1
|
Gordon G, Greenshields-Watson A, Agarwal P, Wong A, Boyles F, Hummer A, Lujan Hernandez A, Deane C. PLAbDab-nano: a database of camelid and shark nanobodies from patents and literature. Nucleic Acids Res 2025; 53:D535-D542. [PMID: 39385626 PMCID: PMC11701533 DOI: 10.1093/nar/gkae881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Nanobodies are essential proteins of the adaptive immune systems of camelid and shark species, complementing conventional antibodies. Properties such as their relatively small size, solubility and high thermostability make VHH (variable heavy domain of the heavy chain) and VNAR (variable new antigen receptor) modalities a promising therapeutic format and a valuable resource for a wide range of biological applications. The volume of academic literature and patents related to nanobodies has risen significantly over the past decade. Here, we present PLAbDab-nano, a nanobody complement to the Patent and Literature Antibody Database (PLAbDab). PLAbDab-nano is a self-updating, searchable repository containing ∼5000 annotated VHH and VNAR sequences. We describe the methods used to curate the entries in PLAbDab-nano, and highlight how PLAbDab-nano could be used to design diverse libraries, as well as find sequences similar to known patented or therapeutic entries. PLAbDab-nano is freely available as a searchable web server (https://opig.stats.ox.ac.uk/webapps/plabdab-nano/).
Collapse
Affiliation(s)
- Gemma L Gordon
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | | | - Parth Agarwal
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Ashley Wong
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Fergus Boyles
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Alissa Hummer
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| |
Collapse
|
2
|
Rizk SS, Moustafa DM, ElBanna SA, Nour El-Din HT, Attia AS. Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons. World J Microbiol Biotechnol 2024; 40:209. [PMID: 38771414 PMCID: PMC11108896 DOI: 10.1007/s11274-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
Collapse
Affiliation(s)
- Soha S Rizk
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dina M Moustafa
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Douglas CM, Bird JE, Kopinke D, Esser KA. An optimized approach to study nanoscale sarcomere structure utilizing super-resolution microscopy with nanobodies. PLoS One 2024; 19:e0300348. [PMID: 38687705 PMCID: PMC11060602 DOI: 10.1371/journal.pone.0300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 05/02/2024] Open
Abstract
The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2μm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.
Collapse
Affiliation(s)
- Collin M. Douglas
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
4
|
Mortelecque J, Zejneli O, Bégard S, Simões MC, ElHajjar L, Nguyen M, Cantrelle FX, Hanoulle X, Rain JC, Colin M, Gomes CM, Buée L, Landrieu I, Danis C, Dupré E. A selection and optimization strategy for single-domain antibodies targeting the PHF6 linear peptide within the tau intrinsically disordered protein. J Biol Chem 2024; 300:107163. [PMID: 38484799 PMCID: PMC11007443 DOI: 10.1016/j.jbc.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.
Collapse
Affiliation(s)
- Justine Mortelecque
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Orgeta Zejneli
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Margarida C Simões
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Lea ElHajjar
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Marine Nguyen
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | | | - Morvane Colin
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| | - Clément Danis
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Elian Dupré
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| |
Collapse
|
5
|
Chen F, Liu Z, Kang W, Jiang F, Yang X, Yin F, Zhou Z, Li Z. Single-domain antibodies against SARS-CoV-2 RBD from a two-stage phage screening of universal and focused synthetic libraries. BMC Infect Dis 2024; 24:199. [PMID: 38350843 PMCID: PMC10865538 DOI: 10.1186/s12879-024-09022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an evolving global pandemic, and nanobodies, as well as other single-domain antibodies (sdAbs), have been recognized as a potential diagnostic and therapeutic tool for infectious diseases. High-throughput screening techniques such as phage display have been developed as an alternative to in vivo immunization for the discovery of antibody-like target-specific binders. METHODS We designed and constructed a highly diverse synthetic phage library sdAb-U (single-domain Antibody - Universal library ) based on a human framework. The SARS-CoV-2 receptor-binding domain (RBD) was expressed and purified. The universal library sdAb-U was panned against the RBD protein target for two rounds, followed by monoclonal phage ELISA (enzyme-linked immunosorbent assay) to identify RBD-specific binders (the first stage). High-affinity binders were sequenced and the obtained CDR1 and CDR2 sequences were combined with fully randomized CDR3 to construct a targeted (focused) phage library sdAb-RBD, for subsequent second-stage phage panning (also two rounds) and screening. Then, sequences with high single-to-background ratios in phage ELISA were selected for expression. The binding affinities of sdAbs to RBD were measured by an ELISA-based method. In addition, we conducted competition ELISA (using ACE2 ectodomain S19-D615) and SARS-CoV-2 pseudovirus neutralization assays for the high-affinity RBD-binding sdAb39. RESULTS Significant enrichments were observed in both the first-stage (universal library) and the second-stage (focused library) phage panning. Five RBD-specific binders were identified in the first stage with high ELISA signal-to-background ratios. In the second stage, we observed a much higher possibility of finding RBD-specific clones in phage ELISA. Among 45 selected RBD-positive sequences, we found eight sdAbs can be well expressed, and five of them show high-affinity to RBD (EC50 < 100nM). We finally found that sdAb39 (EC50 ~ 4nM) can compete with ACE2 for binding to RBD. CONCLUSION Overall, this two-stage strategy of synthetic phage display libraries enables rapid selection of SARS-CoV-2 RBD sdAb with potential therapeutic activity, and this two-stage strategy can potentially be used for rapid discovery of sdAbs against other targets.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei Kang
- NanoAI Biotech Co., Ltd, Pingshan District, Shenzhen, China
| | - Fan Jiang
- NanoAI Biotech Co., Ltd, Pingshan District, Shenzhen, China.
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ziyuan Zhou
- National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
6
|
Sun M, Wang C, Luo H, Chen Y, Qu G, Chen J, Li L, Zhang M, Xue Q. Development and characterization of a novel nanobody with SRMV neutralizing activity. Microb Cell Fact 2024; 23:45. [PMID: 38341572 PMCID: PMC10858559 DOI: 10.1186/s12934-024-02311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Peste des petits ruminants (PPR) is an acute, contact infectious disease caused by the small ruminant morbillivirus (SRMV), and its morbidity in goats and sheep can be up to 100% with significant mortality. Nanobody generated from camelid animals such as alpaca has attracted wide attention because of its unique advantages compared with conventional antibodies. The main objective of this study was to produce specific nanobodies against SRMV and identify its characteristics. To obtain the coding gene of SRMV-specific nanobodies, we first constructed an immune phage-displayed library from the VHH repertoire of alpaca that was immunized with SRMV-F and -H proteins. By using phage display technology, the target antigen-specific VHHs can be obtained after four consecutive rounds of biopanning. Results showed that the size of this VHH library was 2.26 × 1010 CFU/mL and the SRMV-F and -H specific phage particles were greatly enriched after four rounds of biopanning. The positive phage clones were selected and sequenced, and total of five independent different sequences of SRMV-specific nanobodies were identified. Subsequently, the DNA fragments of the five nanobodies were cloned into E. coli BL21(DE3), respectively, and three of them were successfully expressed and purified. Specificity and affinity towards inactivated SRMV of these purified nanobodies were then evaluated using the ELISA method. Results demonstrated that NbSRMV-1-1, NbSRMV-2-10, and NbSRMV-1-21 showed no cross-reactivity with other antigens, such as inactivated BTV, inactivated FMDV, His-tag labeled protein, and BSA. The ELISA titer of these three nanobodies against inactivated SRMV was up to 1:1000. However, only NbSRMV-1-21 displayed SRMV neutralizing activity at a maximum dilution of 1:4. The results indicate that the nanobodies against SRMV generated in this study could be useful in future applications. This study provided a novel antibody tool and laid a foundation for the treatment and detection of SRMV.
Collapse
Affiliation(s)
- Miao Sun
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yanfei Chen
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jian Chen
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Ling Li
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Min Zhang
- Tech-Bank Food Corporation Limited, Nanjing, China
| | - Qinghong Xue
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China.
| |
Collapse
|
7
|
Mortelecque J, Danis C, Landrieu I, Dupré E. Recombinant Production and Characterization of VHHs/Nanobodies Targeting Tau to Block Fibrillar Assembly. Methods Mol Biol 2024; 2754:131-146. [PMID: 38512665 DOI: 10.1007/978-1-0716-3629-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors. We have observed a correlation between the targeted epitope and the aggregation-inhibition capacity of a series of Tau-specific VHHs.
Collapse
Affiliation(s)
- Justine Mortelecque
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Clément Danis
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Isabelle Landrieu
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Elian Dupré
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France.
| |
Collapse
|
8
|
Broggini L, Barzago MM, Speranzini V, Schulte T, Sonzini F, Giono M, Romeo M, Milani P, Caminito S, Mazzini G, Rognoni P, Merlini G, Pappone C, Anastasia L, Nuvolone M, Palladini G, Diomede L, Ricagno S. Nanobodies counteract the toxicity of an amyloidogenic light chain by stabilizing a partially open dimeric conformation. J Mol Biol 2023; 435:168320. [PMID: 37865287 DOI: 10.1016/j.jmb.2023.168320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.
Collapse
Affiliation(s)
- Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Maria Monica Barzago
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | | | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Federica Sonzini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Matteo Giono
- Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan 20097, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy.
| |
Collapse
|
9
|
Koerselman M, Morshuis LCM, Karperien M. The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine. Acta Biomater 2023; 170:1-14. [PMID: 37517622 DOI: 10.1016/j.actbio.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Over the years, much research has been focused on the use of small molecules such as peptides or aptamers or more recently on the use of variable antigen-binding domain of heavy chain only antibodies in the field of tissue engineering and regenerative medicine. The use of these molecules originated as an alternative for the larger conventional antibodies, of which most drawbacks are derived from their size and complex structure. In the field of tissue engineering and regenerative medicine, biological functionalities are often conjugated to biomaterials in order to (re-)create an in vivo like situation, especially when bioinert biomaterials are used. Those biomaterials are functionalized with these functionalities for instance for the purpose of cell attachment or cell targeting for targeted drug delivery but also for local enrichment or blocking of ligands such as growth factors or cytokines on the biomaterial surface. In this review, we further refer to peptides, aptamers, and variable antigen-binding domain of heavy chain only antibodies as biological functionalities. Here, we compare these biological functionalities within the field of tissue engineering and regenerative medicine and give an overview of recent work in which these biological functionalities have been explored. We focus on the previously mentioned purposes of the biological functionalities. We will compare structural differences, possible modifications and (chemical) conjugation strategies. In addition, we will provide an overview of biologicals that are, or have been, involved in clinical trials. Finally, we will highlight the challenges of each of these biologicals. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering there is broad application of functionalized biomaterials for cell attachment, targeted drug delivery and local enrichment or blocking of growth factors. This was previously mostly done via conventional antibodies, but their large size and complex structure impose various challenges with respect of retaining biological functionality. Peptides, aptamers and VHHs may provide an alternative solution for the use of conventional antibodies. This review discusses the use of these molecules for biological functionalization of biomaterials. For each of the molecules, their characteristics, conjugation possibilities and current use in research and clinical trials is described. Furthermore, this review sets out the benefits and challenges of using these types of molecules for different fields of application.
Collapse
Affiliation(s)
- Michelle Koerselman
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Lisanne C M Morshuis
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands.
| |
Collapse
|
10
|
Gordon GL, Capel HL, Guloglu B, Richardson E, Stafford RL, Deane CM. A comparison of the binding sites of antibodies and single-domain antibodies. Front Immunol 2023; 14:1231623. [PMID: 37533864 PMCID: PMC10392943 DOI: 10.3389/fimmu.2023.1231623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope.
Collapse
Affiliation(s)
- Gemma L. Gordon
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Henriette L. Capel
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bora Guloglu
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Eve Richardson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Isaacs A, Low YS, Macauslane KL, Seitanidou J, Pegg CL, Cheung STM, Liang B, Scott CAP, Landsberg MJ, Schulz BL, Chappell KJ, Modhiran N, Watterson D. Structure and antigenicity of divergent Henipavirus fusion glycoproteins. Nat Commun 2023; 14:3577. [PMID: 37328468 PMCID: PMC10275869 DOI: 10.1038/s41467-023-39278-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
In August 2022, a novel henipavirus (HNV) named Langya virus (LayV) was isolated from patients with severe pneumonic disease in China. This virus is closely related to Mòjiāng virus (MojV), and both are divergent from the bat-borne HNV members, Nipah (NiV) and Hendra (HeV) viruses. The spillover of LayV is the first instance of a HNV zoonosis to humans outside of NiV and HeV, highlighting the continuing threat this genus poses to human health. In this work, we determine the prefusion structures of MojV and LayV F proteins via cryogenic electron microscopy to 2.66 and 3.37 Å, respectively. We show that despite sequence divergence from NiV, the F proteins adopt an overall similar structure but are antigenically distinct as they do not react to known antibodies or sera. Glycoproteomic analysis revealed that while LayV F is less glycosylated than NiV F, it contains a glycan that shields a site of vulnerability previously identified for NiV. These findings explain the distinct antigenic profile of LayV and MojV F, despite the extent to which they are otherwise structurally similar to NiV. Our results carry implications for broad-spectrum HNV vaccines and therapeutics, and indicate an antigenic, yet not structural, divergence from prototypical HNVs.
Collapse
Affiliation(s)
- Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Yu Shang Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Joy Seitanidou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Connor A P Scott
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
12
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
13
|
Abstract
Humanization of therapeutic antibodies derived from animal immunizations is often required to minimize immunogenicity risks in humans, which can cause potentially harmful and serious side effects and reduce antibody efficacy. Humanization is typically applied to conventional monoclonal antibodies derived in rodents as well as single-domain antibodies isolated from camelids and sharks (VHHs and VNARs). A streamlined protocol is described here for sequence humanization of camelid VHHs, which represent a promising biotherapeutic format with many desirable attributes. From human framework selection and complementarity-determining region grafting strategies to empirical scoring for prioritization of back-mutations, step-by-step instructions, and templates are provided along with bioinformatics resources to assist each step of the humanization process. Alternative approaches, warnings, and caveats are also presented.
Collapse
Affiliation(s)
- Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada.
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
14
|
Lam KH, Tremblay JM, Perry K, Ichtchenko K, Shoemaker CB, Jin R. Probing the structure and function of the protease domain of botulinum neurotoxins using single-domain antibodies. PLoS Pathog 2022; 18:e1010169. [PMID: 34990480 PMCID: PMC8769338 DOI: 10.1371/journal.ppat.1010169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/19/2022] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.
Collapse
Affiliation(s)
- Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Jacqueline M. Tremblay
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| |
Collapse
|
15
|
Enhancing the detection sensitivity of nanobody against aflatoxin B 1 through structure-guided modification. Int J Biol Macromol 2022; 194:188-197. [PMID: 34863829 DOI: 10.1016/j.ijbiomac.2021.11.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Nanobodies (Nbs) have shown great potential in immunodetection of small-molecule contaminants in food and environmental monitoring. However, the limited knowledge of the mechanism of Nbs binding to small molecules has hampered the development of high-affinity Nbs and assay improvement. We previously reported two homologous nanobodies Nb26 and Nb28 specific to aflatoxin B1 (AFB1), with the former exhibiting higher sensitivity in ELISA. Herein, Nb26 was selected as the model antibody to resolve its solution nuclear magnetic resonance (NMR) structure, and investigate its AFB1 recognition mechanism. The results revealed that Nb26 exhibits a typical immunoglobulin fold and its AFB1-binding interface is uniquely located in complementarity-determining region 3 (CDR3) and framework region 2 (FR2). This finding was applied to improve the binding activity of Nb28 against AFB1 by constructing two Nb28-based mutants A50V and S102D, resulting in 2.3- and 3.3-fold sensitivity enhancement over the wild type, respectively. This study develops an NMR-based strategy to analyze the underlying mechanism of Nb against AFB1, and successfully generated two site-modified Nbs with improved detection sensitivity. It is believed that this work could greatly expand the applications of Nbs by providing a way to enhance the binding activity.
Collapse
|
16
|
Szunerits S, Pagneux Q, Swaidan A, Mishyn V, Roussel A, Cambillau C, Devos D, Engelmann I, Alidjinou EK, Happy H, Boukherroub R. The role of the surface ligand on the performance of electrochemical SARS-CoV-2 antigen biosensors. Anal Bioanal Chem 2022; 414:103-113. [PMID: 33616686 PMCID: PMC7897554 DOI: 10.1007/s00216-020-03137-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023]
Abstract
Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, 59000, Lille, France
| | - Ilka Engelmann
- Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, 59000, Lille, France
| | | | - Henri Happy
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
17
|
Zhao M, Wang M, Zhang X, Zhu Y, Cao J, She Y, Cao Z, Li G, Wang J, Abd El-Aty AM. Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34852703 DOI: 10.1080/10408398.2021.2009762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Excessive use of pesticides can cause contamination of the environment and agricultural products that are directly threatening human life and health. Therefore, in the process of food safety supervision, it is crucial to conduct sensitive and rapid detection of pesticide residues. The recognition element is the vital component of sensors and methods for fast testing pesticide residues in food. Improper recognition elements may lead to defects of testing methods, such as poor stability, low sensitivity, high economic costs, and waste of time. We can use the molecular biological technique to address these challenges as a good strategy for recognition element production and modification. Herein, we review the molecular biological methods of five specific recognition elements, including aptamers, genetic engineering antibodies, DNAzymes, genetically engineered enzymes, and whole-cell-based biosensors. In addition, the application of these identification elements combined with biosensor and immunoassay methods in actual detection was also discussed. The purpose of this review was to provide a valuable reference for further development of rapid detection methods for pesticide residues.
Collapse
Affiliation(s)
- Mingqi Zhao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - Xiaoguang Zhang
- Hebei Xiangzhi Testing Technology Co., Ltd, Shijiazhuang, China.,Core Facilities and Centers of Hebei Medical University, Shijiazhuang, China
| | - Yongan Zhu
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Soleimanizadeh A, Dinter H, Schindowski K. Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies (Basel) 2021; 10:antib10040047. [PMID: 34939999 PMCID: PMC8699001 DOI: 10.3390/antib10040047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being due to their size and poor ability to penetrate into tissues. In view of their small size, there is a rising interest in derivatives, such as single-domain antibodies and single-chain variable fragments, for clinical diagnostic but also therapeutic applications. Smaller antibody formats combine several benefits for clinical applications and can be manufactured at reduced production costs compared with full-length IgGs. Moreover, such formats have a relevant potential for targeted drug delivery that directs drug cargo to a specific tissue or across the blood–brain barrier. In this review, we give an overview of the challenges for antibody drug delivery in general and focus on intranasal delivery to the central nervous system with antibody formats of different sizes.
Collapse
Affiliation(s)
- Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Faculty of Medicine, University of Ulm, 89081 Ulm, Germany
| | - Heiko Dinter
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Department of Pharmacy and Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Correspondence:
| |
Collapse
|
19
|
Matamoros, Alcivar EI, González, Avilés MS. Study review of camelid and shark antibodies for biomedical and biotechnological applications. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The antibodies of camelids and sharks are about one–half of the conventional ones while regular antibodies have four protein chains: two light and two heavy, these small antibodies studied have just two heavy chains; they lack a light chain. In recent years, nanobodies have been the focus of attention because they can recognize epitopes that are usually not antigenic (hidden) for conventional antibodies. On the clinical side, researchers are testing nanobodies (Nbs) in the fight against diseases and disease diagnosis. Nanobodies also are attractive because they can prevent protein aggregation and clear the already existing aggregates. Furthermore, new treatments using these Nbs can neutralize the severe acute respiratory syndrome coronavirus (SARS-CoV-2) for preventing COVID-19. In this review, we sum up recent findings of the proposed nanobodies for their potential application.
Collapse
|
20
|
Development of a Double Nanobody-Based Sandwich Immunoassay for the Detecting Staphylococcal Enterotoxin C in Dairy Products. Foods 2021; 10:foods10102426. [PMID: 34681475 PMCID: PMC8535553 DOI: 10.3390/foods10102426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create a sandwich enzyme-linked immunosorbent assay (ELISA) based on nanobodies (sandwich Nbs-ELISA) to accurately detect SEC in dairy products without the influence of staphylococcal protein A (SpA). Therefore, after inoculating a Bactrian camel with SEC, a phage display Nb library was created. Eleven Nbs against SEC were identified in three biopanning steps. Based on their affinity and pairing level, a sandwich Nbs-ELISA was developed using the C6 anti-SEC Nb as the capture antibody, while the detection antibody was represented by the C11 phage display anti-SEC Nb. In optimal conditions, the quantitative range of the present sandwich ELISA was 4-250 ng/mL with a detection limit (LOD) of 2.47 ng/mL, obtained according to the blank value plus three standard deviations. The developed technique was subjected to specific measurements, revealing minimal cross-reactivity with Staphylococcus aureus (S. aureus), Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin B (SEB), and SpA. The proposed method exhibited high specificity and an excellent recovery rate of 84.52~108.06% in dairy products. Therefore, the sandwich Nbs-ELISA showed significant potential for developing a specific, sensitive technique for SEC detection in dairy products.
Collapse
|
21
|
Eliseev IE, Ukrainskaya VM, Yudenko AN, Mikushina AD, Shmakov SV, Afremova AI, Ekimova VM, Vronskaia AA, Knyazev NA, Shamova OV. Targeting ErbB3 Receptor in Cancer with Inhibitory Antibodies from Llama. Biomedicines 2021; 9:biomedicines9091106. [PMID: 34572289 PMCID: PMC8467012 DOI: 10.3390/biomedicines9091106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023] Open
Abstract
The human ErbB3 receptor confers resistance to the pharmacological inhibition of EGFR and HER2 receptor tyrosine kinases in cancer, which makes it an important therapeutic target. Several anti-ErbB3 monoclonal antibodies that are currently being developed are all classical immunoglobulins. We took a different approach and discovered a group of novel heavy-chain antibodies targeting the extracellular domain of ErbB3 via a phage display of an antibody library from immunized llamas. We first produced three selected single-domain antibodies, named BCD090-P1, BCD090-M2, and BCD090-M456, in E. coli, as SUMO fusions that yielded up to 180 mg of recombinant protein per liter of culture. Then, we studied folding, aggregation, and disulfide bond formation, and showed their ultimate stability with half-denaturation of the strongest candidate, BCD090-P1, occurring in 8 M of urea. In surface plasmon resonance experiments, two most potent antibodies, BCD090-P1 and BCD090-M2, bound the extracellular domain of ErbB3 with 1.6 nM and 15 nM affinities for the monovalent interaction, respectively. The receptor binding was demonstrated by immunofluorescent confocal microscopy on four different ErbB3+ cancer cell lines. We observed that BCD090-P1 and BCD090-M2 bind noncompetitively to two distinct epitopes on the receptor. Both antibodies inhibited the ErbB3-driven proliferation of MCF-7 breast adenocarcinoma cells and HER2-overexpressing SK-BR-3 cells, with the EC50 in the range of 0.1–25 μg/mL. BCD090-M2 directly blocks ligand binding, whereas BCD090-P1 does not compete with the ligand and presumably acts through a distinct allosteric mechanism. We anticipate that these llama antibodies can be used to engineer new biparatopic anti-ErbB3 or bispecific anti-ErbB2/3 antibodies.
Collapse
Affiliation(s)
- Igor E. Eliseev
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
- Center for Personalized Medicine, FSBSI Institute of Experimental Medicine, St. Petersburg 197376, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Correspondence:
| | - Valeria M. Ukrainskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Anna N. Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia;
| | - Anna D. Mikushina
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
| | - Stanislav V. Shmakov
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
| | | | | | - Anna A. Vronskaia
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
| | - Nickolay A. Knyazev
- Saint-Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological), St. Petersburg 197758, Russia;
| | - Olga V. Shamova
- Center for Personalized Medicine, FSBSI Institute of Experimental Medicine, St. Petersburg 197376, Russia;
| |
Collapse
|
22
|
Weng D, Yin ZF, Chen SS, He X, Li N, Chen T, Qiu H, Zhao MM, Wu Q, Zhou NY, Lu LQ, Tang DL, Song JC, Li HP. Development and assessment of the efficacy and safety of human lung-targeting liposomal methylprednisolone crosslinked with nanobody. Drug Deliv 2021; 28:1419-1431. [PMID: 34223777 PMCID: PMC8259875 DOI: 10.1080/10717544.2021.1921073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Glucocorticoid (GC) hormone has been commonly used to treat systemic inflammation and immune disorders. However, the side effects associated with long-term use of high-dose GC hormone limit its clinical application seriously. GC hormone that can specifically target the lung might decrease the effective dosage and thus reduce GC-associated side effects. In this study, we successfully prepared human lung-targeting liposomal methylprednisolone crosslinked with nanobody (MPS-NSSLs-SPANb). Our findings indicate that MPS-NSSLs-SPANb may reduce the effective therapeutic dosage of MPS, achieve better efficacy, and reduce GC-associated side effects. In addition, MPS-NSSLs-SPANb showed higher efficacy and lower toxicity than conventional MPS.
Collapse
Affiliation(s)
- Dong Weng
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zhao-Fang Yin
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Soochow University, Suzhou, China
| | - Shan-Shan Chen
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Soochow University, Suzhou, China
| | - Xian He
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Nan Li
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Tao Chen
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hui Qiu
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Meng-Meng Zhao
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Qin Wu
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Nian-Yu Zhou
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Li-Qin Lu
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Dan-Li Tang
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jia-Cui Song
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Soochow University, Suzhou, China
| | - Hui-Ping Li
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Trinh TTN, Gaubert A, Melani P, Cambillau C, Roussel A, Leone P. Crystal structures of two camelid nanobodies raised against GldL, a component of the type IX secretion system from Flavobacterium johnsoniae. Acta Crystallogr F Struct Biol Commun 2021; 77:171-176. [PMID: 34100775 PMCID: PMC8186413 DOI: 10.1107/s2053230x21005185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/14/2021] [Indexed: 02/09/2023] Open
Abstract
GldL is an inner-membrane protein that is essential for the function of the type IX secretion system (T9SS) in Flavobacterium johnsoniae. The complex that it forms with GldM is supposed to act as a new rotary motor involved in the gliding motility of the bacterium. In the context of structural studies of GldL to gain information on the assembly and function of the T9SS, two camelid nanobodies were selected, produced and purified. Their interaction with the cytoplasmic domain of GldL was characterized and their crystal structures were solved. These nanobodies will be used as crystallization chaperones to help in the crystallization of the cytoplasmic domain of GldL and could also help to solve the structure of the complex using molecular replacement.
Collapse
Affiliation(s)
- Thi Trang Nhung Trinh
- Faculty of Medical Technology, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
- PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
| | - Anaïs Gaubert
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Pauline Melani
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Christian Cambillau
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Alain Roussel
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Philippe Leone
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| |
Collapse
|
24
|
Chen F, Liu Z, Jiang F. Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Front Immunol 2021; 12:690742. [PMID: 34122456 PMCID: PMC8194341 DOI: 10.3389/fimmu.2021.690742] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Since December 2019, the SARS-CoV-2 has erupted on a large scale worldwide and spread rapidly. Passive immunization of antibody-related molecules provides opportunities for prevention and treatment of high-risk patients and children. Nanobodies (Nbs) have many strong physical and chemical properties. They can be atomized, administered by inhalation, and can be directly applied to the infected site, with fast onset, high local drug concentration/high bioavailability, and high patient compliance (no needles). It has very attractive potential in the treatment of respiratory viruses. Rapid and low-cost development of Nbs targeting SARS-CoV-2 can quickly be achieved. Nbs against SARS-CoV-2 mutant strains also can be utilized quickly to prevent the virus from escaping. It provides important technical supports for the treatment of the SARS-CoV-2 and has the potential to become an essential medicine in the toolbox against the SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- NanoAI Biotech Co., Ltd., Huahan Technology Industrial Park, Shenzhen, China
| |
Collapse
|
25
|
Kariuki CK, Magez S. Improving the yield of recalcitrant Nanobodies® by simple modifications to the standard protocol. Protein Expr Purif 2021; 185:105906. [PMID: 33991675 DOI: 10.1016/j.pep.2021.105906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022]
Abstract
Nanobodies are single-domain antibody constructs derived from the variable regions of heavy chain only (VHH) camelid IgGs. Their small size and single gene format make them amenable to various molecular biology applications that require a protein affinity-based approach. These features, in addition to their high solubility, allows their periplasmic expression, extraction and purification in E. coli systems with relative ease, using standardized protocols. However, some Nanobodies are recalcitrant to periplasmic expression, extraction and purification within E. coli systems. To improve their expression would require either a change in the expression host, vector or an increased scale of expression, all of which entail an increase in the complexity of their expression, and production cost. However, as shown here, specific changes in the existing standard E. coli culture protocol, aimed at reducing breakdown of selective antibiotic pressure, increasing the initial culture inoculum and improving transport to the periplasmic space, rescued the expression of several such refractory Nanobodies. The periplasmic extraction protocol was also changed to ensure efficient osmolysis, prevent both protein degradation and prevent downstream chelation of Ni2+ ions during IMAC purification. Adoption of this protocol will lead to an improvement of the expression of Nanobodies in general, and specifically, those that are recalcitrant.
Collapse
Affiliation(s)
- Christopher K Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, Belgium; Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), Nairobi, Kenya.
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea; Department of Biochemistry and Microbiology, Universiteit Gent, Ledeganckstraat 35, 9000, Gent, Belgium.
| |
Collapse
|
26
|
Hu Y, Wu S, Wang Y, Lin J, Sun Y, Zhang C, Gu J, Yang F, Lv H, Ji X, Zhang Y, Muyldermans S, Wang S. Unbiased Immunization Strategy Yielding Specific Nanobodies against Macadamia Allergen of Vicilin-like Protein for Immunoassay Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5178-5188. [PMID: 33882666 DOI: 10.1021/acs.jafc.1c00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Macadamia nut contains important food allergens that potentially cause allergic reactions with severe adverse effects in infants and adults. Reliable and accurate detection of macadamia is critical to avoid allergic reactions. However, knowledge on macadamia allergen is scarce and a reliable detection method has not been reported, yet. In this study, an unbiased immunization and selection strategy was employed to select nanobodies (Nbs) recognizing specifically macadamia allergen, as well as to establish a detection method to unveil a macadamia protein contamination. An alpaca was immunized with a crude protein extract of macadamia followed by construction of a Nb library from its lymphocytes. The panning and screening of this immune Nb repertoire resulted in the selection of six target-specific Nbs. Nb-mediated immuno-capturing combined with mass spectrometry allowed us to identify the target as the macadamia vicilin-like antimicrobial peptides 2-3 (MiAMP2), a novel food allergenic protein abbreviated as Mac i 1. Later on, an immunoassay of a heterologous sandwich ELISA method based on the selected Nb-pairs was established, providing a linear response in the range of 0.442-2,800 μg/mL and with a limit of detection of 27.1 ng/mL. The dedicated immunoassay has been verified by detecting the antigen spiked in food samples. Our study provided evidence for the successful application of the unprejudiced strategy to retrieve Nbs against a priori undefined macadamia allergen. These target-specific Nbs were used to design a highly reliable and effective immunoassay.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ying Sun
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuan Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaxin Gu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Feier Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|
28
|
A nanobody suite for yeast scaffold nucleoporins provides details of the nuclear pore complex structure. Nat Commun 2020; 11:6179. [PMID: 33268786 PMCID: PMC7710722 DOI: 10.1038/s41467-020-19884-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called nucleoporins or nups. Most scaffolding nups are organized in two multimeric subcomplexes, the Nup84 or Y complex and the Nic96 or inner ring complex. Working in S. cerevisiae, and to study the assembly of these two essential subcomplexes, we here develop a set of twelve nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes. These nanobodies all bind specifically and with high affinity. We present structures of several nup-nanobody complexes, revealing their binding sites. Additionally, constitutive expression of the nanobody suite in S. cerevisiae detect accessible and obstructed surfaces of the Y complex and Nic96 within the NPC. Overall, this suite of nanobodies provides a unique and versatile toolkit for the study of the NPC.
Collapse
|
29
|
Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. Toxins (Basel) 2020; 12:toxins12100616. [PMID: 32992561 PMCID: PMC7599855 DOI: 10.3390/toxins12100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin serotype E (BoNT/E) is one of the major causes of human botulism, which is a life-threatening disease caused by flaccid paralysis of muscles. After receptor-mediated toxin internalization into motor neurons, the translocation domain (HN) of BoNT/E transforms into a protein channel upon vesicle acidification in endosomes and delivers its protease domain (LC) across membrane to enter the neuronal cytosol. It is believed that the rapid onset of BoNT/E intoxication compared to other BoNT serotypes is related to its swift internalization and translocation. We recently identified two neutralizing single-domain camelid antibodies (VHHs) against BoNT/E1 termed JLE-E5 and JLE-E9. Here, we report the crystal structures of these two VHHs bound to the LCHN domain of BoNT/E1. The structures reveal that these VHHs recognize two distinct epitopes that are partially overlapping with the putative transmembrane regions on HN, and therefore could physically block membrane association of BoNT/E1. This is confirmed by our in vitro studies, which show that these VHHs inhibit the structural change of BoNT/E1 at acidic pH and interfere with BoNT/E1 association with lipid vesicles. Therefore, these two VHHs neutralize BoNT/E1 by preventing the transmembrane delivery of LC. Furthermore, structure-based sequence analyses show that the 3-dimensional epitopes of these two VHHs are largely conserved across many BoNT/E subtypes, suggesting a broad-spectrum protection against the BoNT/E family. In summary, this work improves our understanding of the membrane translocation mechanism of BoNT/E and paves the way for developing VHHs as diagnostics or therapeutics for the treatment of BoNT/E intoxication.
Collapse
|
30
|
Delauzun V, Amigues B, Gaubert A, Leone P, Grange M, Gauthier L, Roussel A. Extracellular vesicles as a platform to study cell-surface membrane proteins. Methods 2020; 180:35-44. [PMID: 32156657 DOI: 10.1016/j.ymeth.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Producing intact recombinant membrane proteins for structural studies is an inherently challenging task due to their requirement for a cell-lipid environment. Most of the procedures developed involve isolating the protein by solubilization with detergent and further reconstitutions into artificial membranes. These procedures are highly time consuming and suffer from further drawbacks, including low yields and high cost. We describe here an alternative method for rapidly obtaining recombinant cell-surface membrane proteins displayed on extracellular vesicles (EVs) derived from cells in culture. Interaction between these membrane proteins and ligands can be analyzed directly on EVs. Moreover, EVs can also be used for protein structure determination or immunization purposes.
Collapse
Affiliation(s)
- Vincent Delauzun
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Anais Gaubert
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Magali Grange
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | | | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France.
| |
Collapse
|
31
|
Mesoscale computational protocols for the design of highly cooperative bivalent macromolecules. Sci Rep 2020; 10:7992. [PMID: 32409687 PMCID: PMC7224399 DOI: 10.1038/s41598-020-64646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
The last decade has witnessed a swiftly increasing interest in the design and production of novel multivalent molecules as powerful alternatives for conventional antibodies in the fight against cancer and infectious diseases. However, while it is widely accepted that large-scale flexibility (10–100 nm) and free/constrained dynamics (100 ns -μs) control the activity of such novel molecules, computational strategies at the mesoscale still lag behind experiments in optimizing the design of crucial features, such as the binding cooperativity (a.k.a. avidity). In this study, we introduced different coarse-grained models of a polymer-linked, two-nanobody composite molecule, with the aim of laying down the physical bases of a thorough computational drug design protocol at the mesoscale. We show that the calculation of suitable potentials of mean force allows one to apprehend the nature, range and strength of the thermodynamic forces that govern the motion of free and wall-tethered molecules. Furthermore, we develop a simple computational strategy to quantify the encounter/dissociation dynamics between the free end of a wall-tethered molecule and the surface, at the roots of binding cooperativity. This procedure allows one to pinpoint the role of internal flexibility and weak non-specific interactions on the kinetic constants of the nanobody-wall encounter and dissociation. Finally, we quantify the role and weight of rare events, which are expected to play a major role in real-life situations, such as in the immune synapse, where the binding kinetics is likely dominated by fluctuations.
Collapse
|
32
|
Structural basis of nanobody recognition of grapevine fanleaf virus and of virus resistance loss. Proc Natl Acad Sci U S A 2020; 117:10848-10855. [PMID: 32371486 DOI: 10.1073/pnas.1913681117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.
Collapse
|
33
|
Rudolph MJ, Czajka TF, Davis SA, Thi Nguyen CM, Li XP, Tumer NE, Vance DJ, Mantis NJ. Intracellular Neutralization of Ricin Toxin by Single-domain Antibodies Targeting the Active Site. J Mol Biol 2020; 432:1109-1125. [PMID: 31931008 PMCID: PMC7066583 DOI: 10.1016/j.jmb.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
The extreme potency of the plant toxin, ricin, is due to its enzymatic subunit, RTA, which inactivates mammalian ribosomes with near-perfect efficiency. Here we characterized, at the functional and structural levels, seven alpaca single-domain antibodies (VHHs) previously reported to recognize epitopes in proximity to RTA's active site. Three of the VHHs, V2A11, V8E6, and V2G10, were potent inhibitors of RTA in vitro and protected Vero cells from ricin when expressed as intracellular antibodies ("intrabodies"). Crystal structure analysis revealed that the complementarity-determining region 3 (CDR3) elements of V2A11 and V8E6 penetrate RTA's active site and interact with key catalytic residues. V2G10, by contrast, sits atop the enzymatic pocket and occludes substrate accessibility. The other four VHHs also penetrated/occluded RTA's active site, but lacked sufficient binding affinities to outcompete RTA-ribosome interactions. Intracellular delivery of high-affinity, single-domain antibodies may offer a new avenue in the development of countermeasures against ricin toxin.toxin, antibody, structure, intracellular.
Collapse
Affiliation(s)
- Michael J Rudolph
- New York Structural Biology Center, New York, NY 10027, United States.
| | - Timothy F Czajka
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12201, United States
| | - Simon A Davis
- New York Structural Biology Center, New York, NY 10027, United States
| | - Chi My Thi Nguyen
- New York Structural Biology Center, New York, NY 10027, United States
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12201, United States.
| |
Collapse
|
34
|
Kumar S, Mahendran I, Athreya A, Ranjan R, Penmatsa A. Isolation and structural characterization of a Zn 2+-bound single-domain antibody against NorC, a putative multidrug efflux transporter in bacteria. J Biol Chem 2020; 295:55-68. [PMID: 31699895 PMCID: PMC6952597 DOI: 10.1074/jbc.ra119.010902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Single-chain antibodies from camelids have served as powerful tools ranging from diagnostics and therapeutics to crystallization chaperones meant to study protein structure and function. In this study, we isolated a single-chain antibody from an Indian dromedary camel (ICab) immunized against a bacterial 14TM helix transporter, NorC, from Staphylococcus aureus We identified this antibody in a yeast display screen built from mononuclear cells isolated from the immunized camel and purified the antibody from Escherichia coli after refolding it from inclusion bodies. The X-ray structure of the antibody at 2.15 Å resolution revealed a unique feature within its CDR3 loop, which harbors a Zn2+-binding site that substitutes for a loop-stabilizing disulfide bond. We performed mutagenesis to compromise the Zn2+-binding site and observed that this change severely hampered antibody stability and its ability to interact with the antigen. The lack of bound Zn2+ also made the CDR3 loop highly flexible, as observed in all-atom simulations. Using confocal imaging of NorC-expressing E. coli spheroplasts, we found that the ICab interacts with the extracellular surface of NorC. This suggests that the ICab could be a valuable tool for detecting methicillin-resistant S. aureus strains that express efflux transporters such as NorC in hospital and community settings.
Collapse
Affiliation(s)
- Sushant Kumar
- Molecular Biophysics Unit, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Ithayaraja Mahendran
- Molecular Biophysics Unit, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Arunabh Athreya
- Molecular Biophysics Unit, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Rakesh Ranjan
- National Research Centre on Camel, Jorbeer, Bikaner, Rajasthan 334001, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India.
| |
Collapse
|
35
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
36
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
37
|
A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries. Mol Biotechnol 2019; 62:43-55. [DOI: 10.1007/s12033-019-00224-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Dong JX, Lee Y, Kirmiz M, Palacio S, Dumitras C, Moreno CM, Sando R, Santana LF, Südhof TC, Gong B, Murray KD, Trimmer JS. A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. eLife 2019; 8:48750. [PMID: 31566565 PMCID: PMC6785268 DOI: 10.7554/elife.48750] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022] Open
Abstract
Nanobodies (nAbs) are small, minimal antibodies that have distinct attributes that make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications. Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced tissue penetration and improved spatial imaging resolution. Here, we report the generation and validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in mammalian brain neurons. We describe a novel hierarchical validation pipeline to systematically evaluate nAbs isolated by phage display for effective and specific use as intrabodies and immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in mammalian brain neurons, allowing for visualization and/or modulation of structure and function at those sites.
Collapse
Affiliation(s)
- Jie-Xian Dong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Yongam Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Stephanie Palacio
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Claudia M Moreno
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| |
Collapse
|
39
|
Sadeghi A, Behdani M, Muyldermans S, Habibi-Anbouhi M, Kazemi-Lomedasht F. Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal 2019; 12:92-100. [PMID: 31476257 DOI: 10.1002/dta.2693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis within solid cancers. Thus, targeting VEGF might be part of a feasible therapy for treating pathological neovascularization, and nanobodies - derived from heavy chain-only antibodies occurring within Camelidae - are a novel class of nanometer-sized antibodies possessing unique properties that could be developed into a promising therapeutic. However, nanobodies have a very short half-life in vivo due to their small size. Development of a bivalent nanobody is one way to remediate the half-life problem of nanobodies. Two identical anti-VEGF nanobodies were connected using the hinge region of llama IgG2c. The recombinant plasmid (pHEN6c-bivalent nanobody) was transformed into E.coli WK6 cells and expression of the bivalent nanobody construct was induced with 1mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). Recombinant bivalent nanobody was purified using nickel affinity chromatography and its activity on human endothelial cells was assessed using 3-(4,5-Dimethylthiazol-2-yr)-2,5-diphenyltetrazolium bromide (MTT), tube formation, and cell migration assays. The pharmacokinetic study was performed after intravenous (i.v.) injection of recombinant bivalent nanobody into six-week-old C57BL/6 mice. Recombinant bivalent nanobody performed significantly better than monovalent nanobody in inhibiting proliferation, tube formation, and migration of human endothelial cells. Pharmacokinetic results showed a 1.8-fold longer half-life of bivalent nanobody in comparison with the monovalent nanobody. These results underscore the potential of recombinant anti-VEGF bivalent nanobody as a promising tool for development of a novel therapeutic with an extended plasma half-life for VEGF-related diseases.
Collapse
Affiliation(s)
- Amir Sadeghi
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Weiss RA, Verrips CT. Nanobodies that Neutralize HIV. Vaccines (Basel) 2019; 7:vaccines7030077. [PMID: 31370301 PMCID: PMC6789485 DOI: 10.3390/vaccines7030077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Nanobodies or VHH (variable domains of heavy-chain only antibodies) are derived from camelid species such as llamas and camels. Nanobodies isolated and selected through phage display can neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) strains. Nanobodies fit into canyons on the HIV envelope that may not be accessible to IgG (immunoglobulin G) containing both heavy and light chains, and they tend to have long CDR3 (complementarity-determining region 3) loops that further enhance recognition of otherwise cryptic epitopes. Nanobodies are readily expressed at high levels in bacteria and yeast, as well as by viral vectors, and they form relatively stable, heat-resistant molecules. Nanobodies can be linked to human Fc chains to gain immune effector functions. Bivalent and trivalent nanobodies recognizing the same or distinct epitopes on the envelope glycoproteins, gp120 and gp41, greatly increase the potency of HIV-1 neutralization. Nanobodies have potential applications for HIV-1 diagnostics, vaccine design, microbicides, immunoprophylaxis, and immunotherapy.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, 90 Gower Street, London WC1E 6BT, UK.
| | - C Theo Verrips
- QVQ Holding bv, Padualaan 8, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
41
|
Liu W, Zhao W, Bai X, Jin S, Li Y, Qiu C, Pan L, Ding D, Xu Y, Zhou Z, Chen S. High antitumor activity of Sortase A-generated anti-CD20 antibody fragment drug conjugates. Eur J Pharm Sci 2019; 134:81-92. [DOI: 10.1016/j.ejps.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
|
42
|
Alzogaray V, Urrutia M, Berguer P, Rossi A, Zylberman V, Pardo R, Bonomi HR, Goldbaum FA. Characterization of folding-sensitive nanobodies as tools to study the expression and quality of protein particle immunogens. J Biotechnol 2019; 293:17-23. [PMID: 30690101 DOI: 10.1016/j.jbiotec.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023]
Abstract
Vaccination is as one of the most beneficial biopharmaceutical interventions against pathogens due to its ability to induce adaptive immunity through targeted activation of the immune system. Each vaccine needs a tailor-made set of tests in order to monitor its quality throughout the development and manufacturing. The analysis of the conformational state of protein nanoparticles is one of the key steps in vaccine quality control. The enzyme lumazine synthase from Brucella spp. (BLS) acts as a potent oral and systemic immunogen. BLS has been used as a carrier of foreign peptides, protein domains and whole proteins, serving as a versatile platform for vaccine engineering purposes. Here, we show the generation and characterization of four families of nanobodies (Nbs) which only recognize BLS in its native conformational state and that bind to its active site. The present results support the use of conformation-sensitive Nbs as molecular probes during the development and production of vaccines based on the BLS platform. Finally, we propose Nbs as useful molecular tools targeting other protein scaffolds with potential applications in nano-and biotechnology.
Collapse
Affiliation(s)
- Vanina Alzogaray
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Mariela Urrutia
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Paula Berguer
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Andrés Rossi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Vanesa Zylberman
- INMUNOVA, 25 de Mayo 1021 (B1650HMI), San Martin, Buenos Aires, Argentina
| | - Romina Pardo
- INMUNOVA, 25 de Mayo 1021 (B1650HMI), San Martin, Buenos Aires, Argentina
| | - Hernán R Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
43
|
Dubash S, Bridgewood C, McGonagle D, Marzo-Ortega H. The advent of IL-17A blockade in ankylosing spondylitis: secukinumab, ixekizumab and beyond. Expert Rev Clin Immunol 2019; 15:123-134. [DOI: 10.1080/1744666x.2019.1561281] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sayam Dubash
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Dennis McGonagle
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Helena Marzo-Ortega
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
44
|
Gelkop S, Sobarzo A, Brangel P, Vincke C, Romão E, Fedida-Metula S, Strom N, Ataliba I, Mwiine FN, Ochwo S, Velazquez-Salinas L, McKendry RA, Muyldermans S, Lutwama JJ, Rieder E, Yavelsky V, Lobel L. The Development and Validation of a Novel Nanobody-Based Competitive ELISA for the Detection of Foot and Mouth Disease 3ABC Antibodies in Cattle. Front Vet Sci 2018; 5:250. [PMID: 30370272 PMCID: PMC6194346 DOI: 10.3389/fvets.2018.00250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
Effective management of foot and mouth disease (FMD) requires diagnostic tests to distinguish between infected and vaccinated animals (DIVA). To address this need, several enzyme-linked immunosorbent assay (ELISA) platforms have been developed, however, these tests vary in their sensitivity and specificity and are very expensive for developing countries. Camelid-derived single-domain antibodies fragments so-called Nanobodies, have demonstrated great efficacy for the development of serological diagnostics. This study describes the development of a novel Nanobody-based FMD 3ABC competitive ELISA, for the serological detection of antibodies against FMD Non-Structural Proteins (NSP) in Uganda cattle herds. This in-house ELISA was validated using more than 600 sera from different Uganda districts, and virus serotype specificities. The evaluation of the performance of the assay demonstrated high diagnostic sensitivity and specificity of 94 % (95 % CI: 88.9-97.2), and 97.67 % (95 % CI: 94.15-99.36) respectively, as well as the capability to detect NSP-specific antibodies against multiple FMD serotype infections. In comparison with the commercial PrioCHECK FMDV NSP-FMD test, there was a strong concordance and high correlation and agreement in the performance of the two tests. This new developed Nanobody based FMD 3ABC competitive ELISA could clearly benefit routine disease diagnosis, the establishment of disease-free zones, and the improvement of FMD management and control in endemically complex environments, such as those found in Africa.
Collapse
Affiliation(s)
- Sigal Gelkop
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, BeerSheba, Israel
| | - Ariel Sobarzo
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, BeerSheba, Israel
| | - Polina Brangel
- London Centre for Nanotechnology and Div. of Medicine, University College London, London, United Kingdom
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ema Romão
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Shlomit Fedida-Metula
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, BeerSheba, Israel
| | - Nick Strom
- Virology Division, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Irene Ataliba
- Department of Arbovirology, Emerging and Re-emerging Infection Uganda Virus Research Institute, Entebbe, Uganda
| | - Frank Norbet Mwiine
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Sylvester Ochwo
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, United States Department of Agriculture Plum Island Animal Disease Center, Agricultural Research Service (USDA), New York, NY, United States
| | - Rachel A. McKendry
- London Centre for Nanotechnology and Div. of Medicine, University College London, London, United Kingdom
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julius Julian Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infection Uganda Virus Research Institute, Entebbe, Uganda
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, United States Department of Agriculture Plum Island Animal Disease Center, Agricultural Research Service (USDA), New York, NY, United States
| | - Victoria Yavelsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, BeerSheba, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, BeerSheba, Israel
- Department of Arbovirology, Emerging and Re-emerging Infection Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
45
|
Reslan M, Ranganathan V, Macfarlane DR, Kayser V. Choline ionic liquid enhances the stability of Herceptin® (trastuzumab). Chem Commun (Camb) 2018; 54:10622-10625. [PMID: 30177986 DOI: 10.1039/c8cc06397d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the effect of an emerging biocompatible ionic liquid, choline dihydrogen phosphate (CDHP), on the stability of high-concentration formulations of Herceptin® (trastuzumab). Our results show that CDHP significantly suppresses unfolding and aggregation of trastuzumab, demonstrating great promise as an additive in the development of stable therapeutic antibody formulations.
Collapse
Affiliation(s)
- Mouhamad Reslan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, 2006, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
46
|
Abstract
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using only three complementarity-determining region (CDR) loops rather than the six present in conventional VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope structures that predispose them to preferential recognition of recessed protein epitopes, but poor or non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the evidence in support of this hypothesis. We found some support for a global structural difference in the paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2 structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and are no more extended (interatomic distance measured from CDR base to tip) than conventional antibody paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed surface areas on proteins and form similar types of non-covalent interactions, although these are more concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct antigenic regions on proteins, but only owing to their small molecular size and not to general differences in molecular recognition mechanism. The evidence surrounding the purported inability of sdAbs to bind small molecules was less clear. The available data provide a structural framework for understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.
Collapse
Affiliation(s)
- Kevin A Henry
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada
| | - C Roger MacKenzie
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada.,b School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
47
|
Li Q, Miao Z, Luo XG, Zhao J, Song YJ, Li ZY, Zhou H, Zhang TC, Mao LS. Expression and bioactivity analysis of TNF30, a TNFα nanobody, in Escherichia coli. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1480422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Qian Li
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhi Miao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Jian Zhao
- Lidzix Biotechnology Tianjin Co., Ltd, Tianjin, P.R. China
| | - Ya-Jian Song
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhong-Yuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Li-Song Mao
- Lidzix Biotechnology Tianjin Co., Ltd, Tianjin, P.R. China
| |
Collapse
|
48
|
Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel 2018; 31:267-275. [PMID: 30053276 PMCID: PMC6277174 DOI: 10.1093/protein/gzy017] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/10/2018] [Accepted: 06/30/2018] [Indexed: 11/12/2022] Open
Abstract
Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.
Collapse
Affiliation(s)
- Laura S Mitchell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| |
Collapse
|
49
|
Selby LI, Aurelio L, Yuen D, Graham B, Johnston APR. Quantifying Cellular Internalization with a Fluorescent Click Sensor. ACS Sens 2018; 3:1182-1189. [PMID: 29676153 DOI: 10.1021/acssensors.8b00219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to determine the amount of material endocytosed by a cell is important for our understanding of cell biology and in the design of effective carriers for drug delivery. To quantify internalization by fluorescence, the signal from material remaining on the cell surface must be differentiated from endocytosed material. Sensors for internalization offer advantages over traditional methods for achieving this as they exhibit improved sensitivity, allow for multiple fluorescent markers to be used simultaneously, and are amenable to high-throughput analysis. We have developed a small fluorescent internalization sensor, similar in size to a standard fluorescent dye, that can be conjugated to proteins and uses the rapid and highly specific bio-orthogonal reaction between a tetrazine and a trans-cyclooctene group to switch off the surface signal. The sensor can be attached to a variety of materials using simple chemistry and is compatible with flow cytometry and fluorescence microscopy, making it a useful tool to study the uptake of material into cells.
Collapse
Affiliation(s)
- Laura I. Selby
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel Yuen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P. R. Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
50
|
Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL, Shukla AK. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends Biochem Sci 2018; 43:533-546. [PMID: 29735399 DOI: 10.1016/j.tibs.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/12/2023]
Abstract
G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology.
Collapse
Affiliation(s)
- Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Justin Schilling
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|