1
|
Sayler RI, Thomas WC, Rose AJ, Marletta MA. Electron transfer in polysaccharide monooxygenase catalysis. Proc Natl Acad Sci U S A 2025; 122:e2411229121. [PMID: 39793048 PMCID: PMC11725913 DOI: 10.1073/pnas.2411229121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from Myceliophthora thermophila (MtPMO9E). When Y62, a buried residue 12 Å from the active site, is mutated to F, lower activity is observed with O2. However, a WT-level activity is observed with H2O2 as a cosubstrate indicating an important role in ET for O2 activation. To better understand the structural effects of mutations to Y62 and axial copper ligand Y168, crystal structures were solved of the wild type MtPMO9E and the variants Y62W, Y62F, and Y168F. A bioinformatic analysis revealed that position 62 is conserved as either Y or W in the AA9 family. The MtPMO9E Y62W variant has restored activity with O2. Overall, the use of redox-active residues to supply electrons for the reaction with O2 appears to be widespread in the AA9 family. Furthermore, the results provide a molecular framework to understand catalysis with O2 versus H2O2.
Collapse
Affiliation(s)
- Richard I. Sayler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - William C. Thomas
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Alexander J. Rose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael A. Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Kumar A, Singh A, Sharma VK, Goel A, Kumar A. The upsurge of lytic polysaccharide monooxygenases in biomass deconstruction: characteristic functions and sustainable applications. FEBS J 2024; 291:5081-5101. [PMID: 38291603 DOI: 10.1111/febs.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are one of the emerging classes of copper metalloenzymes that have received considerable attention due to their ability to boost the enzymatic conversion of intractable polysaccharides such as plant cell walls and chitin polymers. LPMOs catalyze the oxidative cleavage of β-1,4-glycosidic bonds using molecular O2 or H2O2 in the presence of an external electron donor. LPMOs have been classified as an auxiliary active (AA) class of enzymes and, further based on substrate specificity, divided into eight families. Until now, multiple LPMOs from AA9 and AA10 families, mostly from microbial sources, have been investigated; the exact mechanism and structure-function are elusive to date, and recently discovered AA families of LPMOs are just scratched. This review highlights the origin and discovery of the enzyme, nomenclature, three-dimensional protein structure, substrate specificity, copper-dependent reaction mechanism, and different techniques used to determine the product formation through analytical and biochemical methods. Moreover, the diverse functions of proteins in various biological activities such as plant-pathogen/pest interactions, cell wall remodeling, antibiotic sensitivity of biofilms, and production of nanocellulose along with certain obstacles in deconstructing the complex polysaccharides have also been summarized, while highlighting the innovative and creative ways to overcome the limitations of LPMOs in hydrolyzing the biomass.
Collapse
Affiliation(s)
- Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Aishwarya Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vijay Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Akshita Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Truong NH, Le TTH, Nguyen HD, Nguyen HT, Dao TK, Tran TMN, Tran HL, Nguyen DT, Nguyen TQ, Phan THT, Do TH, Phan NH, Ngo TCN, Vu VV. Sequence and structure analyses of lytic polysaccharide monooxygenases mined from metagenomic DNA of humus samples around white-rot fungi in Cuc Phuong tropical forest, Vietnam. PeerJ 2024; 12:e17553. [PMID: 38938609 PMCID: PMC11210479 DOI: 10.7717/peerj.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background White-rot fungi and bacteria communities are unique ecosystems with different types of symbiotic interactions occurring during wood decomposition, such as cooperation, mutualism, nutritional competition, and antagonism. The role of chitin-active lytic polysaccharide monooxygenases (LPMOs) in these symbiotic interactions is the subject of this study. Method In this study, bioinformatics tools were used to analyze the sequence and structure of putative LPMOs mined by hidden Markov model (HMM) profiles from the bacterial metagenomic DNA database of collected humus samples around white-rot fungi in Cuc Phuong primary forest, Vietnam. Two genes encoding putative LPMOs were expressed in E. coli and purified for enzyme activity assay. Result Thirty-one full-length proteins annotated as putative LPMOs according to HMM profiles were confirmed by amino acid sequence comparison. The comparison results showed that although the amino acid sequences of the proteins were very different, they shared nine conserved amino acids, including two histidine and one phenylalanine that characterize the H1-Hx-Yz motif of the active site of bacterial LPMOs. Structural analysis of these proteins revealed that they are multidomain proteins with different functions. Prediction of the catalytic domain 3-D structure of these putative LPMOs using Alphafold2 showed that their spatial structures were very similar in shape, although their protein sequences were very different. The results of testing the activity of proteins GL0247266 and GL0183513 show that they are chitin-active LPMOs. Prediction of the 3-D structures of these two LPMOs using Alphafold2 showed that GL0247266 had five functional domains, while GL0183513 had four functional domains, two of which that were similar to the GbpA_2 and GbpA_3 domains of protein GbpA of Vibrio cholerae bacteria. The GbpA_2 - GbpA_3 complex was also detected in 11 other proteins. Based on the structural characteristics of functional domains, it is possible to hypothesize the role of chitin-active GbpA-like LPMOs in the relationship between fungal and bacterial communities coexisting on decomposing trees in primary forests.
Collapse
Affiliation(s)
- Nam-Hai Truong
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Thu-Hong Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hong-Duong Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | | | - Trong-Khoa Dao
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Minh-Nguyet Tran
- The Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Hanoi, Vietnam
| | - Huyen-Linh Tran
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dinh-Trong Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Quy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Hong-Thao Phan
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Huyen Do
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Ngoc-Han Phan
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Thi-Cam-Nhung Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Van-Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| |
Collapse
|
4
|
Zhao H, Su H, Sun J, Dong H, Mao X. Bioconversion of α-Chitin by a Lytic Polysaccharide Monooxygenase OsLPMO10A Coupled with Chitinases and the Synergistic Mechanism Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7256-7265. [PMID: 38438973 DOI: 10.1021/acs.jafc.3c08688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The whole enzymatic conversion of chitin is a green and promising alternative to current strategies, which are based on lytic polysaccharide monooxygenases (LPMOs) and chitinases. However, the lack of LPMOs with high activity toward α-chitin limits the efficient bioconversion of α-chitin. Herein, we characterized a high chitin-active LPMO from Oceanobacillus sp. J11TS1 (OsLPMO10A), which could promote the decrystallization of the α-chitin surface. Furthermore, when coupled with OsLPMO10A, the conversion rate of α-chitin to N-acetyl chitobiose [(GlcNAc)2] by three chitinases (Serratia marcescens, ChiA, -B, and -C) reached 30.86%, which was 2.03-folds that without the addition of OsLPMO10A. Moreover, the results of synergistic reactions indicated that OsLPMO10A and chitinases promoted the degradation of α-chitin each other mainly on the surface. To the best of our knowledge, this study achieved the highest yield of N-acetyl chitooligosaccharides (N-acetyl COSs) among reported LPMOs-driven bioconversion systems, which could be regarded as a promising candidate for α-chitin bioconversion.
Collapse
Affiliation(s)
- Hongjun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
| | - Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P. R. China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| |
Collapse
|
5
|
Datta R. Enzymatic degradation of cellulose in soil: A review. Heliyon 2024; 10:e24022. [PMID: 38234915 PMCID: PMC10792583 DOI: 10.1016/j.heliyon.2024.e24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.
Collapse
Affiliation(s)
- Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology. Mendel University In Brno, Czech Republic
| |
Collapse
|
6
|
Dan M, Zheng Y, Zhao G, Hsieh YSY, Wang D. Current insights of factors interfering the stability of lytic polysaccharide monooxygenases. Biotechnol Adv 2023; 67:108216. [PMID: 37473820 DOI: 10.1016/j.biotechadv.2023.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Cellulose and chitin are two of the most abundant biopolymers in nature, but they cannot be effectively utilized in industry due to their recalcitrance. This limitation was overcome by the advent of lytic polysaccharide monooxygenases (LPMOs), which promote the disruption of biopolymers through oxidative mechanism and provide a breakthrough in the action of hydrolytic enzymes. In the application of LPMOs to biomass degradation, the key to consistent and effective functioning lies in their stability. The efficient transformation of biomass resources using LPMOs depends on factors that interfere with their stability. This review discussed three aspects that affect LPMO stability: general external factors, structural factors, and factors in the enzyme-substrate reaction. It explains how these factors impact LPMO stability, discusses the resulting effects, and finally presents relevant measures and considerations, including potential resolutions. The review also provides suggestions for the application of LPMOs in polysaccharide degradation.
Collapse
Affiliation(s)
- Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Berhe MH, Song X, Yao L. Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase. Int J Mol Sci 2023; 24:ijms24108963. [PMID: 37240310 DOI: 10.3390/ijms24108963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) are copper-dependent enzymes that play a pivotal role in the enzymatic conversion of the most recalcitrant polysaccharides, such as cellulose and chitin. Hence, protein engineering is highly required to enhance their catalytic efficiencies. To this effect, we optimized the protein sequence encoding for an LPMO from Bacillus amyloliquefaciens (BaLPMO10A) using the sequence consensus method. Enzyme activity was determined using the chromogenic substrate 2,6-Dimethoxyphenol (2,6-DMP). Compared with the wild type (WT), the variants exhibit up to a 93.7% increase in activity against 2,6-DMP. We also showed that BaLPMO10A can hydrolyze p-nitrophenyl-β-D-cellobioside (PNPC), carboxymethylcellulose (CMC), and phosphoric acid-swollen cellulose (PASC). In addition to this, we investigated the degradation potential of BaLPMO10A against various substrates such as PASC, filter paper (FP), and Avicel, in synergy with the commercial cellulase, and it showed up to 2.7-, 2.0- and 1.9-fold increases in production with the substrates PASC, FP, and Avicel, respectively, compared to cellulase alone. Moreover, we examined the thermostability of BaLPMO10A. The mutants exhibited enhanced thermostability with an apparent melting temperature increase of up to 7.5 °C compared to the WT. The engineered BaLPMO10A with higher activity and thermal stability provides a better tool for cellulose depolymerization.
Collapse
Affiliation(s)
- Miesho Hadush Berhe
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biotechnology, College of Natural and Computational Sciences, Aksum University, Axum 1010, Ethiopia
| | - Xiangfei Song
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
8
|
Votvik AK, Røhr ÅK, Bissaro B, Stepnov AA, Sørlie M, Eijsink VGH, Forsberg Z. Structural and functional characterization of the catalytic domain of a cell-wall anchored bacterial lytic polysaccharide monooxygenase from Streptomyces coelicolor. Sci Rep 2023; 13:5345. [PMID: 37005446 PMCID: PMC10067821 DOI: 10.1038/s41598-023-32263-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Bacterial lytic polysaccharide monooxygenases (LPMOs) are known to oxidize the most abundant and recalcitrant polymers in Nature, namely cellulose and chitin. The genome of the model actinomycete Streptomyces coelicolor A3(2) encodes seven putative LPMOs, of which, upon phylogenetic analysis, four group with typical chitin-oxidizing LPMOs, two with typical cellulose-active LPMOs, and one which stands out by being part of a subclade of non-characterized enzymes. The latter enzyme, called ScLPMO10D, and most of the enzymes found in this subclade are unique, not only because of variation in the catalytic domain, but also as their C-terminus contains a cell wall sorting signal (CWSS), which flags the LPMO for covalent anchoring to the cell wall. Here, we have produced a truncated version of ScLPMO10D without the CWSS and determined its crystal structure, EPR spectrum, and various functional properties. While showing several structural and functional features typical for bacterial cellulose active LPMOs, ScLPMO10D is only active on chitin. Comparison with two known chitin-oxidizing LPMOs of different taxa revealed interesting functional differences related to copper reactivity. This study contributes to our understanding of the biological roles of LPMOs and provides a foundation for structural and functional comparison of phylogenetically distant LPMOs with similar substrate specificities.
Collapse
Affiliation(s)
- Amanda K Votvik
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
- INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
9
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
10
|
Zhang Y, Pan D, Xiao P, Xu Q, Geng F, Zhang X, Zhou X, Xu H. A novel lytic polysaccharide monooxygenase from enrichment microbiota and its application for shrimp shell powder biodegradation. Front Microbiol 2023; 14:1097492. [PMID: 37007517 PMCID: PMC10057547 DOI: 10.3389/fmicb.2023.1097492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMO) are expected to change the current status of chitin resource utilization. This study reports that targeted enrichment of the microbiota was performed with chitin by the selective gradient culture technique, and a novel LPMO (M2822) was identified from the enrichment microbiota metagenome. First, soil samples were screened based on soil bacterial species and chitinase biodiversity. Then gradient enrichment culture with different chitin concentrations was carried out. The efficiency of chitin powder degradation was increased by 10.67 times through enrichment, and chitin degradation species Chitiniphilus and Chitinolyticbacter were enriched significantly. A novel LPMO (M2822) was found in the metagenome of the enriched microbiota. Phylogenetic analysis showed that M2822 had a unique phylogenetic position in auxiliary activity (AA) 10 family. The analysis of enzymatic hydrolysate showed that M2822 had chitin activity. When M2822 synergized with commercial chitinase to degrade chitin, the yield of N-acetyl glycosamine was 83.6% higher than chitinase alone. The optimum temperature and pH for M2822 activity were 35°C and 6.0. The synergistic action of M2822 and chitin-degrading enzymes secreted by Chitiniphilus sp. LZ32 could efficiently hydrolyze shrimp shell powder. After 12 h of enzymatic hydrolysis, chitin oligosaccharides (COS) yield reached 4,724 μg/mL. To our knowledge, this work is the first study to mine chitin activity LPMO in the metagenome of enriched microbiota. The obtained M2822 showed application prospects in the efficient production of COS.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Qianqian Xu
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Fan Geng
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Xinyu Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- *Correspondence: Xiuling Zhou,
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
11
|
Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Essays Biochem 2023; 67:585-595. [PMID: 36748351 PMCID: PMC10154616 DOI: 10.1042/ebc20220164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
The plant cell wall is rich in carbohydrates and many fungi and bacteria have evolved to take advantage of this carbon source. These carbohydrates are largely locked away in polysaccharides and so these organisms deploy a range of enzymes that can liberate individual sugars from these challenging substrates. Glycoside hydrolases (GHs) are the enzymes that are largely responsible for bringing about this sugar release; however, 12 years ago, a family of enzymes known as lytic polysaccharide monooxygenases (LPMOs) were also shown to be of key importance in this process. LPMOs are copper-dependent oxidative enzymes that can introduce chain breaks within polysaccharide chains. Initial work demonstrated that they could activate O2 to attack the substrate through a reaction that most likely required multiple electrons to be delivered to the enzyme. More recently, it has emerged that LPMO kinetics are significantly improved if H2O2 is supplied to the enzyme as a cosubstrate instead of O2. Only a single electron is required to activate an LPMO and H2O2 cosubstrate and the enzyme has been shown to catalyse multiple turnovers following the initial one-electron reduction of the copper, which is not possible if O2 is used. This has led to further studies of the roles of the electron donor in LPMO biochemistry, and this review aims to highlight recent findings in this area and consider how ongoing research could impact our understanding of the interplay between redox processes in nature.
Collapse
|
12
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
13
|
Cordas CM, Valério GN, Stepnov A, Kommedal E, Kjendseth ÅR, Forsberg Z, Eijsink VGH, Moura JJG. Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity. J Inorg Biochem 2023; 238:112056. [PMID: 36332410 DOI: 10.1016/j.jinorgbio.2022.112056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Research on enzymes for lignocellulose biomass degradation has progressively increased in recent years due to the interest in taking advantage of this natural resource. Among these enzymes are the lytic polysaccharide monooxygenases (LPMOs) that oxidatively depolymerize crystalline cellulose using a reactive oxygen species generated in a reduced mono‑copper active site. The copper site comprises of a highly conserved histidine-brace, providing three equatorial nitrogen ligands, whereas less conserved residues close to the copper contribute to shaping and confining the site. The catalytic copper site is exposed to the solvent and to the crystalline substrates, and as so, the influence of the copper environment on LPMO properties, including the redox potential, is of great interest. In the current work, a direct electrochemical study of an LPMO (ScLPMO10C) was conducted allowing to retrieve kinetic and thermodynamic data associated with the redox transition in the catalytic centre. Moreover, two residues that do not bind to the copper but shape the copper sites were mutated, and the properties of the mutants were compared with those of the wild-type enzyme. The direct electrochemical studies, using cyclic voltammetry, yielded redox potentials in the +200 mV range, well in line with LPMO redox potentials determined by other methods. Interestingly, while the mutations hardly affected the formal redox potential of the enzyme, they drastically affected the reactivity of the copper site and enzyme functionality.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gabriel N Valério
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Anton Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund R Kjendseth
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| | - José J G Moura
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Westereng B, Arntzen MØ, Østby H, Agger JW, Vaaje-Kolstad G, Eijsink VGH. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry. Methods Mol Biol 2023; 2657:27-51. [PMID: 37149521 DOI: 10.1007/978-1-0716-3151-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted towards the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate-active redox enzymes.
Collapse
Affiliation(s)
- Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Heidi Østby
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Jane Wittrup Agger
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
15
|
Schwaiger L, Zenone A, Csarman F, Ludwig R. Continuous photometric activity assays for lytic polysaccharide monooxygenase-Critical assessment and practical considerations. Methods Enzymol 2022; 679:381-404. [PMID: 36682872 DOI: 10.1016/bs.mie.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is a monocopper-dependent enzyme that cleaves glycosidic bonds by using an oxidative mechanism. In nature, they act in concert with cellobiohydrolases to facilitate the efficient degradation of lignocellulosic biomass. After more than a decade of LPMO research, it has become evident that LPMOs are abundant in all domains of life and fulfill a diverse range of biological functions. Independent of their biological function and the preferred polysaccharide substrate, studying and characterizing LPMOs is tedious and so far mostly relied on the discontinuous analysis of the solubilized reaction products by HPLC/MS-based methods. In the absence of appropriate substrates, LPMOs can engage in two off-pathway reactions, i.e., an oxidase and a peroxidase-like activity. These futile reactions have been exploited to set up easy-to-use continuous spectroscopic assays. As the natural substrates of newly discovered LPMOs are often unknown, widely applicable, simple, reliable, and robust spectroscopic assays are required to monitor LPMO expression and to perform initial biochemical characterizations, e.g., thermal stability measurements. Here we provide detailed descriptions and practical protocols to perform continuous photometric assays using either 2,6-dimethoxyphenol (2,6-DMP) or hydrocoerulignone as colorimetric substrates as a broadly applicable assay for a range of LPMOs. In addition, a turbidimetric measurement is described as the currently only method available to continuously monitor LPMOs acting on amorphous cellulose.
Collapse
Affiliation(s)
- Lorenz Schwaiger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alice Zenone
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Csarman
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Tandrup T, Muderspach SJ, Banerjee S, Santoni G, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Johansen KS, Meilleur F, Lo Leggio L. Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding. IUCRJ 2022; 9:666-681. [PMID: 36071795 PMCID: PMC9438499 DOI: 10.1107/s2052252522007175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus auranti-acus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 × 104 Gy, while the Cu+ form can be attained using 1 × 106 Gy. In all cases, we observe the transition from a hexa-coordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the θ2 parameter and a decrease of the θ3 parameter by averages of 9.2° and 8.4°, respectively, but also a slight increase in θT. Thus, the θ2 and θ3 parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the θT parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the θT increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.
Collapse
Affiliation(s)
- Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Sebastian J. Muderspach
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Gianluca Santoni
- ESRF, Structural Biology Group, 71 avenue des Martyrs, 38027 Grenoble cedex, France
| | - Johan Ø. Ipsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK, Frederiksberg, Denmark
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800-DK, Kgs. Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800-DK, Kgs. Lyngby, Denmark
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK, Frederiksberg, Denmark
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| |
Collapse
|
17
|
Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Cellulomonas Species. Appl Environ Microbiol 2022; 88:e0096822. [PMID: 35862679 PMCID: PMC9361826 DOI: 10.1128/aem.00968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the β-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on β-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.
Collapse
|
18
|
Dade CM, Douzi B, Cambillau C, Ball G, Voulhoux R, Forest KT. The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases. Acta Crystallogr D Struct Biol 2022; 78:1064-1078. [PMID: 35916229 PMCID: PMC9344471 DOI: 10.1107/s2059798322007033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa secretes diverse proteins via its type 2 secretion system, including a 39 kDa chitin-binding protein, CbpD. CbpD has recently been shown to be a lytic polysaccharide monooxygenase active on chitin and to contribute substantially to virulence. To date, no structure of this virulence factor has been reported. Its first two domains are homologous to those found in the crystal structure of Vibrio cholerae GbpA, while the third domain is homologous to the NMR structure of the CBM73 domain of Cellvibrio japonicus CjLPMO10A. Here, the 3.0 Å resolution crystal structure of CbpD solved by molecular replacement is reported, which required ab initio models of each CbpD domain generated by the artificial intelligence deep-learning structure-prediction algorithm RoseTTAFold. The structure of CbpD confirms some previously reported substrate-specificity motifs among LPMOAA10s, while challenging the predictive power of others. Additionally, the structure of CbpD shows that post-translational modifications occur on the chitin-binding surface. Moreover, the structure raises interesting possibilities about how type 2 secretion-system substrates may interact with the secretion machinery and demonstrates the utility of new artificial intelligence protein structure-prediction algorithms in making challenging structural targets tractable.
Collapse
Affiliation(s)
- Christopher M. Dade
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Badreddine Douzi
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
- Aix-Marseille University, CNRS, AFMB, Marseille, France
| | | | - Genevieve Ball
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
| | - Romé Voulhoux
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
Li F, Liu Y, Liu Y, Li Y, Yu H. Heterologous expression and characterization of a novel lytic polysaccharide monooxygenase from Natrialbaceae archaeon and its application for chitin biodegradation. BIORESOURCE TECHNOLOGY 2022; 354:127174. [PMID: 35436543 DOI: 10.1016/j.biortech.2022.127174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Lytic polysaccharide monooxygenases could enhance the enzymatic conversion of recalcitrant polysaccharides by glycoside hydrolases. This study reports the expression and identification of a novel AA10 LPMO from Natrialbaceae archaeon, named NaLPMO10A, as a C1 oxidizer of chitin. The optimal temperature and pH for NaLPMO10A activity were 40 °C and 9.0, respectively, and NaLPMO10A exhibited high thermostability and pH stability under alkaline conditions. NaLPMO10A was also highly tolerant and stable when treated with high concentration of metal ions (1 M). Moreover, metal ions (Na+, K+, Ca2+ and Mg2+) significantly promoted NaLPMO10A activity and improved the saccharification efficiency of chitin by 22.6%, 45.9%, 36.7% and 53.9%, respectively, compared to commercial chitinase alone. Together, the findings of this study fill a gap in archaeal LPMO research, and for the first time demonstrate that archaeal NaLPMO10A could be a promising enzyme for improving saccharification under extreme condition, with potential applications in biorefineries.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanjun Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Li Y, Li T, Guo J, Wang G, Chen G. Expression and characterization of a novel lytic polysaccharide monooxygenase, PdLPMO9A, from the edible fungus Pleurotus djamor and its synergistic interactions with cellulase in corn straw biomass saccharification. BIORESOURCE TECHNOLOGY 2022; 348:126792. [PMID: 35121098 DOI: 10.1016/j.biortech.2022.126792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Lytic polysaccharide monooxygenases play a unique role in biomass saccharification. A novel gene, PdLPMO9A, from Pleurotus djamor, was reported to be upregulated during the degradation of corn straw in our previous research. However, very little information is available on PdLPMO9A. Therefore, PdLPMO9A was heterologously expressed in Pichia pastoris, and biophysical characterisitics of the recombinant protein PdLPMO9A were investigated; it was shown to have superior thermostability and pH stability. PdLPMO9A markedly improved the cellulase-mediated saccharification of corn straw, when the dosage of PdLPMO9A was 0.66 mg/g corn straw and hydrolysis time was 48 h. When CuSO4 was added at a concentration of 0.1 mM, glucose yield rose by a further 28.16%. In light of these findings, it was concluded that PdLPMO9A has the potential to function as an essential component of a cellulase cocktail capable of ensuring the saccharification of corn straw biomass.
Collapse
Affiliation(s)
- Yanli Li
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key laboratory of straw comprehensive utilization and black soil conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China.
| | - Tongbing Li
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Juntong Guo
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key laboratory of straw comprehensive utilization and black soil conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key laboratory of straw comprehensive utilization and black soil conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| |
Collapse
|
22
|
Yang Z, Hu X, Zhang F, Durrani S, Zhang J, Pang AP, Gao Y, Wu FG, Lin F. Chitosan-modified fluorescent dye for simple, fast, and in-situ measurement of fungal cell growth in the presence of insoluble compounds. FEMS Microbiol Lett 2022; 369:6884137. [PMID: 36481926 DOI: 10.1093/femsle/fnac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The measurement of fungal cell growth in submerged culture systems containing insoluble compounds is essential yet difficult due to the interferences from the insoluble compounds like biopolymers. Here, we developed a fluorescent strategy based on chitosan-modified fluorescein isothiocyanate (GC-FITC) to monitor the cell growth of lignocellulosic fungi cultivated on biopolymers. GC-FITC could stain only lignocellulosic fungi (Tricoderma reesei, Penicillium oxalicum, Aspergillus nidulans, and Neurospora crassa), but not biopolymers (cellulose, xylan, pectin, or lignin), excluding the interferences from these insoluble biopolymer. Moreover, a linear relationship was observed between the fluorescence intensity of GC-FITC absorbed by lignocellulosic fungi and the biomass of lignocellulosic fungi. Therefore, GC-FITC was leveraged to monitor the cell growth of lignocellulosic fungi when using biopolymers like cellulose as the carbon sources, which is faster, more convenient, time-saving, and cost-effective than the existing methods using protein/DNA content measurement. GC-FITC offers a powerful tool to detect fungal growth in culture systems with insoluble materials.
Collapse
Affiliation(s)
- Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yichen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
23
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
24
|
Zhou X, Xu Z, Li Y, He J, Zhu H. Improvement of the Stability and Activity of an LPMO Through Rational Disulfide Bonds Design. Front Bioeng Biotechnol 2022; 9:815990. [PMID: 35111741 PMCID: PMC8801915 DOI: 10.3389/fbioe.2021.815990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) oxidatively break down the glycosidic bonds of crystalline polysaccharides, significantly improving the saccharification efficiency of recalcitrant biomass, and have broad application prospects in industry. To meet the needs of industrial applications, enzyme engineering is needed to improve the catalytic performance of LPMOs such as enzyme activity and stability. In this study, we engineered the chitin-active CjLPMO10A from Cellvibrio japonicus through a rational disulfide bonds design. Compared with the wild-type, the variant M1 (N78C/H116C) exhibited a 3-fold increase in half-life at 60°C, a 3.5°C higher T5015, and a 7°C rise in the apparent Tm. Furthermore, the resistance of M1 to chemical denaturation was significantly improved. Most importantly, the introduction of the disulfide bond improved the thermal and chemical stability of the enzyme without causing damage to catalytic activity, and M1 showed 1.5 times the specific activity of the wild-type. Our study shows that the stability and activity of LPMOs could be improved simultaneously by selecting suitable engineering sites reasonably, thereby improving the industrial adaptability of the enzymes, which is of great significance for applications.
Collapse
|
25
|
Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase. J Biol Inorg Chem 2022; 27:705-713. [PMID: 36208326 PMCID: PMC9653361 DOI: 10.1007/s00775-022-01966-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023]
Abstract
LPMOs are enzymes which catalyse the oxidation of a C-H bond within polysaccharides, leading to their oxidative cleavage. To achieve this, LPMOs employ highly reactive oxidising intermediates, the generation of which is likely coupled to substrate binding to the enzyme. The nature of this coupling is unknown. Here we report a statistical comparison for four three-dimensional structures of an AA9 LPMO crystallised in the same space group but in different oxidation and substrate-binding states, to determine which significant structural perturbations occur at the enzyme upon either oxidation state change or the binding of substrate. In a novel step, we determine the global random error associated with the positional coordinates of atoms using the method of moments to ascertain the statistical estimators of Gaussian distributions of pairwise RMS differences between individual atoms in different structures. The results show that a change in the oxidation state of the copper leads to no significant structural changes, and that binding of the substrate leads to a single change in the conformation of a tryptophan residue. This tryptophan has previously been identified as part of a charge transfer pathway between the active site and the external surface of the protein, and the structural change identified herein may be part of the substrate-enzyme coupling mechanism.
Collapse
|
26
|
Semenova MV, Gusakov AV, Telitsin VD, Sinitsyn AP. Enzymatic Destruction of Cellulose: Characteristics of the Kinetic Interaction of Lytic Polysaccharide Monooxygenases and Individual Cellulases. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zouraris D, Karnaouri A, Pandis P, Argirusis C, Topakas E, Karantonis A. On the interaction of lytic polysaccharide monooxygenases (LPMOs) with phosphoric acid-swollen cellulose (PASC). J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Damle MS, Singh AN, Peters SC, Szalai VA, Fisher OS. The YcnI protein from Bacillus subtilis contains a copper-binding domain. J Biol Chem 2021; 297:101078. [PMID: 34400169 PMCID: PMC8424229 DOI: 10.1016/j.jbc.2021.101078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Bacteria require a precise balance of copper ions to ensure that essential cuproproteins are fully metalated while also avoiding copper-induced toxicity. The Gram-positive bacterium Bacillus subtilis maintains appropriate copper homeostasis in part through the ycn operon. The ycn operon comprises genes encoding three proteins: the putative copper importer YcnJ, the copper-dependent transcriptional repressor YcnK, and the uncharacterized Domain of Unknown Function 1775 (DUF1775) containing YcnI. DUF1775 domains are found across bacterial phylogeny, and bioinformatics analyses indicate that they frequently neighbor domains implicated in copper homeostasis and transport. Here, we investigated whether YcnI can interact with copper and, using electron paramagnetic resonance and inductively coupled plasma-MS, found that this protein can bind a single Cu(II) ion. We determine the structure of both the apo and copper-bound forms of the protein by X-ray crystallography, uncovering a copper-binding site featuring a unique monohistidine brace ligand set that is highly conserved among DUF1775 domains. These data suggest a possible role for YcnI as a copper chaperone and that DUF1775 domains in other bacterial species may also function in copper homeostasis.
Collapse
Affiliation(s)
- Madhura S Damle
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Aarshi N Singh
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Stephen C Peters
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Veronika A Szalai
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
29
|
|
30
|
C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases. Biochem J 2021; 478:2927-2944. [PMID: 34240737 PMCID: PMC8981238 DOI: 10.1042/bcj20210376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper-dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanised new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyse a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it can initiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.
Collapse
|
31
|
Pang AP, Wang H, Zhang F, Hu X, Wu FG, Zhou Z, Wang W, Lu Z, Lin F. High-dose rapamycin exerts a temporary impact on T. reesei RUT-C30 through gene trFKBP12. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:77. [PMID: 33771193 PMCID: PMC8004424 DOI: 10.1186/s13068-021-01926-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Knowledge with respect to regulatory systems for cellulase production is prerequisite for exploitation of such regulatory networks to increase cellulase production, improve fermentation efficiency and reduce the relevant production cost. The target of rapamycin (TOR) signaling pathway is considered as a central signaling hub coordinating eukaryotic cell growth and metabolism with environmental inputs. However, how and to what extent the TOR signaling pathway and rapamycin are involved in cellulase production remain elusive. RESULT At the early fermentation stage, high-dose rapamycin (100 μM) caused a temporary inhibition effect on cellulase production, cell growth and sporulation of Trichoderma reesei RUT-C30 independently of the carbon sources, and specifically caused a tentative morphology defect in RUT-C30 grown on cellulose. On the contrary, the lipid content of T. reesei RUT-C30 was not affected by rapamycin. Accordingly, the transcriptional levels of genes involved in the cellulase production were downregulated notably with the addition of rapamycin. Although the mRNA levels of the putative rapamycin receptor trFKBP12 was upregulated significantly by rapamycin, gene trTOR (the downstream effector of the rapamycin-FKBP12 complex) and genes associated with the TOR signaling pathways were not changed markedly. With the deletion of gene trFKBP12, there is no impact of rapamycin on cellulase production, indicating that trFKBP12 mediates the observed temporary inhibition effect of rapamycin. CONCLUSION Our study shows for the first time that only high-concentration rapamycin induced a transient impact on T. reesei RUT-C30 at its early cultivation stage, demonstrating T. reesei RUT-C30 is highly resistant to rapamycin, probably due to that trTOR and its related signaling pathways were not that sensitive to rapamycin. This temporary influence of rapamycin was facilitated by gene trFKBP12. These findings add to our knowledge on the roles of rapamycin and the TOR signaling pathways play in T. reesei.
Collapse
Affiliation(s)
- Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Jagadeeswaran G, Veale L, Mort AJ. Do Lytic Polysaccharide Monooxygenases Aid in Plant Pathogenesis and Herbivory? TRENDS IN PLANT SCIENCE 2021; 26:142-155. [PMID: 33097402 DOI: 10.1016/j.tplants.2020.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs), copper-dependent enzymes mainly found in fungi, bacteria, and viruses, are responsible for enabling plant infection and degradation processes. Since their discovery 10 years ago, significant progress has been made in understanding the major role these enzymes play in biomass conversion. The recent discovery of additional LPMO families in fungi and oomycetes (AA16) as well as insects (AA15) strongly suggests that LPMOs might also be involved in biological processes such as overcoming plant defenses. In this review, we aim to give a comprehensive overview of the potential role of different LPMO families from the perspective of plant defense and their multiple implications in devising new strategies for achieving crop protection from plant pathogens and insect pests.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lawrie Veale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Andrew J Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
33
|
Theibich YA, Sauer SP, Leggio LL, Hedegård ED. Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase. Comput Struct Biotechnol J 2020; 19:555-567. [PMID: 33510861 PMCID: PMC7807142 DOI: 10.1016/j.csbj.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/07/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are enzymes that bind polysaccharides followed by an (oxidative) disruption of the polysaccharide surface, thereby boosting depolymerization. The binding process between the LPMO catalytic domain and polysaccharide is key to the mechanism and establishing structure-function relationships for this binding is therefore crucial. The hyperfine coupling constants (HFCs) from EPR spectroscopy have proven useful for this purpose. Unfortunately, EPR does not provide direct structural data and therefore the experimental EPR parameters have to be supported with parameters calculated with density functional theory. Yet, calculated HFCs are extremely sensitive to the employed computational setup. Using the LPMO Ls(AA9)A catalytic domain, we here quantify the importance of several choices in the computational setup, ranging from the use of specialized basis, the underlying structures, and the employed exchange-correlation functional. We show that specialized basis sets are an absolute necessity, and also that care has to be taken in the optimization of the underlying structure: only by allowing large parts of the protein around the active site to structurally relax could we obtain results that uniformly reproduced experimental trends. We compare our results to previously published X-ray structures and experimental HFCs for Ls(AA9)A as well as to recent experimental/theoretical results for another (AA10) family of LPMOs.
Collapse
Affiliation(s)
- Yusuf A. Theibich
- Department of Chemistry, University of University, Copenhagen, Denmark
| | | | - Leila Lo Leggio
- Department of Chemistry, University of University, Copenhagen, Denmark
| | - Erik D. Hedegård
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
34
|
Zhou X, Xu Z, He J, Li Y, Pan C, Wang C, Deng MR, Zhu H. A myxobacterial LPMO10 has oxidizing cellulose activity for promoting biomass enzymatic saccharification of agricultural crop straws. BIORESOURCE TECHNOLOGY 2020; 318:124217. [PMID: 33096440 DOI: 10.1016/j.biortech.2020.124217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Myxobacteria are soil microorganisms with the ability to break down biological macromolecules due to the secretion of a large number of extracellular enzymes, but there has been no research report on myxobacterial lytic polysaccharide monooxygenases (LPMOs). In this study, two LPMO10s, ViLPMO10A and ViLPMO10B, from myxobacterium Vitiosangium sp. GDMCC 1.1324 were characterized. Of which, ViLPMO10B is a C1-oxidizing cellulose-active LPMO. Moreover, ViLPMO10B could decrease the degree of polymerization of crop straws cellulose and synergize with commercial cellulase to promote the saccharification. When the weight ratio of commercial cellulase to ViLPMO10B was 9:1, the conversion efficiency of corn stalk, sugarcane bagasse, and rice straw into reducing sugar was improved by 17%, 16%, and 22%, respectively, compared with commercial cellulase without ViLPMO10B. These results indicate that ViLPMO10B has the potential to be a component of a high-efficient cellulase cocktail and has application value in the saccharification of agricultural residual biomasses.
Collapse
Affiliation(s)
- Xiaoli Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiqiang Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jia He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yueqiu Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chengxiang Pan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ming-Rong Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
35
|
McEvoy A, Creutzberg J, Singh RK, Bjerrum MJ, Hedegård ED. The role of the active site tyrosine in the mechanism of lytic polysaccharide monooxygenase. Chem Sci 2020; 12:352-362. [PMID: 34163601 PMCID: PMC8178957 DOI: 10.1039/d0sc05262k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Catalytic breakdown of polysaccharides can be achieved more efficiently by means of the enzymes lytic polysaccharide monooxygenases (LPMOs). However, the LPMO mechanism has remained controversial, preventing full exploitation of their potential. One of the controversies has centered around an active site tyrosine, present in most LPMO classes. Recent investigations have for the first time obtained direct (spectroscopic) evidence for the possibility of chemical modification of this tyrosine. However, the spectroscopic features obtained in the different investigations are remarkably different, with absorption maximum at 420 and 490 nm, respectively. In this paper we use density functional theory (DFT) in a QM/MM formulation to reconcile these (apparently) conflicting results. By modeling the spectroscopy as well as the underlying reaction mechanism we can show how formation of two isomers (both involving deprotonation of tyrosine) explains the difference in the observed spectroscopic features. Both isomers have a [TyrO–Cu–OH]+ moiety with the OH in either the cis- or trans-position to a deprotonated tyrosine. Although the cis-[TyrO–Cu–OH]+ moiety is well positioned for oxidation of the substrate, preliminary calculations with the substrate reveal that the reactivity is at best moderate, making a protective role of tyrosine more likely. With QM/MM, we investigate the mechanism of tyrosine deprotonation in lytic polysaccharide monooxygenases. Our results support deprotonation and our calculated UV-vis spectra show that two isomers must be formed to match recent experiments.![]()
Collapse
Affiliation(s)
- Aina McEvoy
- Division of Theoretical Chemistry, Lund University Box 124 SE-221 00 Lund Sweden
| | - Joel Creutzberg
- Division of Theoretical Chemistry, Lund University Box 124 SE-221 00 Lund Sweden
| | - Raushan K Singh
- Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
36
|
Gaber Y, Rashad B, Hussein R, Abdelgawad M, Ali NS, Dishisha T, Várnai A. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Adv 2020; 43:107583. [DOI: 10.1016/j.biotechadv.2020.107583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022]
|
37
|
Wang B, Wang Z, Davies GJ, Walton PH, Rovira C. Activation of O2 and H2O2 by Lytic Polysaccharide Monooxygenases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, YO10 5DD, U.K
| | - Paul H. Walton
- Department of Chemistry, University of York, Heslington, YO10 5DD, U.K
| | - Carme Rovira
- Departament de Quı́mica Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martı́ i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys, 23, 08020 Barcelona, Spain
| |
Collapse
|
38
|
Larsson ED, Dong G, Veryazov V, Ryde U, Hedegård ED. Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes? Dalton Trans 2020; 49:1501-1512. [PMID: 31922155 DOI: 10.1039/c9dt04486h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lytic polysaccharide monooxygenase (LPMO) enzymes boost polysaccharide depolymerization through oxidative chemistry, which has fueled the hope for more energy-efficient production of biofuel. We have recently proposed a mechanism for the oxidation of the polysaccharide substrate (E. D. Hedegård and U. Ryde, Chem. Sci., 2018, 9, 3866-3880). In this mechanism, intermediates with superoxide, oxyl, as well as hydroxyl (i.e. [CuO2]+, [CuO]+ and [CuOH]2+) cores were involved. These complexes can have both singlet and triplet spin states, and both spin-states may be important for how LPMOs function during catalytic turnover. Previous calculations on LPMOs have exclusively been based on density functional theory (DFT). However, different DFT functionals are known to display large differences for spin-state splittings in transition-metal complexes, and this has also been an issue for LPMOs. In this paper, we study the accuracy of DFT for spin-state splittings in superoxide, oxyl, and hydroxyl intermediates involved in LPMO turnover. As reference we employ multiconfigurational perturbation theory (CASPT2).
Collapse
Affiliation(s)
- Ernst D Larsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
40
|
Limsakul P, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka M, Sakka K, Ratanakhanokchai K. A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides. Appl Microbiol Biotechnol 2020; 104:7533-7550. [PMID: 32651597 DOI: 10.1007/s00253-020-10758-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) play an important role in the degradation of complex polysaccharides in lignocellulosic biomass. In the present study, we characterized a modular LPMO (PcAA10A), consisting of a family 10 auxiliary activity of LPMO (AA10) catalytic domain, and non-catalytic domains including a family 5 carbohydrate-binding module, two fibronectin type-3 domains, and a family 3 carbohydrate-binding module from Paenibacillus curdlanolyticus B-6, which was expressed in a recombinant Escherichia coli. Comparison of activities between full-length PcAA10A and the catalytic domain polypeptide (PcAA10A_CD) indicates that the non-catalytic domains are important for the deconstruction of crystalline cellulose and complex polysaccharides contained in untreated lignocellulosic biomass. Interestingly, PcAA10A_CD acted not only on cellulose and chitin, but also on xylan, mannan, and xylan and cellulose contained in lignocellulosic biomass, which has not been reported for the AA10 family. Mutation of the key residues, Trp51 located at subsite - 2 and Phe171 located at subsite +2, in the substrate-binding site of PcAA10A_CD revealed that these residues are substantially involved in broad substrate specificity toward cellulose, xylan, and mannan, albeit with a low effect toward chitin. Furthermore, PcAA10A had a boosting effect on untreated corn hull degradation by P. curdlanolyticus B-6 endo-xylanase Xyn10D and Clostridium thermocellum endo-glucanase Cel9A. These results suggest that PcAA10A is a unique LPMO capable of cleaving and enhancing lignocellulosic biomass degradation, making it a good candidate for biotechnological applications. KEY POINTS: • PcAA10A is a novel modular LPMO family 10 from Paenibacillus curdlanolyticus. • PcAA10A showed broad substrate specificity on β-1,4 glycosidic linkage substrates. • Non-catalytic domains are important for degrading complex polysaccharides. • PcAA10A is a unique LPMO capable of enhancing lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Puangpen Limsakul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paripok Phitsuwan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Kanokwan Poomputsa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Makiko Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuo Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
41
|
Aliyu H, Gorte O, Zhou X, Neumann A, Ochsenreither K. In silico Proteomic Analysis Provides Insights Into Phylogenomics and Plant Biomass Deconstruction Potentials of the Tremelalles. Front Bioeng Biotechnol 2020; 8:226. [PMID: 32318549 PMCID: PMC7147457 DOI: 10.3389/fbioe.2020.00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 01/27/2023] Open
Abstract
Basidiomycetes populate a wide range of ecological niches but unlike ascomycetes, their capabilities to decay plant polymers and their potential for biotechnological approaches receive less attention. Particularly, identification and isolation of CAZymes is of biotechnological relevance and has the potential to improve the cache of currently available commercial enzyme cocktails toward enhanced plant biomass utilization. The order Tremellales comprises phylogenetically diverse fungi living as human pathogens, mycoparasites, saprophytes or associated with insects. Here, we have employed comparative genomics approaches to highlight the phylogenomic relationships among thirty-five Tremellales and to identify putative enzymes of biotechnological interest encoded on their genomes. Evaluation of the predicted proteomes of the thirty-five Tremellales revealed 6,918 putative carbohydrate-active enzymes (CAZYmes) and 7,066 peptidases. Two soil isolates, Saitozyma podzolica DSM 27192 and Cryptococcus sp. JCM 24511, show higher numbers harboring an average of 317 compared to a range of 267-121 CAZYmes for the rest of the strains. Similarly, the proteomes of the two soil isolates along with two plant associated strains contain higher number of peptidases sharing an average of 234 peptidases compared to a range of 226-167 for the rest of the strains. Despite these huge differences and the apparent enrichment of these enzymes among the soil isolates, the data revealed a diversity of the various enzyme families that does not reflect specific habitat type. Growth experiment on various carbohydrates to validate the predictions provides support for this view. Overall, the data indicates that the Tremellales could serve as a rich source of both CAZYmes and peptidases with wide range of potential biotechnological relevance.
Collapse
Affiliation(s)
- Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xinhai Zhou
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Anke Neumann
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
42
|
Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0300-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractRenewable biomass such as cellulose and chitin are the most abundant sustainable sources of energy and materials. However, due to the low degradation efficiency of these recalcitrant substrates by conventional hydrolases, these biomass resources cannot be utilized efficiently. In 2010, the discovery of lytic polysaccharide monooxygenases (LPMOs) led to a major breakthrough. Currently, LPMOs are distributed in 7 families in CAZy database, including AA9–11 and AA13–16, with different species origins, substrate specificity and oxidative regioselectivity. Effective application of LPMOs in the biotransformation of biomass resources needs the elucidation of the molecular basis of their function. Since the discovery of LPMOs, great advances have been made in the study of their substrate specificity and regioselectivity, as well as their structural basis, which will be reviewed below.
Collapse
|
43
|
Arnold ND, Brück WM, Garbe D, Brück TB. Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products. Mar Drugs 2020; 18:E93. [PMID: 32019265 PMCID: PMC7073968 DOI: 10.3390/md18020093] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
44
|
Coulibaly F. Polyhedra, spindles, phage nucleus and pyramids: Structural biology of viral superstructures. Adv Virus Res 2019; 105:275-335. [PMID: 31522707 DOI: 10.1016/bs.aivir.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral infection causes comprehensive rearrangements of the cell that reflect as much host defense mechanisms as virus-induced structures assembled to facilitate infection. Regardless of their pro- or antiviral role, large intracellular structures are readily detectable by microscopy and often provide a signature characteristic of a specific viral infection. The structural features and localization of these assemblies have thus been commonly used for the diagnostic and classification of viruses since the early days of virology. More recently, characterization of viral superstructures using molecular and structural approaches have revealed very diverse organizations and roles, ranging from dynamic viral factories behaving like liquid organelles to ultra-stable crystals embedding and protecting virions. This chapter reviews the structures, functions and biotechnological applications of virus-induced superstructures with a focus on assemblies that have a regular organization, for which detailed structural descriptions are available. Examples span viruses infecting all domains of life including the assembly of virions into crystalline arrays in eukaryotic and bacterial viruses, nucleus-like compartments involved in the replication of large bacteriophages, and pyramid-like structures mediating the egress of archaeal viruses. Among these superstructures, high-resolution structures are available for crystalline objects produced by insect viruses: viral polyhedra which function as the infectious form of occluded viruses, and spindles which are potent virulence factors of entomopoxviruses. In turn, some of these highly symmetrical objects have been used to develop and validate advanced structural approaches, pushing the boundary of structural biology.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Infection & Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
45
|
Poschenrieder C, Busoms S, Barceló J. How Plants Handle Trivalent (+3) Elements. Int J Mol Sci 2019; 20:E3984. [PMID: 31426275 PMCID: PMC6719099 DOI: 10.3390/ijms20163984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion's redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Silvia Busoms
- Plant Sciences, Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
46
|
Wang B, Walton PH, Rovira C. Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases. ACS Catal 2019; 9:4958-4969. [PMID: 32051771 PMCID: PMC7007194 DOI: 10.1021/acscatal.9b00778] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes for the degradation of recalcitrant polysaccharides such as chitin and cellulose. Unlike classical hydrolytic enzymes (cellulases), LPMOs catalyze the cleavage of the glycosidic bond via an oxidative mechanism using oxygen and a reductant. The full enzymatic molecular mechanisms, starting from the initial electron transfer from a reductant to oxygen activation and hydrogen peroxide formation, are not yet understood. Using quantum mechanics/molecular mechanics (QM/MM) metadynamics simulations, we have uncovered the oxygen activation mechanisms by LPMO in the presence of ascorbic acid, one of the most-used reductants in LPMOs assays. Our simulations capture the sequential formation of Cu(II)-O2 - and Cu(II)-OOH- intermediates via facile H atom abstraction from ascorbate. By investigating all the possible reaction pathways from the Cu(II)-OOH- intermediate, we ruled out Cu(II)-O• - formation via direct O-O cleavage of Cu(II)-OOH-. Meanwhile, we identified a possible pathway in which the proximal O atom of Cu(II)-OOH- abstracts a hydrogen atom from ascorbate, leading to Cu(I) and H2O2. The in-situ-generated H2O2 either converts to LPMO-Cu(II)-O• - via a homolytic reaction, or diffuses into the bulk water in an uncoupled pathway. The competition of these two pathways is strongly dependent on the binding of the carbohydrate substrate, which plays a role in barricading the in-situ-generated H2O2 molecule, preventing its diffusion from the active site into the bulk water. Based on the present results, we propose a catalytic cycle of LPMOs that is consistent with the experimental information available. In particular, it explains the enigmatic substrate dependence of the reactivity of the LPMO with H2O2.
Collapse
Affiliation(s)
- Binju Wang
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Paul H. Walton
- Department of Chemistry, University of York, Heslington, YO10 5DD, United Kingdom
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain
| |
Collapse
|
47
|
Yadav SK, Singh R, Singh PK, Vasudev PG. Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase. PLANTA 2019; 249:1987-1996. [PMID: 30903269 DOI: 10.1007/s00425-019-03135-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/09/2019] [Indexed: 05/25/2023]
Abstract
Amino acid sequence and crystal structure analyses of Tma12, an insecticidal protein isolated from the fern Tectaria macrodonta, identify it as a carbohydrate-binding protein belonging to the AA10 family of lytic polysaccharide monooxygenases, and provide the first evidence of AA10 proteins in plants. Tma12, isolated from the fern Tectaria macrodonta, is a next-generation insecticidal protein. Transgenic cotton expressing Tma12 exhibits resistance against whitefly and viral diseases. Beside its insecticidal property, the structure and function of Tma12 are unknown. This limits understanding of the insecticidal mechanism of the protein and targeted improvement in its efficacy. Here we report the amino acid sequence analysis and the crystal structure of Tma12, suggesting that it is possibly a lytic polysaccharide monooxygenase (LPMO) of the AA10 family. Amino acid sequence of Tma12 shows 45% identity with a cellulolytic LPMO of Streptomyces coelicolor. The crystal structure of Tma12, obtained at 2.2 Å resolution, possesses all the major structural characteristics of AA10 LPMOs. A H2O2-based enzymatic assay also supports this finding. It is the first report of the occurrence of LPMO-like protein in a plant. The two facts that Tma12 possesses insecticidal activity and shows structural similarity with LPMOs collectively advocate exploration of microbial LPMOs for insecticidal potential.
Collapse
Affiliation(s)
- Sunil K Yadav
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Rahul Singh
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pradhyumna Kumar Singh
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| | - Prema G Vasudev
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
48
|
Li Y, Liu J, Wang G, Yang M, Yang X, Li T, Chen G. De novo transcriptome analysis of Pleurotus djamor to identify genes encoding CAZymes related to the decomposition of corn stalk lignocellulose. J Biosci Bioeng 2019; 128:529-536. [PMID: 31147217 DOI: 10.1016/j.jbiosc.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/06/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
CAZymes play a very important role in the biotransformation of corn stalk biomass, which is an important resource for sustainable development. Pleurotus djamor can produce CAZymes related to the decomposition of corn stalk lignocellulose biomass in sole corn stalk substrate; however, little is known about their encoding genes. In order to identify CAZymes encoding genes, RNA high-throughput sequencing of P. djamor was performed in this study. The results showed that a core set of 70 upregulated genes encoding putative CAZymes were revealed. They encode 19 kinds of CAZymes in total, of which there are 4 EGLs, 8 CBHs, 5 BGLs, and 12 LPMOs related to cellulose degradation, 8 XYNs, 1 XYL, 2 AGUs, 3 ABFs, 2 AGLs, and 2 AXEs related to hemicellulose degradation, and 5 LACCs, 2 MnPs, 5 VPs, 3 CDHs, 1 AAO, 1 GOX, 1 AOX, 2 GAOXs, and 3 GLOXs related to lignin degradation. This variety suggests that CAZymes may play a very important role in decomposing the lignocellulose biomass of corn stalk. This is the first study to report the de novo transcriptome sequencing of P. djamor, which will produce a dataset of genes encoding CAZymes, thereby laying the foundation to elucidate the degradation mechanism of corn stalk biomass and boost the biotransformation of corn stalk biomass resources.
Collapse
Affiliation(s)
- Yanli Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Engineering Research Center of the Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China.
| | - Jiahao Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Gang Wang
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Meiying Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Xue Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Tongbing Li
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Guang Chen
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| |
Collapse
|
49
|
Chylenski P, Bissaro B, Sørlie M, Røhr ÅK, Várnai A, Horn SJ, Eijsink VG. Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Piotr Chylenski
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Åsmund K. Røhr
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Svein J. Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
50
|
Caldararu O, Oksanen E, Ryde U, Hedegård ED. Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase. Chem Sci 2019; 10:576-586. [PMID: 30746099 PMCID: PMC6334667 DOI: 10.1039/c8sc03980a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing metalloenzymes that can cleave the glycosidic link in polysaccharides. This could become crucial for production of energy-efficient biofuels from recalcitrant polysaccharides. Although LPMOs are considered oxygenases, recent investigations have shown that H2O2 can also act as a co-substrate for LPMOs. Intriguingly, LPMOs generate H2O2 in the absence of a polysaccharide substrate. Here, we elucidate a new mechanism for H2O2 generation starting from an AA10-LPMO crystal structure with an oxygen species bound, using QM/MM calculations. The reduction level and protonation state of this oxygen-bound intermediate has been unclear. However, this information is crucial to the mechanism. We therefore investigate the oxygen-bound intermediate with quantum refinement (crystallographic refinement enhanced with QM calculations), against both X-ray and neutron data. Quantum refinement calculations suggest a Cu(ii)-O-2 system in the active site of the AA10-LPMO and a neutral protonated -NH2 state for the terminal nitrogen atom, the latter in contrast to the original interpretation. Our QM/MM calculations show that H2O2 generation is possible only from a Cu(i) center and that the most favourable reaction pathway is to involve a nearby glutamate residue, adding two electrons and two protons to the Cu(ii)-O-2 system, followed by dissociation of H2O2.
Collapse
Affiliation(s)
- Octav Caldararu
- Division of Theoretical Chemistry , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden . ;
| | - Esko Oksanen
- European Spallation Source ESS ERIC , P. O. Box 176 , SE-221 00 Lund , Sweden
- Department of Biochemistry and Structural Biology , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden
| | - Ulf Ryde
- Division of Theoretical Chemistry , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden . ;
| | - Erik D Hedegård
- Division of Theoretical Chemistry , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden . ;
| |
Collapse
|