1
|
Dao QK, Mai TQ, Van Pham T, Ngac AB, Hoang CH, Janssens E, Mai HH. ZnO nanorods grown on Cu wire mesh provide a high sensitivity non-enzymatic absorbance glucose sensor. Mikrochim Acta 2024; 191:753. [PMID: 39567380 DOI: 10.1007/s00604-024-06845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
A highly sensitive non-enzymatic absorption-based glucose sensor is introduced that combines ZnO nanorods with the ferrous oxidation-xylenol orange (FOX) assay. ZnO nanorods were successfully synthesized on the surface of a copper wire mesh, exhibiting high crystallinity, purity, and a large surface area. The glucose sensor displays a high sensitivity of 0.394 mM-1 in a wide linear detection range (0 - 6 mM), along with a low limit of detection of 0.25 mM. The proposed assay has an excellent selectivity towards glucose compared with other sugars such as sucrose, maltose, and fructose. The potential use of the non-enzymatic absorbance sensor for diabetes monitoring is demonstrated by measuring the glucose concentration in human blood serum, obtaining values that are consistent with clinical analysis.
Collapse
Affiliation(s)
- Quang Khai Dao
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
- Soft Matter and Biological Physics Center, Center for High Technology Research and Development, Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Thuy Quynh Mai
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
- Soft Matter and Biological Physics Center, Center for High Technology Research and Development, Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Thanh Van Pham
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
- Soft Matter and Biological Physics Center, Center for High Technology Research and Development, Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - An Bang Ngac
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
| | - Chi Hieu Hoang
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Louvain, Belgium
| | - Hanh Hong Mai
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam.
| |
Collapse
|
2
|
Ruan S, Liu W, Wang W, Lu Y. Research Progress of SERS Sensors Based on Hydrogen Peroxide and Related Substances. Crit Rev Anal Chem 2023; 54:3570-3591. [PMID: 37695106 DOI: 10.1080/10408347.2023.2255901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogen peroxide (H2O2) has an important role in living organisms, and its detection is of great importance in medical, chemical, and food safety applications. This review provides a comparison of different types of Surface-enhanced Raman scattering (SERS) sensors for H2O2 and related substances with respect to their detection limits, which are of interest due to high sensitivity compared to conventional sensors. According to the latest research report, this review focuses on the sensing mechanism of different sensors and summarizes the linear range, detection limits, and cellular applications of new SERS sensors, and discusses the limitations in vivo and future prospects of SERS technology for the detection of H2O2.
Collapse
Affiliation(s)
- Shuyan Ruan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Wenting Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Wenxi Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Qi Y, Li B, Song D, Xiu FR, Gao X. Ultrafast colorimetric detection of Cr(VI) based on competition of 8-HQ to Cr(VI) and TMB oxides using GO/AuNPs nanocomposites as peroxidase mimic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122722. [PMID: 37080054 DOI: 10.1016/j.saa.2023.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Rapid detection of ultra-trace heavy metal chromium is very important for ecological environment. Herein, a rapid colorimetric assay was constructed for detecting hexavalent chromium (Cr(VI)) in environment water through the strong peroxidase mimicking activity of graphene oxide/gold nanoparticles (GO/AuNPs) nanocomposites and competition of Cr(VI) to 3,3',5,5'-tetramethylbenzidine (TMB) oxides and 8-hydroxyquinoline (8-HQ). Cr(VI) could effectively prevent the reaction between 8-HQ and TMB oxides to restore the blue color of the system. The detection limit for Cr(VI) was as low as0.018 µM by spectroscopic absorption. Paper-based colorimetric analysis had the detection limit of0.153 µM. The high sensitivity was basically due to the strong peroxidase mimicking activity of GO/AuNPs nanocomposite from synergistic coupling action and the firm chelation between 8-HQ and Cr(VI) from inner-sphere surface complexation. The detection results for real water sample showed that the analysis had feasibility in practical application. It is worth mentioning that the assay is performed by one-step mixing mode at room temperature, and a single test can be completed in half a minute. Indeed, this work not only provided an extremely easy method for real-time detecting Cr(VI) in the environment, but also verified the vitality of colorimetric strategy based on the strong peroxidase mimicking activity and competitive reaction.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Bingjie Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Dandan Song
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
4
|
Ma Y, Guo C, Qu F, Lin H. NIR-II driven photocatalytic hydrogen peroxide-supply on metallic copper-nickel selenide (Cu-Ni 0.85Se) nanoparticle for synergistic therapy. J Colloid Interface Sci 2023; 641:113-125. [PMID: 36924541 DOI: 10.1016/j.jcis.2023.02.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Currently, finite intratumoral H2O2 content has restricted the efficacy of chemodynamic therapy (CDT). Here, Cu-Ni0.85Se@PEG nanoparticles are constructed to display intracellular NIR-II photocatalytic H2O2 supplement. The formation mechanism is explored to discover that H2O2 generation is dominated by photo-excited electrons and dissolved O2 via a typical sequential single-electron transfer process. Both density functional theory calculation and experimental data confirm its metallic feature that endows the great NIR-II absorption and photothermal conversion efficiency (59.6 %, 1064 nm). Furthermore, the photothermal-assisting consecutive interband and intraband transition in metallic catalyst contributes to the high redox capacity and efficient separation/transfer ability of photo-generated charges, boosting H2O2 production under 1064 nm laser irradiation. In addition, Cu-Ni0.85Se@PEG possess mimic peroxidase and catalase activity, leading to in-situ H2O2 activation to produce ∙OH and O2 for the enhanced CDT and hypoxia relief. What's more, the nanomaterials reveal novel biodegradation that is derived from oxidation from insolvable selenide into soluble selenate, resulting in elimination via feces and urine within 2 weeks. Synergistic CDT and photothermal therapy (PTT) further lead to great tumor inhibition and immune response for anti-tumor. The antitumor mechanism and the potential biological process also are investigated by high-throughput sequencing of expressed transcripts (RNAseq). The great treatment performance is responsible for the regulation of related oxidative stress and stimulus genes to induce organelle (mitochondrial) and membrane dysfunction. Besides, the synergistic therapy also can efficiently evoke immune response to further fight against tumor.
Collapse
Affiliation(s)
- Yajie Ma
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Changhong Guo
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Huiming Lin
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
5
|
Qi Y, Sun Y, Song D, Wang Y, Xiu F. PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Decorating Zirconium on Graphene Oxide to Design a Multifunctional Nanozyme for Eco-Friendly Detection of Hydrogen Peroxide. Catalysts 2022. [DOI: 10.3390/catal12101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxidase enzymes are crucial in analytical chemistry owing to significant peroxide analytes and their key role in hydrogen peroxide (H2O2) detection. Therefore, exploiting appropriate catalysts for the peroxidase like reactions has become crucial for achieving desired analytical performance. Zirconium (Zr) has attracted growing interest, as a safe and stable potential eco-friendly catalyst for various organic transformations that address increasing environmental challenges. Hence, aiming at fast, sensitive and selective optical detection of H2O2, a colorimetric platform is presented here, based on the excellent peroxidase enzyme-like activity of Zr decorated on graphene oxide (GO). The synergistic effect achieved due to intimate contact between an enzyme like Zr and the high surface area 0f GO ensures efficient electron transfer that increases the chemical and catalytic activity of the composite and advances the decomposition of H2O2 into hydroxyl radicals. The designed probe, thus, efficiently catalyzes the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), via hydroxyl radicals, thereby transforming the colorless TMB into blue oxidized TMB within 2 min. The catalytic mechanism of the Zr-GO enzyme mimic is proposed herein and verified using a fluorescent probe terephthalic acid (TA) and other scavenger experiments. The multifunctional optical probe allows sensitive and highly selective recognition of H2O2 in a linear range from 100 to 1000 µM with a low detection limit of 0.57 µM. Essentially, the direct accessibility of Zr prevents having to use the complicated preparation and purification procedures mostly practiced for conventional biozymes and nanozymes. The devised method offers several gains, including being green and an inexpensive catalyst, having lower LOD, being fast, cost-effective and sensitive, and having selective work-up procedures.
Collapse
|
7
|
Plasmonic MoO3-x nanosheets by anodic oxidation of molybdenum for colorimetric sensing of hydrogen peroxide. Anal Chim Acta 2022; 1198:339529. [DOI: 10.1016/j.aca.2022.339529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
|
8
|
Determination of Cr(VI) based on the peroxidase mimetic catalytic activity of citrate-capped gold nanoparticles. Mikrochim Acta 2021; 188:273. [PMID: 34312715 DOI: 10.1007/s00604-021-04942-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Highly negatively charged gold nanoparticles (AuNPs) are shown to have strong simulated oxidase activity and effectively boosted the oxidation of enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) by hexavalent chromium ion Cr(VI), resulting in the formation of oxidation product with blue color. Based on this, a facile colorimetric assay was developed to detect Cr(VI) at a range 0.008~0.156 mg/L with r = 0.996. The detection limit was estimated to be 0.52 μg/L. In addition, the colorimetric assay showed high selectivity against 28 other interfering ions. It was performed at room temperature and required about half an hour including the preparation of AuNPs. The assay was successfully applied to the determination of Cr(VI) in spiked water samples, and recoveries in the range 95.00-105.40% were obtained. This work paves a way for design of high performance sensor based on highly active nanozymes and also provides an extremely practical analytical tool for the monitoring of Cr(VI) in the environment.
Collapse
|
9
|
Qi Y, Song D, Chen Y. Colorimetric oligonucleotide-based sensor for ultra-low Hg 2+ in contaminated environmental medium: Convenience, sensitivity and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142579. [PMID: 33601667 DOI: 10.1016/j.scitotenv.2020.142579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
A colorimetric sensor for detection of Hg2+ is developed via graphene oxide/gold nanoparticles (GO/AuNPs) nanocomposite as peroxidase mimic. In the absence of Hg2+, the adsorption of ss-DNA on GO/AuNPs resulted in the decrease of peroxidase-like activity of GO/AuNPs, which catalyzed the oxidation of 3, 3, 5, 5-tetramethylbenzidine (TMB) to be very light blue. In the presence of Hg2+, the oligonucleotides of T-Hg2+-T conformation formed by thymine-Hg(II)-thymine interaction could not be adsorbed or bonded on GO/AuNPs, and the GO/AuNPs resumed their original high activity of peroxidase mimic and catalyzed the oxidation of TMB into distinct blue product. Under optimized conditions, the absorbance value at the wavelength of 655 nm (A655) was linearly related with the concentration of Hg2+ in the range between 5.2 × 10-9 M and 1.2 × 10-7 M with a detection limit of 3.8 × 10-10 M. By visual observation with the naked eye, Hg2+ as low as 3.3 × 10-7 M could cause color change in solution. The specific T-Hg2+-T binding made it easy to selectively detect Hg2+. The results show that the colorimetric assay offers great potential for the detection of Hg2+ in real samples.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Dandan Song
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yiting Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
10
|
Javaid A, Ashfaq UA, Zafar Z, Akmal A, Taj S, Khalid H. Phytochemical Analysis and Antidiabetic Potential of Armoracia Rusticana: Pharmacological and Computational Approach. Comb Chem High Throughput Screen 2021; 24:465-471. [PMID: 32452324 DOI: 10.2174/1386207323666200526134512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Aims & Objective: Armoracia rusticana has high medicinal values and is an excellent source of phytochemicals. This study was aimed to evaluate the antidiabetic potential of bioactive compounds from Armoracia rusticana. METHODS The antidiabetic analysis revealed that Armoracia rusticana was highly active against α- glucosidase with IC50 values of 5.6 μg/ml. Furthermore, molecular docking was used to identify the active constituents against α-glucosidase, while using acarbose as a controlled drug. RESULTS Upon phytochemical screening, it was found that six out of ten phytochemicals were successfully docked in the respective binding sites. The lead phytochemical was Quercetin 3-Obeta- D-xylopyranoside, which displayed a more binding score as compared to acarbose. They were subjected to analyze for drug-like properties, which further strengthen its validation. CONCLUSION It was, therefore, concluded that Armoracia rusticana might potentially be used in the amelioration of type 2 diabetes. Potential molecules identified from this study could be considered as a lead drug to cure diabetes mellitus.
Collapse
Affiliation(s)
- Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Zeeshan Zafar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Arina Akmal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|