values were 29 nM, 20 nM, 0.66 μM, and 0.78 μM, respectively. On the basis of the multitarget sensing nature of TPE-HPA, chemical or electrochemical-induced logic gates were constructed, including YES, NOT, OR, NOR, NAND, INHIBIT, IMP, and higher logic systems.
Collapse
Affiliation(s)
- Cheng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yi-Ting Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China.,Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| |
Collapse
|
22
|
A Pentapeptide with Tyrosine Moiety as Fluorescent Chemosensor for Selective Nanomolar-Level Detection of Copper(II) Ions. Int J Mol Sci 2020; 21:ijms21030743. [PMID: 31979365 PMCID: PMC7037753 DOI: 10.3390/ijms21030743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, we have investigated principally with the use of UV and fluorescence (steady-state and time-resolved) spectroscopy the interactions between selected pentapeptides with tyrosine residue (EYHHQ, EHYHQ, EHHQY, and KYHHE) and various metal ions (Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+, Al3+, Fe2+, and Ga3+) in order to establish the relationship between the position of a tyrosine residue in the peptide sequence and the metal ion-binding properties. Among the peptides studied, EHYHQ was evaluated as an efficient and selective ligand for developing a chemosensor for the detection of copper(II) ions. While significant fluorescence emission quenching was observed for that peptide in the presence of Cu2+ cations, other metal cations used at the same and at considerably higher concentrations caused a negligible change of the fluorescence emission spectrum, indicating a high selectivity of EHYHQ for Cu2+ ions. Under optimum conditions, fluorescence intensity was inversely proportional to the concentration of Cu2+ ions. The limit of detection of Cu2+ ions with the use of EHYHQ was determined at the level of 26.6 nM. The binding stoichiometry of the complexes of the studied peptides with Cu2+ ions was evaluated spectrophotometrically and fluorimetrically (as in the case of EHYHQ confirmed by mass spectrometry) and found to be 1:2 (Cu2+-peptide) for all the investigated systems. Furthermore, the stability constant (K) values of these complexes were determined. The reversibility of the proposed Cu2+ ions sensor was confirmed, the pH range where the sensor acts was determined, while its analytical performance was compared with some other reported recently fluorescent sensors. The mechanism of the interactions between EHYHQ and Cu2+ was proposed on the basis of NMR spectroscopy investigations.
Collapse
|
23
|
A highly sensitive turn-on fluorescent chemosensor for recognition of Zn(II) ions and its application in live cells imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Wang P, Wu J, An Y, Liao Y. A novel fluorescent chemosensor for detection of Zn(II) ions based on dansyl-appended dipeptide in two different living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117140. [PMID: 31136861 DOI: 10.1016/j.saa.2019.117140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 05/21/2023]
Abstract
This paper describes a new fluorescent chemosensor (DSH) based on dipeptide conjugated with dansyl group, which was synthesized by solid phase peptide synthesis (SPPS) technology. DSH exhibited a highly selective and sensitive toward Zn2+ ions by "turn-on" response based on generation of monomer-excimer mechanism in aqueous solutions, and the detection limit was calculated at 11.2 nM. In addition, the reversible of DSH-Zn with Na2EDTA establishes the reuse of DSH, and the circulation effect was very good. Moreover, DSH had good water solubility, and was successfully applied to bioimage intracellular Zn2+ ions and Na2EDTA in two different living cells with exciting cellular permeability and low cytotoxicity, which indicated that DSH had great potential in the application of biological imaging.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| | - Jiang Wu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| | - Yong An
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, PR China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| |
Collapse
|
25
|
Wang P, Wu X, Wu J, Liao Y. Highly selective and sensitive peptide-based fluorescent chemosensor for detection of Zinc(II) ions in aqueous medium and living cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|