1
|
Zhang Y, Huang C, Kong W, Zhou L, Gao J, Hollmann F, Liu Y, Jiang Y. A Chemoenzymatic Cascade for the Formal Enantioselective Hydroxylation and Amination of Benzylic C-H Bonds. ACS Catal 2024; 14:17405-17412. [PMID: 39664772 PMCID: PMC11629291 DOI: 10.1021/acscatal.4c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
We report the synthesis and characterization of an artificial peroxygenase (CoN4SA-POase) with CoN4 active sites by supporting single-atom cobalt on polymeric carbon nitrogen, which exhibits high activity, selectivity, stability, and reusability in the oxidation of aromatic alkanes to ketones. Density functional theory calculations reveal a different catalytic mechanism for the artificial peroxygenase from that of natural peroxygenases. In addition, continuous-flow systems are employed to combine CoN4SA-POase with enantiocomplementary ketoreductases as well as an amine dehydrogenase, enabling the enantioselective synthesis of chiral alcohols and amines from hydrocarbons with significantly improved productivity. This work, emulating nature and beyond nature, provides a promising design concept for heme enzyme-based transformations.
Collapse
Affiliation(s)
- Yuqing Zhang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chen Huang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Weixi Kong
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Gao
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Yunting Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanjun Jiang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Yang YL. Mushroom-Mediated Redox Reactions. Chemistry 2024:e202403010. [PMID: 39632266 DOI: 10.1002/chem.202403010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom-based biocatalysts and highlights key advances in mushroom-mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
3
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
4
|
Muñiz-Mouro A, Gullón B, Eibes G. Exploiting UPO versatility to transform rutin in more soluble and bioactive products. N Biotechnol 2024; 83:197-204. [PMID: 39181196 DOI: 10.1016/j.nbt.2024.08.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The discovery of unspecific peroxygenases (UPOs) completely changed the paradigm of enzyme-based oxyfunctionalization reactions, as these enzymes can transform a wide variety of substrates with a relatively simple reaction mechanism. The fact that UPO can exert both peroxygenative and peroxidative activity in either aromatic or aliphatic carbons, represents a great potential in the production of high value-added products from natural antioxidants. In this work, the flavonoid rutin has been considered as possible substrate for UPO from Agrocybe aegerita, and its peroxygenation or its peroxidation and successive oligomerization have been studied. Different experiments were performed in order to reduce the range of process variables involved and gaining insight on the behavior of this enzyme, leading to a multivariable optimization of UPO-based rutin modification. While trying to preserve enzyme activity this optimization aimed for maximizing the production of more soluble antioxidants. Reusability of the enzyme was evaluated recovering UPO using an enzymatic membrane reactor, revealing challenges in enzyme stability due to inactivation during the filtration stages. The influence of the radical scavenger ascorbic acid on product formation was investigated, revealing its role in directing the reaction towards hydroxylated rutin derivatives, hence indicating a shift towards more soluble and bioactive products.
Collapse
Affiliation(s)
- Abel Muñiz-Mouro
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, Ourense 32004, Spain
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
5
|
Sánchez-Moreno I, Fernandez-Garcia A, Mateljak I, Gomez de Santos P, Hofrichter M, Kellner H, Sanz-Aparicio J, Alcalde M. Structural Insights and Reaction Profile of a New Unspecific Peroxygenase from Marasmius wettsteinii Produced in a Tandem-Yeast Expression System. ACS Chem Biol 2024; 19:2240-2253. [PMID: 39367827 DOI: 10.1021/acschembio.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Fungal unspecific peroxygenases (UPOs) are gaining momentum in synthetic chemistry. Of special interest is the UPO from Marasmius rotula (MroUPO), which shows an exclusive repertoire of oxyfunctionalizations, including the terminal hydroxylation of alkanes, the α-oxidation of fatty acids and the C-C cleavage of corticosteroids. However, the lack of heterologous expression systems to perform directed evolution has impeded its engineering for practical applications. Here, we introduce a close ortholog of MroUPO, a UPO gene from Marasmius wettsteinii (MweUPO-1), that has a similar reaction profile to MroUPO and for which we have set up a directed evolution platform based on tandem-yeast expression. Recombinant MweUPO-1 was produced at high titers in the bioreactor (0.7 g/L) and characterized at the biochemical and atomic levels. The conjunction of soaking crystallographic experiments at a resolution up to 1.6 Å together with the analysis of reaction patterns sheds light on the substrate preferences of this promiscuous biocatalyst.
Collapse
Affiliation(s)
| | - Angela Fernandez-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, 28006 Madrid, Spain
| | - Ivan Mateljak
- EvoEnzyme S.L., C/Faraday 7, Parque Científico de Madrid, 28049 Madrid, Spain
| | | | - Martin Hofrichter
- Department of Bio- and Environmental Sciences TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Julia Sanz-Aparicio
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, 28006 Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| |
Collapse
|
6
|
Listov D, Goverde CA, Correia BE, Fleishman SJ. Opportunities and challenges in design and optimization of protein function. Nat Rev Mol Cell Biol 2024; 25:639-653. [PMID: 38565617 PMCID: PMC7616297 DOI: 10.1038/s41580-024-00718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calculations, as well as machine learning tools, have dramatically improved protein engineering and design. In this Review, we discuss how these methods have enabled the design of increasingly complex structures and therapeutically relevant activities. Additionally, protein optimization methods have improved the stability and activity of complex eukaryotic proteins. Thanks to their increased reliability, computational design methods have been applied to improve therapeutics and enzymes for green chemistry and have generated vaccine antigens, antivirals and drug-delivery nano-vehicles. Moreover, the high success of design methods reflects an increased understanding of basic rules that govern the relationships among protein sequence, structure and function. However, de novo design is still limited mostly to α-helix bundles, restricting its potential to generate sophisticated enzymes and diverse protein and small-molecule binders. Designing complex protein structures is a challenging but necessary next step if we are to realize our objective of generating new-to-nature activities.
Collapse
Affiliation(s)
- Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sarel Jacob Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Besleaga M, Zimmermann C, Ebner K, Mach RL, Mach-Aigner AR, Geier M, Glieder A, Spadiut O, Kopp J. Bi-directionalized promoter systems allow methanol-free production of hard-to-express peroxygenases with Komagataella Phaffii. Microb Cell Fact 2024; 23:177. [PMID: 38879507 PMCID: PMC11179361 DOI: 10.1186/s12934-024-02451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.
Collapse
Affiliation(s)
- Mihail Besleaga
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Christian Zimmermann
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Katharina Ebner
- bisy GmbH, Wünschendorf 292, Hofstätten an der Raab, 8200, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Martina Geier
- bisy GmbH, Wünschendorf 292, Hofstätten an der Raab, 8200, Austria
| | - Anton Glieder
- bisy GmbH, Wünschendorf 292, Hofstätten an der Raab, 8200, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Julian Kopp
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria.
| |
Collapse
|
8
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
10
|
Agosto-Maldonado A, Guo J, Niu W. Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis. J Biotechnol 2024; 385:1-12. [PMID: 38428504 PMCID: PMC11062483 DOI: 10.1016/j.jbiotec.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Emerging consumer demand for safer, more sustainable flavors and fragrances has created new challenges for the industry. Enzymatic syntheses represent a promising green production route, but the broad application requires engineering advancements for expanded diversity, improved selectivity, and enhanced stability to be cost-competitive with current methods. This review discusses recent advances and future outlooks for enzyme engineering in this field. We focus on carboxylic acid reductases (CARs) and unspecific peroxygenases (UPOs) that enable selective productions of complex flavor and fragrance molecules. Both enzyme types consist of natural variants with attractive characteristics for biocatalytic applications. Applying protein engineering methods, including rational design and directed evolution in concert with computational modeling, present excellent examples for property improvements to unleash the full potential of enzymes in the biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
| |
Collapse
|
11
|
Dietz N, Wan L, Münch J, Weissenborn MJ. Secretion and directed evolution of unspecific peroxygenases in S. cerevisiae. Methods Enzymol 2023; 693:267-306. [PMID: 37977733 DOI: 10.1016/bs.mie.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Yeast-based secretion systems are advantageous for engineering highly interesting enzymes that are not or barely producible in E. coli. The herein-presented production setup facilitates high-throughput screening as no cell lysis is required. All techniques are described in detail, with access to freely available online tools and all vectors have been made available on the non-profit plasmid repository AddGene. We describe the method for UPOs as a model enzyme, showcasing their secretion, detection, and evolution using S. cerevisiae. Additional material to transfer this to P. pastoris has been published by our group previously (Püllmann & Weissenborn, 2021).
Collapse
Affiliation(s)
- Niklas Dietz
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Li Wan
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Judith Münch
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Martin J Weissenborn
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany.
| |
Collapse
|
12
|
Dolz M, Monterrey DT, Beltrán-Nogal A, Menés-Rubio A, Keser M, González-Pérez D, de Santos PG, Viña-González J, Alcalde M. The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution. Methods Enzymol 2023; 693:73-109. [PMID: 37977739 DOI: 10.1016/bs.mie.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) are arising as versatile biocatalysts for C-H oxyfunctionalization reactions. In recent years, several directed evolution studies have been conducted to design improved UPO variants. An essential part of this protein engineering strategy is the design of reliable colorimetric high-throughput screening (HTS) assays for mutant library exploration. Here, we present a palette of 12 colorimetric HTS assays along with their step-by-step protocols, which have been validated for directed UPO evolution campaigns. This array of colorimetric assays will pave the way for the discovery and design of new UPO variants.
Collapse
Affiliation(s)
- Mikel Dolz
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Dianelis T Monterrey
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Alejandro Beltrán-Nogal
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Andrea Menés-Rubio
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Merve Keser
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - David González-Pérez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | | | - Javier Viña-González
- EvoEnzyme S.L., C/ Faraday 7. Parque Científico de Madrid, Cantoblanco, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain.
| |
Collapse
|
13
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Mao Y, Zhang W, Fu Z, Liu Y, Chen L, Lian X, Zhuo D, Wu J, Zheng M, Liao C. Versatile Biocatalytic C(sp 3 )-H Oxyfunctionalization for the Site- Selective and Stereodivergent Synthesis of α- and β-Hydroxy Acids. Angew Chem Int Ed Engl 2023; 62:e202305250. [PMID: 37340543 DOI: 10.1002/anie.202305250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
C(sp3 )-H oxyfunctionalization, the insertion of an O-atom into C(sp3 )-H bonds, streamlines the synthesis of complex molecules from easily accessible precursors and represents one of the most challenging tasks in organic chemistry with regard to site and stereoselectivity. Biocatalytic C(sp3 )-H oxyfunctionalization has the potential to overcome limitations inherent to small-molecule-mediated approaches by delivering catalyst-controlled selectivity. Through enzyme repurposing and activity profiling of natural variants, we have developed a subfamily of α-ketoglutarate-dependent iron dioxygenases that catalyze the site- and stereodivergent oxyfunctionalization of secondary and tertiary C(sp3 )-H bonds, providing concise synthetic routes towards four types of 92 α- and β-hydroxy acids with high efficiency and selectivity. This method provides a biocatalytic approach for the production of valuable but synthetically challenging chiral hydroxy acid building blocks.
Collapse
Affiliation(s)
- Yingle Mao
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
| | - Weijie Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yanqiong Liu
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Lin Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Xin Lian
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Dan Zhuo
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Jiewei Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Cangsong Liao
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| |
Collapse
|
15
|
Hilberath T, van Oosten R, Victoria J, Brasselet H, Alcalde M, Woodley JM, Hollmann F. Toward Kilogram-Scale Peroxygenase-Catalyzed Oxyfunctionalization of Cyclohexane. Org Process Res Dev 2023; 27:1384-1389. [PMID: 37496955 PMCID: PMC10367066 DOI: 10.1021/acs.oprd.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 07/28/2023]
Abstract
Mol-scale oxyfunctionalization of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) using an unspecific peroxygenase is reported. Using AaeUPO from Agrocybe aegerita and simple H2O2 as an oxidant, cyclohexanol concentrations of more than 300 mM (>60% yield) at attractive productivities (157 mM h-1, approx. 15 g L-1 h-1) were achieved. Current limitations of the proposed biooxidation system have been identified paving the way for future improvements and implementation.
Collapse
Affiliation(s)
- Thomas Hilberath
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Remco van Oosten
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Juliet Victoria
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hugo Brasselet
- Atlant.
Innov., Koornmarkt 52, 2611 EH Delft, The Netherlands
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, 28049 Madrid, Spain
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
16
|
Ebrecht AC, Mofokeng TM, Hollmann F, Smit MS, Opperman DJ. Lactones from Unspecific Peroxygenase-Catalyzed In-Chain Hydroxylation of Saturated Fatty Acids. Org Lett 2023; 25:4990-4995. [PMID: 37389482 PMCID: PMC10353034 DOI: 10.1021/acs.orglett.3c01601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 07/01/2023]
Abstract
γ- and δ-lactones are valuable flavor and fragrance compounds. Their synthesis depends on the availability of suitable hydroxy fatty acid precursors. Three short unspecific peroxygenases were identified that selectively hydroxylate the C4 and C5 positions of C8-C12 fatty acids to yield after lactonization the corresponding γ- and δ-lactones. A preference for C4 over C5 hydroxylation gave γ-lactones as the major products. Overoxidation of the hydroxy fatty acids was addressed via the reduction of the resulting oxo acids using an alcohol dehydrogenase in a bienzymatic cascade reaction.
Collapse
Affiliation(s)
- Ana C. Ebrecht
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Thato M. Mofokeng
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Martha S. Smit
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Diederik J. Opperman
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
17
|
González-Rodríguez S, Trueba-Santiso A, Lu-Chau TA, Moreira MT, Eibes G. Valorization of bioethanol by-products to produce unspecific peroxygenase with Agrocybe aegerita: technological and proteomic perspectives. N Biotechnol 2023; 76:63-71. [PMID: 37169331 DOI: 10.1016/j.nbt.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Unspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source. Optimized UPO production of 331U/L was achieved in 50% (v:v) vinasse with an inoculum grown for 14 days. These conditions were scaled-up to a 4L reactor, achieving a UPO activity of 265U/L. Fungal proteome expression was analyzed before and after UPO activity appeared by shotgun mass spectrometry proteomics. Laccase, dye-decolorizing peroxidases (DyP), lectins and proteins involved in reactive oxygen species (ROS) production and control were detected (in addition to UPO). Interestingly, the metabolism of complex sugars and nitrogen sources had a different activity at the beginning and end of the submerged fermentation. DATA AVAILABILITY: The data used to support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Sandra González-Rodríguez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Thelmo A Lu-Chau
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
18
|
Akter J, Stockdale TP, Child SA, Lee JHZ, De Voss JJ, Bell SG. Selective carbon-hydrogen bond hydroxylation using an engineered cytochrome P450 peroxygenase. J Inorg Biochem 2023; 244:112209. [PMID: 37080140 DOI: 10.1016/j.jinorgbio.2023.112209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The cytochrome P450 enzyme CYP102A1 (P450BM3) is a versatile monooxygenase enzyme which has been adapted and engineered for multiple applications in chemical synthesis. Mutation of threonine 268 to glutamate (Thr268Glu) converted the heme domain of this enzyme into a H2O2 utilizing peroxygenase. This variant displayed significantly increased peroxide driven hydroxylation activity towards the saturated linear fatty acids tested (undecanoic through to hexadecenoic acid) when compared to the wild-type heme domain. The product distributions arising from fatty acid oxidation using this peroxygenase variant were broadly similar to those obtained with the wild-type monooxygenase holoenzyme, with oxidation occurring predominantly at the ω-1 through to ω-3 positions. 10-Undecenoic acid was regioselectively hydroxylated at the allylic ω-2 carbon by the Thr268Glu peroxygenase. The effect of isotopic substitution were measured using [9,9,10,10-d4]-dodecanoic acid. The kinetic isotope effect for both the monooxygenase and peroxygenase systems ranged between 7.9 and 9.5, with that of the peroxygenase enzyme being marginally lower. This highlights that carbon‑hydrogen bond abstraction is important in the mechanism of both the monooxygenase and peroxygenase systems. This would infer that the ferryl-oxo radical cation intermediate, compound I, is the likely reactive intermediate in both systems. The peroxygenase variant offers the possibility of simpler cytochrome P450 systems for selective oxidations. To demonstrate this we used this system to oxidize tetradecanoic acid using light driven generation of H2O2 by a flavin.
Collapse
Affiliation(s)
- Jinia Akter
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia
| | - Tegan P Stockdale
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Stella A Child
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia.
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
19
|
Gomez de Santos P, González-Benjumea A, Fernandez-Garcia A, Aranda C, Wu Y, But A, Molina-Espeja P, Maté DM, Gonzalez-Perez D, Zhang W, Kiebist J, Scheibner K, Hofrichter M, Świderek K, Moliner V, Sanz-Aparicio J, Hollmann F, Gutiérrez A, Alcalde M. Engineering a Highly Regioselective Fungal Peroxygenase for the Synthesis of Hydroxy Fatty Acids. Angew Chem Int Ed Engl 2023; 62:e202217372. [PMID: 36583658 DOI: 10.1002/anie.202217372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.
Collapse
Affiliation(s)
| | - Alejandro González-Benjumea
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Angela Fernandez-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Yinqi Wu
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Andrada But
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - Diana M Maté
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - David Gonzalez-Perez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - Wuyuan Zhang
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Jan Kiebist
- Institute of Biotechnology Institution, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- Institute of Biotechnology Institution, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| |
Collapse
|
20
|
Gomez de Santos P, Mateljak I, Hoang MD, Fleishman SJ, Hollmann F, Alcalde M. Repertoire of Computationally Designed Peroxygenases for Enantiodivergent C-H Oxyfunctionalization Reactions. J Am Chem Soc 2023; 145:3443-3453. [PMID: 36689349 PMCID: PMC9936548 DOI: 10.1021/jacs.2c11118] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The generation of enantiodivergent biocatalysts for C-H oxyfunctionalizations is ever more important in modern synthetic chemistry. Here, we have applied the FuncLib algorithm based on phylogenetic and Rosetta calculations to design a diverse repertoire of active, stable, and enantiodivergent fungal peroxygenases. 24 designs, each carrying 4-5 mutations in the catalytic core, were expressed functionally in yeast and benchmarked against characteristic model compounds. Several designs were active and stable in a range of temperature and pH, displaying unprecedented enantiodivergence, changing regioselectivity from alkyl to aromatic hydroxylation, and increasing catalytic efficiencies up to 10-fold, with 15-fold improvements in total turnover numbers over the parental enzyme. We find that this dramatic functional divergence stems from beneficial epistasis among the mutations and an extensive reorganization of the heme channel. Our work demonstrates that FuncLib can rapidly design highly functional libraries enriched in enantioselective peroxygenases not seen in nature for a range of biotechnological applications.
Collapse
Affiliation(s)
- Patricia Gomez de Santos
- Department
of Biocatalysis, Institute of Catalysis, ICP-CSIC, C/ Marie Curie
2, 28049 Madrid, Spain,EvoEnzyme
S.L., Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | - Ivan Mateljak
- EvoEnzyme
S.L., Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | - Manh Dat Hoang
- Department
of Biocatalysis, Institute of Catalysis, ICP-CSIC, C/ Marie Curie
2, 28049 Madrid, Spain,Chair
of Biochemical Engineering, Technical University
of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, van der Massweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis, ICP-CSIC, C/ Marie Curie
2, 28049 Madrid, Spain,
| |
Collapse
|
21
|
Collaborative catalysis for solar biosynthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Ma Y, Liang H, Zhao Z, Wu B, Lan D, Hollmann F, Wang Y. A Novel Unspecific Peroxygenase from Galatian marginata for Biocatalytic Oxyfunctionalization Reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Kinner A, Lütz S, Rosenthal K. Agar Plate‐Based Screening Approach for the Identification of Enzyme‐Catalyzed Oxidations. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alina Kinner
- TU Dortmund University Chair for Bioprocess Engineering Department of Biochemical and Chemical Engineering Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Stephan Lütz
- TU Dortmund University Chair for Bioprocess Engineering Department of Biochemical and Chemical Engineering Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Katrin Rosenthal
- TU Dortmund University Chair for Bioprocess Engineering Department of Biochemical and Chemical Engineering Emil-Figge-Straße 66 44227 Dortmund Germany
| |
Collapse
|
24
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
25
|
Linde D, González-Benjumea A, Aranda C, Carro J, Gutiérrez A, Martínez AT. Engineering Collariella virescens Peroxygenase for Epoxides Production from Vegetable Oil. Antioxidants (Basel) 2022; 11:antiox11050915. [PMID: 35624779 PMCID: PMC9137900 DOI: 10.3390/antiox11050915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable oils are valuable renewable resources for the production of bio-based chemicals and intermediates, including reactive epoxides of industrial interest. Enzymes are an environmentally friendly alternative to chemical catalysis in oxygenation reactions, epoxidation included, with the added advantage of their potential selectivity. The unspecific peroxygenase of Collariella virescens is only available as a recombinant enzyme (rCviUPO), which is produced in Escherichia coli for protein engineering and analytical-scale optimization of plant lipid oxygenation. Engineering the active site of rCviUPO (by substituting one, two, or up to six residues of its access channel by alanines) improved the epoxidation of individual 18-C unsaturated fatty acids and hydrolyzed sunflower oil. The double mutation at the heme channel (F88A/T158A) enhanced epoxidation of polyunsaturated linoleic and α−linolenic acids, with the desired diepoxides representing > 80% of the products (after 99% substrate conversion). More interestingly, process optimization increased (by 100-fold) the hydrolyzate concentration, with up to 85% epoxidation yield, after 1 h of reaction time with the above double variant. Under these conditions, oleic acid monoepoxide and linoleic acid diepoxide are the main products from the sunflower oil hydrolyzate.
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; (D.L.); (J.C.)
| | - Alejandro González-Benjumea
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), E-41012 Seville, Spain; (A.G.-B.); (A.G.)
| | - Carmen Aranda
- Johnson Matthey, Cambridge Science Park U260, Cambridge CB4 0FP, UK;
| | - Juan Carro
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; (D.L.); (J.C.)
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), E-41012 Seville, Spain; (A.G.-B.); (A.G.)
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; (D.L.); (J.C.)
- Correspondence: ; Tel.: +34-918373112
| |
Collapse
|
26
|
Structural Characterization of Two Short Unspecific Peroxygenases: Two Different Dimeric Arrangements. Antioxidants (Basel) 2022; 11:antiox11050891. [PMID: 35624755 PMCID: PMC9137552 DOI: 10.3390/antiox11050891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are extracellular fungal enzymes of biotechnological interest as self-sufficient (and more stable) counterparts of cytochrome P450 monooxygenases, the latter being present in most living cells. Expression hosts and structural information are crucial for exploiting UPO diversity (over eight thousand UPO-type genes were identified in sequenced genomes) in target reactions of industrial interest. However, while many thousands of entries in the Protein Data Bank include molecular coordinates of P450 enzymes, only 19 entries correspond to UPO enzymes, and UPO structures from only two species (Agrocybe aegerita and Hypoxylon sp.) have been published to date. In the present study, two UPOs from the basidiomycete Marasmius rotula (rMroUPO) and the ascomycete Collariella virescens (rCviUPO) were crystallized after sequence optimization and Escherichia coli expression as active soluble enzymes. Crystals of rMroUPO and rCviUPO were obtained at sufficiently high resolution (1.45 and 1.95 Å, respectively) and the corresponding structures were solved by molecular replacement. The crystal structures of the two enzymes (and two mutated variants) showed dimeric proteins. Complementary biophysical and molecular biology studies unveiled the diverse structural bases of the dimeric nature of the two enzymes. Intermolecular disulfide bridge and parallel association between two α-helices, among other interactions, were identified at the dimer interfaces. Interestingly, one of the rCviUPO variants incorporated the ability to produce fatty acid diepoxides—reactive compounds with valuable cross-linking capabilities—due to removal of the enzyme C-terminal tail located near the entrance of the heme access channel. In conclusion, different dimeric arrangements could be described in (short) UPO crystal structures.
Collapse
|
27
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
28
|
Meyer LE, Fogtmann Hauge B, Müller Kvorning T, De Santis P, Kara S. Continuous oxyfunctionalizations catalyzed by unspecific peroxygenase. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00650b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Unspecific peroxygenase (UPO) has been shown to be a promising biocatalyst for oxyfunctionalization of a broad range of substrates with hydrogen peroxide (H2O2) as the cosubstrate.
Collapse
Affiliation(s)
- Lars-Erik Meyer
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Bjørn Fogtmann Hauge
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Thomas Müller Kvorning
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Piera De Santis
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167 Hannover, Germany
| |
Collapse
|