1
|
Wei X, Choudhary A, Wang LY, Yang L, Uline MJ, Tagliazucchi M, Wang Q, Bedrov D, Liu C. Single-molecule profiling of per- and polyfluoroalkyl substances by cyclodextrin mediated host-guest interactions within a biological nanopore. SCIENCE ADVANCES 2024; 10:eadp8134. [PMID: 39504365 PMCID: PMC11540018 DOI: 10.1126/sciadv.adp8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Aditya Choudhary
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Leon Y. Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Lixing Yang
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark J. Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica de los Materiales, Ambiente y Energia (INQUIMAE), C1428 Ciudad Autonoma de Buenos Aires, Argentina
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
2
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
4
|
Gao TN, Yang Z, Goed JMS, Zuilhof H, Miloserdov FM. Rim-differentiated pillar[5]arene-modified surfaces for rapid PFOA/PFOS detection. Chem Commun (Camb) 2024; 60:9789-9792. [PMID: 39161305 DOI: 10.1039/d4cc02676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A new rim-differentiated pillar[5]arene (RD-P5) has been synthesized and immobilized onto an Al2O3 surface for the rapid detection of perfluoroalkyl acids. This P5-Al2O3 surface provides a novel approach for measuring perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) using contact angle measurements, with limits of detection down to 10 ng L-1.
Collapse
Affiliation(s)
- Tu-Nan Gao
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Zhen Yang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Imec within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands
| | - Jesse M S Goed
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Wetsus, Oostergoweg 4, 8911 MA Leeuwarden, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, 300072 Tianjin, China
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
5
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
6
|
Tan HY, Sun Z, Deng CC, Wang BJ, Dong XZ, Luo HQ, Li NB. A dual-mode sensing platform coupling two-signal ratiometric and colorimetric methods for detecting Au 3+ based on surface state-regulated carbon nanodot. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123993. [PMID: 38340447 DOI: 10.1016/j.saa.2024.123993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The considerable risk posed by Au3+ residues to the environment and human health has sparked interest in researching Au3+ monitoring techniques. The detection results in the usual ratio mode are more reliable. In this work, we develop a dual-mode strategy based on reducing carbon dots coupling with two-signal ratiometric and colorimetric methods for high-sensitivity, good-selectivity, and wide-range detection of Au3+. Cyan carbon dots (C-CDs) were synthesized by a simple and efficient one-step hydrothermal method. The C-CDs with rich amino group used m-phenylenediamine as carbon source, which made it have the potential as a reducing agent. After the addition of Au3+, Au3+ was reduced to Au0, generating stable gold nanoparticles (AuNPs). The fluorescence signal (F490) of C-CDs decreased. At the same time, the large size of AuNPs enhances the second-order scattering signal (S770) and produces the UV-visible absorption peak of AuNPs. Therefore, the dual-mode sensing strategy combining S770/F490 ratiometric and colorimetric detection of Au3+ is realized with high accuracy and sensitivity. Au3+ was determined in real samples and a good recovery was obtained. The dual-mode method has good performance and practicality, so it shows great potential for environment testing in a simple and reliable way.
Collapse
Affiliation(s)
- Hong Yu Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cui Cui Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bin Jie Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xue Zhen Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Zhang M, Zhao Y, Bui B, Tang L, Xue J, Chen M, Chen W. The Latest Sensor Detection Methods for per- and Polyfluoroalkyl Substances. Crit Rev Anal Chem 2024:1-17. [PMID: 38234139 DOI: 10.1080/10408347.2023.2299233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.
Collapse
Affiliation(s)
- Mingyu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Yanan Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
| | - Liming Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
- School of CHIPS, Xi'an Jiaotong-Loverpool University, Suzhou, China
| |
Collapse
|
8
|
Zhang P, Chen L, Cai X, Luo B, Chen T, Chen H, Chen G, Li F. Fluorescence wavelength shifts combined with light scattering for ratiometric sensing of chloride in the serum based on CsPbBr 3@SiO 2 perovskite nanocrystal composite halide exchanges. Dalton Trans 2023; 52:15353-15359. [PMID: 37540044 DOI: 10.1039/d3dt01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A traditional fluorescence-scattering intensity based ratiometric sensing system utilizes both inherent scattering and fluorescence intensity and has drawn extensive attention owing to its simplicity and self-calibration properties. In this work, we propose a novel ratiometric fluorescence sensing system that combines a fluorescence wavelength shift and scattering in a single window, using second-order scattering (SOS) as the representative scattering signal based on the halide exchange of CsPbBr3@SiO2 perovskite nanocrystal composites. We observe a fast halide exchange within 10 seconds, resulting in an identifiable fluorescence wavelength blue shift, while the scattering wavelength remains relatively constant for self-correction. This system could be applied for ratiometric sensing of Cl- in the serum without any sample treatment. The established wavelength-based ratiometric system demonstrates high reliability and reproducibility, paving a new way for fluorescence sensing.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Liming Chen
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Xiaoyan Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China.
| | - Tianju Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Haini Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Guoliang Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| |
Collapse
|
9
|
Han Y, Cao X. Research Progress of Perfluoroalkyl Substances in Edible Oil-A Review. Foods 2023; 12:2624. [PMID: 37444362 DOI: 10.3390/foods12132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) have been widely used in different types of consumer and industrial applications such as surfactants, household cleaning products, textiles, carpets, cosmetics, firefighting foams, and food packaging because of their good stability and special physicochemical properties of hydrophobicity, oleophobicity, high temperature resistance, etc. Meanwhile, PFASs are considered an emerging organic pollutant due to their persistence and potential toxicity to human health. PFASs occur in edible oil, an important component of the global diet, mainly in three ways: raw material contamination, process contamination, and migration from oil contact materials. Thus, the occurrence of PFAS in edible oils has drawn more and more attention in recent years. In this work, the pertinent literature of the last two decades from the Web of Science database was researched. This review systematically addressed the potential sources, the contamination levels, and the progress of the determination of PFASs in edible oil. It aims to provide a relatively whole profile of PFASs in edible oil, render assistance to minimise human exposure to PFASs, and standardise the detection methods of perfluoroalkyl substances in edible oil.
Collapse
Affiliation(s)
- Yingyi Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Chen X, Hussain S, Tang Y, Chen X, Zhang S, Wang Y, Zhang P, Gao R, Wang S, Hao Y. Two-in-one platform based on conjugated polymer for ultrasensitive ratiometric detection and efficient removal of perfluoroalkyl substances from environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160467. [PMID: 36436641 DOI: 10.1016/j.scitotenv.2022.160467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Continuous emergence of persistent organic pollutants perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in various water bodies around the world poses a serious threat to the global ecosystem. The exploration of advanced detection/removal techniques to monitor/treat such type of toxicants is urgently required. Herein, we unveiled a donor-acceptor type conjugated polymer PF-DBT-Im as a first-of-its-kind ratiometric fluorescent probe for visual, amplified, and specific monitoring of PFOA and PFOS with ultra-low detection limits of 6.12 nM (PFOA) and 14.3 nM (PFOS), respectively. PF-DBT-Im undergoes strong aggregation after binding with PFOA/PFOS as evident by transmission electron microscopy, zeta potential measurements, and dynamic light scattering studies. This promotes interchain Förster resonance energy transfer process to endorse an obvious emission color change from blue-to-magenta under ultraviolet lamp excitation. Consequently, a smartphone-integrated portable device is fabricated for realizing rapid and on-site detection of PFOA/PFOS. Besides, a new class of magnetic adsorbent Fe3O4@NH2&F13 is also prepared and used in combination with PF-DBT-Im to remove PFOA/PFOS from the environmental water effectively and rapidly as confirmed by liquid chromatography-mass spectrometry analysis. Thus, utilizing the excellent signal amplification property of PF-DBT-Im and the remarkable magnetic separation capability of Fe3O4@NH2&F13, a multifunctional system is developed for step-wise recognition and separation of PFOA/PFOS from the environmental water proficiently and rapidly.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sijie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pei Zhang
- Department of Urology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
11
|
Manivannan B, Nallathambi G, Devasena T. Alternative methods of monitoring emerging contaminants in water: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2009-2031. [PMID: 36128976 DOI: 10.1039/d2em00237j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities have steadily increased the release of emerging contaminants (ECs) in aquatic bodies, and these ECs may have adverse effects on humans even at their trace (μg L-1) levels. Their occurrence in wastewater systems is more common, and the current wastewater treatment facilities are inefficient in eliminating many of such persistent ECs. "Gold standard" techniques such as chromatography, mass spectrometry, and other high-resolution mass spectrometers are used for the quantification of ECs of various kinds, but they all have significant limitations. This paper reviews the alternative methods for EC detection, which include voltammetry, potentiometry, amperometry, electrochemical impedance spectroscopy (EIS) based electrochemical methods, colorimetry, surface-enhanced Raman spectroscopy (SERS), fluorescence probes, and fluorescence spectroscopy-based optical techniques. These alternative techniques have several advantages over conventional techniques, including low sample volume, excludes solid phase extraction procedure, high sensitivity, selectivity, portability, reproducibility, rapidity, low cost, and the ability to monitor ECs in real time. This review summarises each of the alternative methods for detecting ECs in water samples and their respective limits of detection (LODs). The sensitivity of each technique varied depending on the type of EC measured, type of electrochemical probe and electrode, substrates, type of nanoparticle (NP), the physicochemical parameters of water samples tested, and more. Nevertheless, this paper also focuses on some of the current challenges encountered by these alternative methods in monitoring ECs.
Collapse
Affiliation(s)
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
12
|
Cobalt-embedded nitrogen-doped carbon nanosheets with enhanced oxidase-like activity for detecting perfluorooctane sulfonate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ganesan S, Chawengkijwanich C, Gopalakrishnan M, Janjaroen D. Detection methods for sub-nanogram level of emerging pollutants - Per and polyfluoroalkyl substances. Food Chem Toxicol 2022; 168:113377. [PMID: 35995078 DOI: 10.1016/j.fct.2022.113377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds has been manufactured for more than five decades and used in different purposes. Among persistent organic pollutants, PFAS are toxic, bioaccumulative in humans, wildlife, and global environment. As per environmental protection agency (EPA) guidelines, the perfluorooctanoate and perfluorooctane sulfonate permissible limit was 0.07 ng/L in drinking water. When the concentration exceeds the acceptable limit, it has negative consequences for humans. In such a case, PFAS monitoring is critical, and a quick detection technique are highly needed. Health departments and regulatory agencies have interests in monitoring of PFAS presences and exposures. For the detection of PFAS, numerous highly precise and sensitive chromatographic methods are available. However, the drawbacks of analytical techniques include timely sample preparations and the lack of on-site applicability. As a result, there is an increasing demand for simple sensor systems for monitoring of PFAS in real field samples. In this review, we first describe the sample pre-treatment and analytical techniques for the detection of PFAS. Second, we broadly discussed available sensor system for the quantification of PFAS in different filed samples. Finally, future trends in PFASs sensor are also presented.
Collapse
Affiliation(s)
- Sunantha Ganesan
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chamorn Chawengkijwanich
- Research Network of NANOTEC - CU on Environment, Bangkok, 10330, Thailand; National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 12120, Pathumthani, Thailand.
| | - Mohan Gopalakrishnan
- Department of Chemical Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dao Janjaroen
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 12120, Pathumthani, Thailand.
| |
Collapse
|
14
|
Ambaye TG, Vaccari M, Prasad S, Rtimi S. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58405-58428. [PMID: 35754080 DOI: 10.1007/s11356-022-21513-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, New Delhi, 110012, India
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, CH-1201, Geneva, Switzerland.
| |
Collapse
|
15
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Wu N, Guo H, Wang M, Peng L, Chen Y, Liu B, Pan Z, Liu Y, Yang W. A ratiometric sensor for selective detection of Hg 2+ ions by combining second-order scattering and fluorescence signals of MIL-68(In)-NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120858. [PMID: 35016060 DOI: 10.1016/j.saa.2022.120858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Ratio fluorescence has attracted much attention because of its self-calibration properties. However, it is difficult to obtain suitable fluorescent materials with well-resolved signals simultaneously under one excitation. In this work, we report a different strategy, using MIL-68(In)-NH2 as both the fluorescence element and the scattered light unit, and coupling the fluorescence and the scattered light to construct the fluorescence and scattered light ratio system. Based on the optical properties and the second-order scattering (SOS) of the material nanoparticles, the synthesized MIL-68(In)-NH2 can be used to realize the ratio detection of Hg2+. Because the scattering intensity of small particle MIL-68(In)-NH2 is weak, SOS is not obvious. When Hg2+ is introduced the coordination reaction between the amino nitrogen atoms of MIL-68(In)-NH2 and Hg2+ make the particles larger, resulting in the decrease of fluorescence and the enhancement of SOS. As a result, a novel Hg2+ ratiometric detection method is developed by using the dual signal responses of the fluorescence and scattering. Under the optimal conditions (pH = 6, reaction time 5 min, room temperature, and the maximum excitation wavelength 365 nm), the linear range of the method is 0-100 μM, and the detection limit is 5.8 nM (Ksv = 9.89 × 109 M-1). In addition, the probe is successfully used to evaluate Hg2+ in actual water samples. Compared with the traditional method of recording only the fluorescence signal, the proposed fluorescence-scattering method provides a new strategy for the design of ratiometric sensors.
Collapse
Affiliation(s)
- Ning Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hao Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Mingyue Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Liping Peng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuan Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Bingqing Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhilan Pan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yinsheng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
17
|
Hong Y, Chen X, Zhang Y, Zhu Y, Sun J, Swihart MT, Tan K, Dong L. One-pot hydrothermal synthesis of high quantum yield orange-emitting carbon quantum dots for sensitive detection of perfluorinated compounds. NEW J CHEM 2022. [DOI: 10.1039/d2nj02907c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carbon quantum dot with orange high quantum yield is used to detect PFOS/PFOA in cells.
Collapse
Affiliation(s)
- Yushuang Hong
- Key Laboratory of Luminescence analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xianping Chen
- Key Laboratory of Luminescence analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya Zhang
- Key Laboratory of Luminescence analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yulin Zhu
- Key Laboratory of Luminescence analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingfang Sun
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering, The University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA
| | - Kejun Tan
- Key Laboratory of Luminescence analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lin Dong
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
18
|
Cao W, Wu Y, Li X, Jiang X, Zhang Y, Zhan Y, Sun Z. One-pot synthesis of double silane-functionalized carbon dots with tunable emission and excellent coating properties for WLEDs application. NANOTECHNOLOGY 2021; 33:115703. [PMID: 34874317 DOI: 10.1088/1361-6528/ac4067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 05/24/2023]
Abstract
Silane-functionalized carbon dots (SiCDs) can be exploited as effective color converting materials for the solid-state light-emitting devices. However, most of SiCDs reported thus far have shown photoluminescence emissions in the blue and green spectral range, which limit them to construct an efficient white light-emitting diodes (WLEDs) due to the lack of long-wavelength emission. Herein, a series of double silane-functionalized carbon dots (DSiCDs) were prepared via a one-step solvothermal method. The results show that the organic functional group of the silane has great influence on the optical properties of DSiCDs and the number of alkoxy group in the silane has great influence on coating properties of DSiCDs. In addition, the DSiCDs prepared by (3-aminopropyl)triethoxysilane and N-[3-(trimethoxysilyl)propyl]ethylenediamine with molar ratio of 7:3 show excellent optical properties with the maximum emission at 608 nm under 570 nm excitation. Furthermore, they can be completely cured within 1 h at room temperature to form fluorescent coating with high stability and strong adhesion to the substrate. Together with their excellent optical and coating properties, they can be directly coated on LED chips to prepare WLEDs, with a CIE coordinate of (0.33,0.31), color rendering index of 81.6, and color temperature of 5774 K.
Collapse
Affiliation(s)
- Wenbing Cao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Yuhan Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xin Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xuanfeng Jiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Yuhong Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Yuan Zhan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhengguang Sun
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
19
|
Menger RF, Funk E, Henry CS, Borch T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 417:129133. [PMID: 37539085 PMCID: PMC10398537 DOI: 10.1016/j.cej.2021.129133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of compounds that have become environmental contaminants of emerging concern. They are highly persistent, toxic, bioaccumulative, and ubiquitous which makes them important to detect to ensure environmental and human health. Multiple instrument-based methods exist for sensitive and selective detection of PFAS in a variety of matrices, but these methods suffer from expensive costs and the need for a laboratory and highly trained personnel. There is a big need for fast, inexpensive, robust, and portable methods to detect PFAS in the field. This would allow environmental laboratories and other agencies to perform more frequent testing to comply with regulations. In addition, the general public would benefit from a fast method to evaluate the drinking water in their homes for PFAS contamination. A PFAS sensor would provide almost real-time data on PFAS concentrations that can also provide actionable information for water quality managers and consumers around the planet. In this review, we discuss the sensors that have been developed up to this point for PFAS detection by their molecular detection mechanism as well as the goals that should be considered during sensor development. Future research needs and commercialization challenges are also highlighted.
Collapse
Affiliation(s)
- Ruth F Menger
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
| | - Emily Funk
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Tian L, Guo H, Li J, Yan L, Zhu E, Liu X, Li K. Fabrication of a near-infrared excitation surface molecular imprinting ratiometric fluorescent probe for sensitive and rapid detecting perfluorooctane sulfonate in complex matrix. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125353. [PMID: 33609881 DOI: 10.1016/j.jhazmat.2021.125353] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 05/29/2023]
Abstract
Construction of fluorescent probe for highly sensitive and selective detection of perfluorooctane sulfonate (PFOS) in water and biological samples is a very important strategy in related pollutant monitoring and environmental health risk appraisal. To overcome the drawback of low sensitivity caused by high-back ground signal of the conventional sensor, a molecularly imprinted near-infrared excitation ratiometric fluorescent probe was constructed and employed to determine PFOS. The sensing process was achieved through the selectively recognition of specific cavities in the probe surface with analyte, accompanied by fluorescence quenching due to the photoinduced electron transfer effect between upconversion materials and PFOS. Under optimized experimental conditions, the fluorescence quenching efficiency of the probe has good linearity against the concentrations of PFOS response divided into two segments within linear ranges of 0.001-0.1 nmol/L and 0.1-1 nmol/L, respectively, with low detection limit of 1 pmol/L. Selective experiment results indicate that the C-F chain length plays a dominant role in molecular recognition and high sensitively detection. The fabricated probe shows well detection performance in a wide pH range. Furthermore, real samples analyses indicate that such an efficient fluorescent probe has potentials in PFOS determination in surface water, human serum and egg extract sample analyses.
Collapse
Affiliation(s)
- Lingxi Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China.
| | - Jing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Liushui Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China.
| | - Enze Zhu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Xiaoming Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Kexin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| |
Collapse
|
21
|
Ryu H, Li B, De Guise S, McCutcheon J, Lei Y. Recent progress in the detection of emerging contaminants PFASs. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124437. [PMID: 33162244 DOI: 10.1016/j.jhazmat.2020.124437] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 05/26/2023]
Abstract
As an emerging contaminant, per- and polyfluoroalkyl substances (PFASs) make up a large group of persistent anthropogenic chemicals, which are difficult to degrade in the environment. Notwithstanding their wide range of applications in consumer products and industrial processes, PFASs have been detected in the environment as well as in human body. Due to their potential adverse human health effects, the U.S. Environmental Protection Agency (EPA) set the combined concentration of PFOA and PFOS in drinking water at 70 ng/L or 70 ppt (parts per trillion) as a lifetime health advisory level. Current standard detection methods for PFASs heavily rely on chromatographic techniques coupled with mass spectrometry. Although these methods provide accurate, specific, and sensitive measurements, their applications are greatly limited in advanced analytical laboratories because it necessitates expensive instrumentations, professional operators, complicated sample pretreatment, and considerable analysis time. Therefore, other detection methods beyond chromatographic based techniques, such as optical and electrochemical techniques, have also been extensively explored for simple, accessible, inexpensive, rapid, and sensitive detection of PFASs, particularly PFOA and PFOS. The purpose of this review is to provide recent progress in alternative detection platforms relying on non-MS based techniques for PFASs analysis. Starting with a brief introduction about the importance of monitoring PFASs, recent advances in various PFASs detection methods are grouped and discussed based on the difference of signals, with an emphasis on the working principles of different techniques, the sensing mechanism, and the sensing performance. The review is closed with the conclusion and discussion of future trends.
Collapse
Affiliation(s)
- Heejeong Ryu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA.
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, CT 06269, USA
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, CT 06269, USA
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, CT 06269, USA.
| |
Collapse
|
22
|
An J, Chen M, Hu N, Hu Y, Chen R, Lyu Y, Guo W, Li L, Liu Y. Carbon dots-based dual-emission ratiometric fluorescence sensor for dopamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118804. [PMID: 32799189 DOI: 10.1016/j.saa.2020.118804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The detection of Dopamine (DA) is significant for disease surveillance and prevention. However, the development of the precise and simple detection techniques is still at a preliminary stage due to their high tester requirements, time-consuming process, and low accuracy. In this work, we present a novel dual-emission ratiometric fluorescence sensing system based on a hybrid of carbon dots (CDs) and 7-amino-4-methylcoumarin (AMC) to quickly monitor the DA concentration. Linked via amide bonds, the CDs and AMC offered dual-emissions with peaks located at 455 and 505 nm, respectively, under a single excitation wavelength of 300 nm. Attributed to the fluorescence of the CDs and AMC in the nanohybrid system can be quenched by DA, the concentration of DA could be quantitatively detected by monitoring the ratiometric ratio change in fluorescent intensity. More importantly, the CDs-AMC-based dual-emission ratiometric fluorescence sensing system demonstrated a remarkable linear relationship in the range of 0-33.6 μM to detection of DA, and a low detection limit of 5.67 nM. Additionally, this sensor successfully applied to the detection of DA in real samples. Therefore, the ratiometric fluorescence sensing system may become promising to find potential applications in biomedical dopamine detection.
Collapse
Affiliation(s)
- Jia An
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China
| | - Meizhu Chen
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Nan Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yongqin Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China
| | - Rubing Chen
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Ying Lyu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Wenxi Guo
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Lijie Li
- Centre for NanoHealth, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China; Centre for NanoHealth, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
23
|
Synthesis of Lanthanide-Functionalized Carbon Quantum Dots for Chemical Sensing and Photocatalytic Application. Catalysts 2020. [DOI: 10.3390/catal10080833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tunable photoluminescent-functionalized carbon quantum dots CQDs@Ln (TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone) were designed and synthesized by introducing lanthanide complexes into the modified CQDs surface through the carboxyl group. The as-prepared CQDs@Ln (TFA)3 emit strong blue–green light with the peak at 435 nm and simultaneously show the characteristic emission of Ln3+ under irradiation of 365 nm light in aqueous solution. Moreover, these functionalized CQDs exhibit excellent photoluminescence properties. In addition, a white luminescent solution CQDs@Eu/Tb (TFA)3 was obtained by adjusting the ratio of Eu3+/Tb3+ and the excitation wavelengths. Moreover, CQDs@Tb (TFA)3 can be utilized as a fluorescent probe for the sensitive and selective detection of MnO4− without interference from other ions in aqueous solution. These results provide the meaningful data for the multicomponent assembly and the photoluminescent-functionalized materials based on the modified CQDs and lanthanide, which can be expected to have potential application in photocatalytic or sensors.
Collapse
|
24
|
Chen Z, Xu X, Meng D, Jiang H, Zhou Y, Feng S, Mu Z, Yang Y. Dual-Emitting N/S-Doped Carbon Dots-Based Ratiometric Fluorescent and Light Scattering Sensor for High Precision Detection of Fe(III) Ions. J Fluoresc 2020; 30:1007-1013. [PMID: 32607734 DOI: 10.1007/s10895-020-02571-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/22/2020] [Indexed: 01/14/2023]
Abstract
Precise and rapid sensing of Fe(III) under concerned facile conditions is important in environmental monitoring. Herein, a facile and label-free ratiometric sensor is constructed for selective determination of Fe(III) ions by coupling second-order scattering (SOS) and fluorescence. We were synthesized fluorescent N, S-doped carbon dots (N/S-CDs) via facile one-step hydrothermal treatment with an intensive fluorescence and a weak SOS signal and high quantum yield (32%). The fluorescence of N/S-CDs was quenched whereas the intensity of SOS was relatively increased by Fe(III) ions due to aggregation-induced fluorescence quenching or enhancement. Based on this effect, a novel fluorescent ratiometric probe with the combined fluorescence and SOS is proposed for the sensing of Fe(III) ions, and with the detection limit of 83 nM and linear range of 0.1-10 μM and 10-40 μM, respectively.
Collapse
Affiliation(s)
- Zhiyan Chen
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Xueqin Xu
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Dongling Meng
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Honglin Jiang
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Yun Zhou
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Shouai Feng
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, Nanning, 530001, Guangxi Province, China
| | - Zhao Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
25
|
Shekarbeygi Z, Farhadian N, Ansari M, Shahlaei M, Moradi S. An innovative green sensing strategy based on Cu-doped Tragacanth/Chitosan nano carbon dots for Isoniazid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117848. [PMID: 31784230 DOI: 10.1016/j.saa.2019.117848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Although Isoniazid (INH) is one of the drugs used as the first line treatment of tuberculosis, its high concentrations in the human body can cause severe complications such as; recurrent seizures, profound metabolic acidosis, coma and even death. Hence it is necessary to designing the sensors capable of detecting very low amounts of drug. A Cu doped Tragacanth/Chitosan carbon dot (CD) with excellent optical properties and photo-thermal stability was synthesized, characterized and used for sensing Isoniazid by a fluorescence Off-ON mechanism based on redox reaction between INH and Fe3+ as quencher. During the first step of reaction, Fe3+ bind to the CDs and due to an electron transfer process the fluorescence intensity of CDs is quenched. There after by introduction of Isoniazid to the CDs-Fe3+ system, Fe3+ converts to Fe2+ and the fluorescence was recovered. Experiments confirm that new method has high ability to detect low concentration of Isoniazid even in the presence of other drugs and interfering materials. In conclusion, this innovative strategy for developing a low cost and sensitive sensor can be used in future health-related programs.
Collapse
Affiliation(s)
- Zahra Shekarbeygi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohabbat Ansari
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|