1
|
Lv K, Yin C, Li F, Chen W, Zhao L, Liu Z, Hu L. Rapid and comprehensive quality evaluation of Huang-qin from different origins by FT-IR and NIR spectroscopy combined with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1587-1599. [PMID: 38850098 DOI: 10.1002/pca.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Quality evaluation of Huang-qin is significant to ensure its clinical efficacy. OBJECTIVE This study aims to establish an accurate, rapid and comprehensive Huang-qin quality evaluation method to overcome the time-consuming and laborious shortcomings of traditional herbal medicine quality assessment methods. METHODS The contents of baicalin, baicalein and scutellarin in Huang-qin from five different origins were analyzed by FT-IR and NIR spectra combined with multivariate data technology. The quality of Huang-qin from different origins was evaluated by TOPSIS and consistency analysis based on the content of three active ingredients. The correlation between ecological factors and the accumulation of active ingredients was explored. RESULTS Satisfactory prediction results of PLS models were obtained. Relatively, the model based on FT-IR combined with the PLS regression method has higher R2 and smaller RMSE than the NIR combined with the PLS method. TOPSIS and consistency analysis results showed that the quality of Huang-qin from different geographical origins was significantly different. The results showed that the quality of Huang-qin produced in Shanxi Province was the best among the five origins studied. The results also found that the quality of Huang-qin in different growing areas of the same origin was not completely consistent. The correlation study showed that altitude, sunshine duration and rainfall were the main factors that caused the quality difference of medicinal materials in different geographical origins. CONCLUSION This study provides a reference for the rapid quantitative analysis of the active components of herbal medicine and the quality evaluation of them.
Collapse
Affiliation(s)
- Kaidi Lv
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Chunling Yin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Wenbo Chen
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Liuchuang Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhimin Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Leqian Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Wang Q, Li H, You J, Yan B, Jin W, Shen M, Sheng Y, He B, Wang X, Meng X, Qin L. An integrated strategy of spectrum-effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba. ANAL SCI 2023:10.1007/s44211-023-00334-4. [PMID: 37037970 DOI: 10.1007/s44211-023-00334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum-effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum-effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Jinling You
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Binjun Yan
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Menglan Shen
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Bingqian He
- Academy of Chinese Medical Science, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinrui Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Chen H, He Y. Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:91-131. [PMID: 34931589 DOI: 10.1142/s0192415x22500045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
Collapse
Affiliation(s)
- Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
4
|
Identification of Baha'sib mung beans based on Fourier transform near infrared spectroscopy and partial least squares. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1040-1050. [DOI: 10.1093/jpp/rgab177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022]
|
6
|
Wang F, Jia B, Song X, Dai J, Li X, Gao H, Pan H, Yan H, Han B. Rapid Identification of Peucedanum Praeruptorum Dunn and its Adulterants by Hand-Held near-Infrared Spectroscopy. J AOAC Int 2021; 105:928-933. [PMID: 34954793 DOI: 10.1093/jaoacint/qsab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022]
Abstract
Peucedanum praeruptorum Dunn (PPD) is a traditional Chinese medical herb of high medical and economic value. However, PPD is often pretended by inexpensive plants. To establish an integrated methodology using hand-held near-infrared spectroscopy (NIRS) combined with chemical pattern recognition techniques to identify adulterated PPD products. The standard normal variate (SNV) was used to preprocess the original near-infrared spectra. Principal component analysis (PCA), linear discriminant analysis (LDA), and partial least squares regression analysis (PLSDA) were used to construct the recognition models. PCA analysis could not correctly distinguish PPD from non-PPD. However, based on absorbance in the spectral region of 1,405-2,442 nm and SVN pretreatment, the accuracy of the LDA model was above 90% at identifying genuine PPD. Compared with the LDA method, the PLSDA model is more stable and reliable, and its model prediction accuracy was 93.4%. The combination of near-infrared spectroscopy and chemometric methods based on a hand-held near-infrared spectrometer is an efficient, non-destructive, and reliable method for validating traditional Chinese medicine PPD. It can be used for rapid identification and quality evaluation of PPD in the field, medicinal material markets, and points of sale.
Collapse
Affiliation(s)
- Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, China
| | - Bin Jia
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwen Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, China
| | - Jun Dai
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, China
| | - Xiaoli Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Haidi Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, China
| |
Collapse
|
7
|
Qu Q, Li Y, Dong Q, Li S, Du H, Wang Z, Gong X, Zhang W, Lv W, Chao L, Liu M, Tang X, Guo S. Comparative Evaluation of Forsythiae Fructus From Different Harvest Seasons and Regions by HPLC/NIR Analysis and Anti-inflammatory and Antioxidant Assays. Front Pharmacol 2021; 12:737576. [PMID: 34899295 PMCID: PMC8652199 DOI: 10.3389/fphar.2021.737576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Forsythiae Fructus (FF), the dry fruit of Forsythia suspensa (Thunb.) Vahl, has a long history of use in traditional Chinese Medicine for its heat-clearing and detoxifying properties. It possesses clinical therapeutic effects and biological functions showing efficacy in handling different diseases. To investigate the FF differences in Henan, Shanxi, and Shaanxi in August and October, the surface morphology, mid-infrared and near-infrared spectrums, and HPLC were analyzed. Concurrently, the anti-inflammatory and antioxidant effects on LPS-induced J774A.1 cells were evaluated by western blot and RT-qPCR. The results showed that FF from different Harvest Seasons and Regions are provided with different microstructures and mid-infrared and near-infrared spectrums, and the levels of forsythiaside A and phillyrin of FF from Shanxi in August and phillygenin of FF from Shaanxi in August were the highest. Meanwhile, FF from Shanxi and Shaanxi in August markedly reduced the levels of inflammatory cytokines and mediators (TNF-α, IL-1β, NF-κB, and iNOS) and the protein expression levels of phosphorylated total IKKα/β and nuclear NF-κB. In August, SXFF and SAXFF also promoted the mRNA expression levels of HO-1 and NQO1 and the protein expression levels of HO-1 and nuclear Nrf2 and suppressed the protein expression levels of KEAP1. Spearman correlation analysis showed that phillygenin had a strong correlation with the protein expression on LPS-induced J774A.1 cells. In summary, our results showed that FF from harvest seasons and regions contributed to the distinct differences in microstructure, the mid-infrared and near-infrared spectrums, and compound content. More importantly, FF from Shanxi and Shaanxi in August showed marked anti-inflammatory and antioxidant activities, but with some differences, which may be because of different contents of phillygenin and phillyrin of lignans in FF.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuefei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shupeng Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaopei Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenchang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Limin Chao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinggang Tang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
8
|
Vibrational Spectroscopy in Assessment of Early Osteoarthritis-A Narrative Review. Int J Mol Sci 2021; 22:ijms22105235. [PMID: 34063436 PMCID: PMC8155859 DOI: 10.3390/ijms22105235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease, and there is currently no effective medicine to cure it. Early prevention and treatment can effectively reduce the pain of OA patients and save costs. Therefore, it is necessary to diagnose OA at an early stage. There are various diagnostic methods for OA, but the methods applied to early diagnosis are limited. Ordinary optical diagnosis is confined to the surface, while laboratory tests, such as rheumatoid factor inspection and physical arthritis checks, are too trivial or time-consuming. Evidently, there is an urgent need to develop a rapid nondestructive detection method for the early diagnosis of OA. Vibrational spectroscopy is a rapid and nondestructive technique that has attracted much attention. In this review, near-infrared (NIR), infrared, (IR) and Raman spectroscopy were introduced to show their potential in early OA diagnosis. The basic principles were discussed first, and then the research progress to date was discussed, as well as its limitations and the direction of development. Finally, all methods were compared, and vibrational spectroscopy was demonstrated that it could be used as a promising tool for early OA diagnosis. This review provides theoretical support for the application and development of vibrational spectroscopy technology in OA diagnosis, providing a new strategy for the nondestructive and rapid diagnosis of arthritis and promoting the development and clinical application of a component-based molecular spectrum detection technology.
Collapse
|
9
|
Woodley SB, Mould RR, Sahuri-Arisoylu M, Kalampouka I, Booker A, Bell JD. Mitochondrial Function as a Potential Tool for Assessing Function, Quality and Adulteration in Medicinal Herbal Teas. Front Pharmacol 2021; 12:660938. [PMID: 33981240 PMCID: PMC8107435 DOI: 10.3389/fphar.2021.660938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Quality control has been a significant issue in herbal medicine since herbs became widely used to heal. Modern technologies have improved the methods of evaluating the quality of medicinal herbs but the methods of adulterating them have also grown in sophistication. In this paper we undertook a comprehensive literature search to identify the key analytical techniques used in the quality control of herbal medicine, reviewing their uses and limitations. We also present a new tool, based on mitochondrial profiling, that can be used to measure medicinal herbal quality. Besides being fundamental to the energy metabolism required for most cellular activities, mitochondria play a direct role in cellular signalling, apoptosis, stress responses, inflammation, cancer, ageing, and neurological function, mirroring some of the most common reasons people take herbal medicines. A fingerprint of the specific mitochondrial effects of medicinal herbs can be documented in order to assess their potential efficacy, detect adulterations that modulate these effects and determine the relative potency of batches. Furthermore, through this method it will be possible to assess whole herbs or complex formulas thus avoiding the issues inherent in identifying active ingredients which may be complex or unknown. Thus, while current analytical methods focus on determining the chemical quality of herbal medicines, including adulteration and contamination, mitochondrial functional analysis offers a new way of determining the quality of plant derived products that is more closely linked to the biological activity of a product and its potential clinical effectiveness.
Collapse
Affiliation(s)
- Steven B Woodley
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Rhys R Mould
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Meliz Sahuri-Arisoylu
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom.,Health Innovation Ecosystem, University of Westminster, London, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom.,Research Group 'Pharmacognosy and Phytotherapy', UCL School of Pharmacy, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
10
|
Sun X, Li H, Yi Y, Hua H, Guan Y, Chen C. Rapid detection and quantification of adulteration in Chinese hawthorn fruits powder by near-infrared spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119346. [PMID: 33387806 DOI: 10.1016/j.saa.2020.119346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study is to explore the feasibility of detection and quantification of two cheap adulterants (maltodextrin and starch) in Chinese functional food, hawthorn fruits powder (HFP), by using near infrared (NIR) spectroscopy coupled with chemometrics methods. The partial least squares discriminant analysis (PLS-DA) models were developed to discriminate the adulterated HFP from the authentic HFP, while the partial least squares regression (PLSR) models were employed to determine the contents of adulterants. In order to yield the best results, various spectra pretreatment methods and wavelength selection methods were carefully investigated. The models' qualities were assessed by the self-consistency test, the independent test and the rigorous leave-one-out cross-validation test. The metrics for the PLS-DA discriminative model included error rate, true positive rate, true negative rate and F1 score, while the metrics for the PLSR quantitative model were determination coefficient, root mean square error and residual prediction deviation. Finally, very satisfying results were obtained, which indicate that our method is quite robust and applicable, and thus has great potential for rapid detection of adulteration in powder of many other herbal plants or functional foods.
Collapse
Affiliation(s)
- Xuefen Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiling Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimin Hua
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ying Guan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chao Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of Digitalization Quality Evaluation of Chinese Materia Medica of SATCM, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica in Guangdong Universities, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica of Guangdong Province, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Zhou SK, Zhang Y, Ju YH, Zhang Q, Luo D, Cao YD, Yao WF, Tang YP, Zhang L. Comparison of content-toxicity-activity of six ingenane-type diterpenoids between Euphorbia kansui before and after stir-fried with vinegar by using UFLC-MS/MS, zebrafish embryos and HT-29 cells. J Pharm Biomed Anal 2020; 195:113828. [PMID: 33349474 DOI: 10.1016/j.jpba.2020.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
The dried roots of Euphorbia kansui (EK) are especially beneficial for the treatment of edema, but the severe toxicity limits their clinical applications. Euphorbia kansui stir-fried with vinegar (VEK) is traditionally employed to reduce the toxicity of EK. However, the material basis for the toxicity reduction with effectivity conservation is still unclear. Therefore, in this study, a rapid, sensitive, and reliable ultra-fast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) method was firstly established to simultaneously determine six ingenane-type diterpenoids, i.e. kansuiphorin C (1), 5-O-benzoyl-20-deoxyingenol (2), 20-deoxyingenol (3), 3-O-(2'E,4'E-decadienoyl)-20-O-acetylingenol (4), 20-O-(2'E,4'Z-decadienoyl)ingenol (5), and ingenol (6), in EK and VEK based on the processing conversion. Then, the toxicity evaluation on zebrafish embryos and modulation of the expression of aquaporin-3 (AQP3) proteins in HT-29 cells were employed to investigate the toxicity-activity of six compounds. Chromatographic separation was obtained on Waters BEH RP18 column (2.1 mm × 100 mm, 2.5 μm) with the mobile phase composed of 0.1 % formic acid in acetonitrile and water, respectively. The column temperature was 35 ℃ at a flow rate of 0.4 mL min-1. Multiple reaction monitoring was conducted in both positive and negative modes for quantitative analysis. The method was then successfully used for the determination of six compounds in EK and VEK. In addition, 1, 2, 4, and 5 had evident cardiotoxicity, intestinal irritation and nutrient absorption disorders on zebrafish larvae, while no in-vivo toxicity was seen for groups given 3 and 6 (LC50 > 200 μM). Meanwhile, 1, 2, 4, 5, and 6 significantly increased the expression of AQP3 protein (p < 0.05) to promote the excretion of water in the colon. This study demonstrated that toxic ingenane-type diterpenoids converted into the less toxic compounds with the same core structure through the breakage of multiple ester bonds in the side chain. At the same time, the laxative effect was retained, providing useful information for the optimization of the process of EK and quality evaluation of other similar toxic Chinese herbal medicines.
Collapse
Affiliation(s)
- Shi-Kang Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Yong-Hui Ju
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, PR China
| | - Da Luo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Yu-Dan Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, PR China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, 210023, PR China.
| |
Collapse
|
12
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
13
|
Yi Y, Hua H, Sun X, Guan Y, Chen C. Rapid determination of polysaccharides and antioxidant activity of Poria cocos using near-infrared spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118623. [PMID: 32599484 DOI: 10.1016/j.saa.2020.118623] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates the feasibility of near-infrared (NIR) spectroscopy combined with chemometrics as a fast and efficient technique to predict the polysaccharide content and antioxidant activity of Poria cocos. The reference values of polysaccharide content were determined by the phenol-sulfuric acid method, and the antioxidant activities were determined by the DPPH scavenge assay, FRAP scavenge assay and ABTS scavenge assay, respectively. The partial least squares regression algorithm was used to relate the spectra to the reference values. Various methods for spectra pretreatment and variable selection were optimized to improve the predictability and stability of the models. As a result, the best models yielded very satisfying results, of which the values of coefficients of determination were all >0.94, and the values of residual predictive deviation were all >4. Such results confirmed that the present method is robust and applicable, and thus has good potential for rapid quality evaluation of Poria cocos.
Collapse
Affiliation(s)
- Yuan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimin Hua
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuefen Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ying Guan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chao Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of Digitalization Quality Evaluation of Chinese Materia Medica of SATCM, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica in Guangdong Universities, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica of Guangdong Province, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
|
15
|
Sun F, Chen Y, Wang KY, Wang SM, Liang SW. Identification of Genuine and Adulterated Pinellia ternata by Mid-Infrared (MIR) and Near-Infrared (NIR) Spectroscopy with Partial Least Squares - Discriminant Analysis (PLS-DA). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1687507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Academies Traditional Chinese Medicine Quality Engineering Technology Research Center, Guangzhou, China
| | - Yu Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Academies Traditional Chinese Medicine Quality Engineering Technology Research Center, Guangzhou, China
| | - Kai-Yang Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Academies Traditional Chinese Medicine Quality Engineering Technology Research Center, Guangzhou, China
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Academies Traditional Chinese Medicine Quality Engineering Technology Research Center, Guangzhou, China
| | - Sheng-Wang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Academies Traditional Chinese Medicine Quality Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|