1
|
Pierce DR, Nichols Z, Cunningham C, Villaver SA, Bajwah A, Oluwarotimi S, Halaa H, Geddes CD. Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:7985. [PMID: 39771720 PMCID: PMC11679120 DOI: 10.3390/s24247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex. The magnitude of this induced current is related to the spectral properties of the film, the overlap between these film properties and those of the fluorophore, the spacing between the nanoparticles in the film, the excitation wavelength, and the polarization of the excitation source. Recent literature has shown that the FIPC system is ideal for aqueous ion sensing using turn-on fluorescent probes, and in this paper, we subsequently examine if it is possible to detect aqueous DNA also via a turn-on fluorescent probe, as well as other commercially available DNA detection strategies. We report the effects of DNA concentration, probe concentration, and probe characteristics on the development of an FIPC assay for the detection of non-specific DNA in aqueous solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chris D. Geddes
- Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA; (D.R.P.); (Z.N.); (C.C.); (S.A.V.); (A.B.); (S.O.); (H.H.)
| |
Collapse
|
2
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
3
|
Geka G, Kanioura A, Kochylas I, Likodimos V, Gardelis S, Dimitriou A, Papanikolaou N, Economou A, Kakabakos S, Petrou P. Comparison of Survivin Determination by Surface-Enhanced Fluorescence and Raman Spectroscopy on Nanostructured Silver Substrates. BIOSENSORS 2024; 14:479. [PMID: 39451692 PMCID: PMC11506520 DOI: 10.3390/bios14100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Survivin belongs to a family of proteins that promote cellular proliferation and inhibit cellular apoptosis. Its overexpression in various cancer types has led to its recognition as an important marker for cancer diagnosis and treatment. In this work, we compare two approaches for the immunochemical detection of survivin through surface-enhanced fluorescence or Raman spectroscopy using surfaces with nanowires decorated with silver nanoparticles in the form of dendrites or aggregates as immunoassays substrates. In both substrates, a two-step non-competitive immunoassay was developed using a pair of specific monoclonal antibodies, one for detection and the other for capture. The detection antibody was biotinylated and combined with streptavidin labeled with rhodamine for the detection of surface-enhanced fluorescence, while, for the detection via Raman spectroscopy, streptavidin labeled with peroxidase was used and the signal was obtained after the application of 3,3',5,5'-tetramethylbenzidine (TMB) precipitating substrate. It was found that the substrate with the silver dendrites provided higher fluorescence signal intensity compared to the substrate with the silver aggregates, while the opposite was observed for the Raman signal. Thus, the best substrate was used for each detection method. A detection limit of 12.5 pg/mL was achieved with both detection approaches along with a linear dynamic range up to 500 pg/mL, enabling survivin determination in human serum samples from both healthy and ovarian cancer patients for cancer diagnosis and monitoring purposes.
Collapse
Affiliation(s)
- Georgia Geka
- Immunoassays/Immunosensors Laboratory Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (S.K.)
- Department of Chemistry, National and Kapodistrian University of Athens, University Campus, 15771 Athens, Greece;
| | - Anastasia Kanioura
- Immunoassays/Immunosensors Laboratory Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (S.K.)
| | - Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (I.K.); (V.L.); (S.G.)
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (I.K.); (V.L.); (S.G.)
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (I.K.); (V.L.); (S.G.)
| | - Anastasios Dimitriou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (A.D.); (N.P.)
| | - Nikolaos Papanikolaou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (A.D.); (N.P.)
| | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian University of Athens, University Campus, 15771 Athens, Greece;
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Laboratory Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (S.K.)
| | - Panagiota Petrou
- Immunoassays/Immunosensors Laboratory Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (S.K.)
| |
Collapse
|
4
|
Priyanka, Mohan B, Poonia E, Kumar S, Virender, Singh C, Xiong J, Liu X, Pombeiro AJL, Singh G. COVID-19 Virus Structural Details: Optical and Electrochemical Detection. J Fluoresc 2024; 34:479-500. [PMID: 37382834 DOI: 10.1007/s10895-023-03307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal.
| | - Ekta Poonia
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Virender
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, 246174, India
| | - Jichuan Xiong
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xuefeng Liu
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
6
|
Yang H, Ji Y, Shen K, Qian Y, Ye C. Simultaneous detection of urea and lactate in sweat based on a wearable sweat biosensor. BIOMEDICAL OPTICS EXPRESS 2024; 15:14-27. [PMID: 38223175 PMCID: PMC10783907 DOI: 10.1364/boe.505004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Urea and lactate are biomarkers in sweat that is closely associated with human health. This study introduces portable, rapid, sensitive, stable, and high-throughput wearable sweat biosensors utilizing Au-Ag nanoshuttles (Au-Ag NSs) for the simultaneous detection of sweat urea and lactate. The Au-Ag NSs arrays within the biosensor's microfluidic cavity provide a substantial surface-enhanced Raman scattering (SERS) enhancement effect. The limit of detection (LOD) for urea and lactate are 2.35 × 10-6 and 8.66 × 10-7 mol/L, respectively. This wearable sweat biosensor demonstrates high resistance to compression bending, repeatability, and stability and can be securely attached to various body parts. Real-time sweat analysis of volunteers wearing the biosensors during exercise demonstrated the method's practicality. This wearable sweat biosensor holds significant potential for monitoring sweat dynamics and serves as a valuable tool for assessing bioinformation in sweat.
Collapse
Affiliation(s)
- Haifan Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yangyang Ji
- Department of Science and Education, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 226300, China
| | - Kang Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Chenchen Ye
- Department of Science and Education, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, China
| |
Collapse
|
7
|
Tatar AS, Boca S, Falamas A, Cuibus D, Farcău C. Self-assembled PVP-gold nanostar films as plasmonic substrates for surface-enhanced spectroscopies: influence of the polymeric coating on the enhancement efficiency. Analyst 2023; 148:3992-4001. [PMID: 37526256 DOI: 10.1039/d3an00682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Colloidal nanoparticles exhibiting anisotropic morphologies are preferred in the structural design of spectroscopically active substrates due to the remarkable optical properties of this type of nano-object. In the particular case of star-like nanoparticles, their sharp tips can act as antennae for capturing and amplifying the incident light, as well as for enhancing the light emitted by nearby fluorophores or the scattering efficiency of Raman active molecules. In the current work, we aimed to implement such star-shaped nanoparticles in the fabrication of nanoparticle films and explore their use as solid plasmonic substrates for surface-enhanced optical spectroscopies. High-density, compact and robust self-assembled gold nanostar films were prepared by directly depositing them from aqueous colloidal suspension on polystyrene plates through convective self-assembly. We investigated the role of the polymeric coating, herein polyvinylpyrrolidone (PVP), in the particle assembly process, the resulting morphology and consequently, the plasmonic response of the obtained films. The efficacy of the plasmonic films as dual-mode surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS) substrates was evidenced by testing Nile Blue A (NB) and Rhodamine 800 (Rh800) molecular chromophores under visible (633 nm) versus NIR (785 nm) laser excitation. Steady-state and time-resolved fluorescence investigations highlight the fluorescence intensity and fluorescence lifetime modification effects. The experimental results were corroborated with theoretical modelling by finite-difference time-domain (FDTD) simulations. Furthermore, to prove the extended applicability of the proposed substrates in the detection of biologically relevant molecules, we tested their SERS efficiency for sensing metanephrine, a metabolite currently used for the biochemical diagnosis of neuroendocrine tumors, at concentration levels similar to other catecholamine metabolites.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian, 400271 Cluj-Napoca, Romania.
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Denisa Cuibus
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Ko T, Kumar S, Shin S, Seo D, Seo S. Colloidal Quantum Dot Nanolithography: Direct Patterning via Electron Beam Lithography. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2111. [PMID: 37513122 PMCID: PMC10384559 DOI: 10.3390/nano13142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Micro/nano patterns based on quantum dots (QDs) are of great interest for applications ranging from electronics to photonics to sensing devices for biomedical purposes. Several patterning methods have been developed, but all lack the precision and reproducibility required to fabricate precise, complex patterns of less than one micrometer in size, or require specialized crosslinking ligands, limiting their application. In this study, we present a novel approach to directly pattern QD nanopatterns by electron beam lithography using commercially available colloidal QDs without additional modifications. We have successfully generated reliable dot and line QD patterns with dimensions as small as 140 nm. In addition, we have shown that using a 10 nm SiO2 spacer layer on a 50 nm Au layer substrate can double the fluorescence intensity compared to QDs on the Au layer without SiO2. This method takes advantage of traditional nanolithography without the need for a resist layer.
Collapse
Affiliation(s)
- Taewoo Ko
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Dongmin Seo
- Department of Electrical Engineering, Semyung University, Jecheon 27136, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
9
|
Boodoo C, Dester E, David J, Patel V, Kc R, Alocilja EC. Multi-Probe Nano-Genomic Biosensor to Detect S. aureus from Magnetically-Extracted Food Samples. BIOSENSORS 2023; 13:608. [PMID: 37366975 DOI: 10.3390/bios13060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
One of the most prevalent causes of foodborne illnesses worldwide is staphylococcal food poisoning. This study aimed to provide a robust method to extract the bacteria Staphylococcus aureus from food samples using glycan-coated magnetic nanoparticles (MNPs). Then, a cost-effective multi-probe genomic biosensor was designed to detect the nuc gene of S. aureus rapidly in different food matrices. This biosensor utilized gold nanoparticles and two DNA oligonucleotide probes combined to produce a plasmonic/colorimetric response to inform users if the sample was positive for S. aureus. In addition, the specificity and sensitivity of the biosensor were determined. For the specificity trials, the S. aureus biosensor was compared with the extracted DNA of Escherichia coli, Salmonella enterica serovar Enteritidis (SE), and Bacillus cereus. The sensitivity tests showed that the biosensor could detect as low as 2.5 ng/µL of the target DNA with a linear range of up to 20 ng/µL of DNA. With further research, this simple and cost-effective biosensor can rapidly identify foodborne pathogens from large-volume samples.
Collapse
Affiliation(s)
- Chelsie Boodoo
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Jeswin David
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Human Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Vedi Patel
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Rabin Kc
- Statistical Consulting Center, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Saber G, El-Dissouky A, Badie G, Ebrahim S, Shokry A. Capped ZnO quantum dots with a tunable photoluminescence for acetone detection. RSC Adv 2023; 13:16453-16470. [PMID: 37274405 PMCID: PMC10233348 DOI: 10.1039/d3ra00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Acetone is a dangerous material that poses a major risk to human health. To protect against its harmful impacts, a fluorescent biosensor 3-aminopropyl triethoxysilane capped ZnO quantum dots (APTES/ZnO QDs) was investigated to detect low concentrations of acetone. Numerous techniques, including Fourier transform infrared (FTIR), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), zeta potential, UV-vis absorption, and photoluminescence (PL), are used to thoroughly verify the successful synthesis of pristine ZnO QDs and APTES/ZnO QDs. The HRTEM micrograph showed that the average size distributions of ZnO QDs and APTES/ZnO QDs were spherical forms of 2.6 and 1.2 nm, respectively. This fluorescent probe dramatically increased its sensitivity toward acetone with a wide linear response range of 0.1-18 mM and a correlation coefficient (R2) of 0.9987. The detection limit of this sensing system for acetone is as low as 42 μM. The superior selectivity of acetone across numerous interfering bioanalytics is confirmed. Reproducibility and repeatability experiments presented relative standard deviations (RSD) of 2.2% and 2.4%, respectively. Finally, this developed sensor was applied successfully for detecting acetone in a diabetic patient's urine samples with a recovery percentage ranging from 97 to 102.7%.
Collapse
Affiliation(s)
- Goerget Saber
- Department of Chemistry and Physics, Faculty of Education, Alexandria University El-Shatby 21526 Alexandria Egypt
| | - Ali El-Dissouky
- Department of Chemistry, Faculty of Science, Alexandria University Ibrahimia, P. O. Box 426 Alexandria Egypt
| | - Gamal Badie
- Department of Chemistry and Physics, Faculty of Education, Alexandria University El-Shatby 21526 Alexandria Egypt
| | - Shaker Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research (IGSR), Alexandria University 163 Horrya Avenue, El-Shatby, P. O. Box 832 Alexandria Egypt
| | - Azza Shokry
- Department of Materials Science, Institute of Graduate Studies and Research (IGSR), Alexandria University 163 Horrya Avenue, El-Shatby, P. O. Box 832 Alexandria Egypt
| |
Collapse
|
11
|
Aluminum Foil vs. Gold Film: Cost-Effective Substrate in Sandwich SERS Immunoassays of Biomarkers Reveals Potential for Selectivity Improvement. Int J Mol Sci 2023; 24:ijms24065578. [PMID: 36982652 PMCID: PMC10051902 DOI: 10.3390/ijms24065578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The first application of aluminum foil (Al F) as a low-cost/high-availability substrate for sandwich immunoassay using surface-enhanced Raman spectroscopy (SERS) is reported. Untreated and unmodified Al F and gold film are used as substrates for sandwich SERS immunoassay to detect tuberculosis biomarker MPT64 and human immunoglobulin (hIgG) in less than 24 h. The limits of detection (LODs) for tuberculosis (TB) biomarker MPT64 on Al foil, obtained with commercial antibodies, are about 1.8–1.9 ng/mL, which is comparable to the best LOD (2.1 ng/mL) reported in the literature for sandwich ELISA, made with fresh in-house antibodies. Not only is Al foil competitive with traditional SERS substrate gold for the sandwich SERS immunoassay in terms of LOD, which is in the range 18–30 pM or less than 1 pmol of human IgG, but it also has a large cost/availability advantage over gold film. Moreover, human IgG assays on Al foil and Si showed better selectivity (by about 30–70% on Al foil and at least eightfold on Si) and a nonspecific response to rat or rabbit IgG, in comparison to the selectivity in assays using gold film.
Collapse
|
12
|
Xia J, Chen GY, Li YY, Chen L, Lu D. Rapid and sensitive detection of superoxide dismutase in serum of the cervical cancer by 4-aminothiophenol-functionalized bimetallic Au-Ag nanoboxs array. Front Bioeng Biotechnol 2023; 11:1111866. [PMID: 36970621 PMCID: PMC10032346 DOI: 10.3389/fbioe.2023.1111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Early, efficient and sensitive detection of serum markers in cervical cancer is very important for the treatment and prognosis to cervical cancer patients. In this paper, a SERS platform based on surface enhanced Raman scattering technology was proposed to quantitatively detect superoxide dismutase in serum of cervical cancer patients. Au-Ag nanoboxs array was made by oil-water interface self-assembly method as the trapping substrate. The single-layer Au-AgNBs array was verified by SERS for possessing excellent uniformity, selectivity and reproducibility. 4-aminothiophenol (4-ATP) was used as Raman signal molecule, it will be oxidized to dithiol azobenzene under the surface catalytic reaction with the condition of PH = 9 and laser irradiation. The quantitative detection of SOD could be achieved by calculating the change of characteristic peak ratio. When the concentration was from 10 U mL−1–160 U mL−1, the concentration of SOD could be accurately and quantitatively detected in human serum. The whole test was completed within 20 min and the limit of quantitation was 10 U mL−1. In addition, serum samples from the cervical cancer, the cervical intraepithelial neoplasia and healthy people were tested by the platform and the results were consistent with those of ELISA. The platform has great potential as a tool for early clinical screening of cervical cancer in the future.
Collapse
Affiliation(s)
- Ji Xia
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Gao-Yang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Department of Oncology, The Second People’s Hospital of Taizhou City, Taizhou, China
| | - You You Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lu Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- *Correspondence: Dan Lu,
| |
Collapse
|
13
|
Kukushkin V, Kristavchuk O, Andreev E, Meshcheryakova N, Zaborova O, Gambaryan A, Nechaev A, Zavyalova E. Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. Front Bioeng Biotechnol 2023; 10:1076749. [PMID: 36704305 PMCID: PMC9871243 DOI: 10.3389/fbioe.2022.1076749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Aptasensors based on surface-enhanced Raman spectroscopy (SERS) are of high interest due to the superior specificity and low limit of detection. It is possible to produce stable and cheap SERS-active substrates and portable equipment meeting the requirements of point-of-care devices. Here we combine the membrane filtration and SERS-active substrate in the one pot. This approach allows efficient adsorption of the viruses from the solution onto aptamer-covered silver nanoparticles. Specific determination of the viruses was provided by the aptamer to influenza A virus labeled with the Raman-active label. The SERS-signal from the label was decreased with a descending concentration of the target virus. Even several virus particles in the sample provided an increase in SERS-spectra intensity, requiring only a few minutes for the interaction between the aptamer and the virus. The limit of detection of the aptasensor was as low as 10 viral particles per mL (VP/mL) of influenza A virus or 2 VP/mL per probe. This value overcomes the limit of detection of PCR techniques (∼103 VP/mL). The proposed biosensor is very convenient for point-of-care applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, Moscow, Russia
| | | | - Elena Zavyalova
- Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elena Zavyalova,
| |
Collapse
|
14
|
Peixoto LPF, Santos JFL, Andrade GFS. Surface enhanced fluorescence immuno-biosensor based on gold nanorods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121753. [PMID: 36058169 DOI: 10.1016/j.saa.2022.121753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Gold nanoparticles (AuNPs) are attractive structures for biosensing, most due to different properties at nanoscale and biocompatibility. Localized surface plasmon resonance (LSPR) is one of these properties; LSPR enable the electromagnetic field enhancement closer to metallic surface, which allows surface-enhanced spectroscopies, like surface enhanced fluorescence (SEF). In this study, an immuno-biosensor based on gold nanorods (AuNRs) and SEF was constructed for simple and fast analysis to detect albumin antibody (anti-BSA) using antigen-antibody (anti-BSA/BSA) interaction as the biorecognition model. AuNRs were presented in two distinct configurations, in suspension (S-AuNRs) and adsorbed on glass slides (AuNRs-chip), and the detection was performed through an extrinsic method, wherein the SEF signal of a reporter molecule (IR-820 cyanine-type dye) was monitored. The analyte detection was evidenced by SEF mapping, where the average signal in the presence of anti-BSA was three times more intense than for the assay in the absence of analyte. A digital protocol was proposed to simplify the spectroscopic data analysis and reduce the intensity variability; in this protocol the number of positive events in the presence of anti-BSA is much larger (around two times) compared to the absence of analyte. The AuNRs based SEF immuno-biosensor allowed an efficient and simple analysis with specific biorecognition and may contribute as an efficient spectroscopy platform for immuno-biosensing.
Collapse
Affiliation(s)
- Linus Pauling F Peixoto
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Centro de Estudos em Materiais, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz De Fora, MG, Brazil
| | - Jacqueline F L Santos
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gustavo F S Andrade
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Centro de Estudos em Materiais, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz De Fora, MG, Brazil.
| |
Collapse
|
15
|
Fluorescence signal amplification by optical reflection in metal-coated nanowells. Mikrochim Acta 2022; 189:478. [DOI: 10.1007/s00604-022-05577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
16
|
Lizunova AA, Malo D, Guzatov DV, Vlasov IS, Kameneva EI, Shuklov IA, Urazov MN, Ramanenka AA, Ivanov VV. Plasmon-Enhanced Ultraviolet Luminescence in Colloid Solutions and Nanostructures Based on Aluminum and ZnO Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4051. [PMID: 36432340 PMCID: PMC9696599 DOI: 10.3390/nano12224051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Aluminum nanoparticles attract scientific interest as a promising low-cost material with strong plasmon resonance in the ultraviolet region, which can be used in various fields of photonics. In this paper, for the first time, ultraviolet luminescence of zinc oxide nanoparticles in colloid solutions and nanostructure films in the presence of plasmonic aluminum nanoparticles 60 nm in size with a metal core and an aluminum oxide shell were studied. Mixture colloids of ZnO and Al nanoparticles in isopropyl alcohol solution with concentrations from 0.022 to 0.44 g/L and 0.057 to 0.00285 g/L, correspondingly, were investigated. The enhancement of up to 300% of ZnO emission at 377 nm in colloids mixtures with metal nanoparticles due to formation of Al-ZnO complex agglomerates was achieved. Plasmon nanostructures with different configurations of layers, such as Al on the surface of ZnO, ZnO on Al, sandwich-like structure and samples prepared from a colloidal mixture of ZnO and Al nanoparticles, were fabricated by microplotter printing. We demonstrated that photoluminescence can be boosted 2.4-fold in nanostructures prepared from a colloidal mixture of ZnO and Al nanoparticles, whereas the sandwich-like structure gave only 1.1 times the amplification of luminescence. Calculated theoretical models of photoluminescence enhancement of ideal and weak emitters near aluminum nanoparticles of different sizes showed comparable results with the obtained experimental data.
Collapse
Affiliation(s)
- Anna A. Lizunova
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| | - Dana Malo
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| | - Dmitry V. Guzatov
- Physico-Technical Department, Yanka Kupala State University of Grodno, Ozheshko Str. 22, 230023 Grodno, Belarus
| | - Ivan S. Vlasov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| | - Ekaterina I. Kameneva
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| | - Ivan A. Shuklov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| | - Maxim N. Urazov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| | - Andrei A. Ramanenka
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Nezavisimosti Ave. 68-2, 220072 Minsk, Belarus
| | - Victor V. Ivanov
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Russia
| |
Collapse
|
17
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
18
|
Yaiwong P, Lertvachirapaiboon C, Shinbo K, Kato K, Ounnunkad K, Baba A. Tunable surface plasmon resonance enhanced fluorescence via the stretching of a gold quantum dot-coated aluminum-coated elastomeric grating substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3188-3195. [PMID: 35938318 DOI: 10.1039/d2ay00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the surface plasmon resonance (SPR)-enhanced fluorescence properties of gold quantum dots (AuQDs) on an aluminum (Al)-coated polydimethylsiloxane (PDMS) grating substrate were investigated by changing the grating pitch via mechanical stretching. The SPR-excitation wavelength of the AuQDs/Al-coated PDMS-grating substrate was tuned by changing the incident light angle from 5° to 60° and stretching it from 0 to 1.0 mm. In addition, the SPR-enhanced fluorescence tuning ability was studied using an AuQD/Al-coated PDMS-grating film by stretching the substrate. The SPR-enhanced fluorescence (SPF) of the AuQDs on the Al-grating was observed using a violet laser as the excitation source at 405 nm with p-polarization. The wavelengths of the SPR excitation, corresponding to the SP-dispersion mode of +1, were shifted to a longer wavelength upon stretching the grating substrate from 0 to 1.0 mm. By stretching the AuQDs/Al-grating PDMS substrate, the SPR-enhanced fluorescence intensity increased at fixed incident angles of 15° and 35°, whereas the SPR-enhanced fluorescence intensity decreased at 40°. Moreover, the SPF could be tuned to exhibit different properties in tunable optical sensors.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chutiparn Lertvachirapaiboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Kazunari Shinbo
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Keizo Kato
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Kontad Ounnunkad
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Akira Baba
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
19
|
Picard-Lafond A, Larivière D, Boudreau D. Metal-Enhanced Hg 2+-Responsive Fluorescent Nanoprobes: From Morphological Design to Application to Natural Waters. ACS OMEGA 2022; 7:22944-22955. [PMID: 35811854 PMCID: PMC9260771 DOI: 10.1021/acsomega.2c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Metal-enhanced fluorescence (MEF) is a powerful tool in the design of sensitive chemical sensors by improving brightness and photostability of target-responsive fluorophores. Compounding these advantages with the modest hardware requirements of fluorescence sensing compared to that of centralized elemental analysis instruments, thus expanding the use of MEF to the detection of low-level inorganic pollutants, is a compelling aspiration. Among the latter, monitoring mercury in the environment, where some of its species disseminate through the food chain and, in time, to humans, has elicited a broad research effort toward the development of Hg2+-responsive fluorescent sensors. Herein, a Hg2+-sensitive MEF-enabled probe was conceived by grafting a Hg2+-responsive fluorescein derivative to concentric Ag@SiO2 NPs, where the metallic core enhances fluorescence emission of molecular probes embedded in a surrounding silica shell. Time-resolved fluorescence measurements showed that the fluorophore's excited-state lifetime decreases from 3.9 ns in a solid, coreless silica sphere to 0.4 ns in the core-shell nanoprobe, granting the dye a better resistance to photobleaching. The Ag-core system showed a sizable improvement in the limit of detection at 2 nM (0.4 ppb) compared to 50 nM (10 ppb) in silica-only colloids, and its effectiveness for natural water analysis was demonstrated. Overall, the reported nanoarchitecture hints at the potential of MEF for heavy metal detection by fluorescence detection.
Collapse
Affiliation(s)
- Audrey Picard-Lafond
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominic Larivière
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Boudreau
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Lithography-Free Technology for the Preparation of Digital Microfluidic (DMF) Lab-Chips with Droplet Actuation by Optoelectrowetting (OEW). Int J Anal Chem 2022; 2022:2011170. [PMID: 35719274 PMCID: PMC9201745 DOI: 10.1155/2022/2011170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Electrically conducting liquid droplets can be activated and moved by electrowetting-on-dielectric (EWOD) and optoelectrowetting (OEW). An important application is droplet manipulation in digital microfluidics (DMF, lab-on-a-chip 2.0) as a chip-sized chemical laboratory. For spectroscopic analyses of chemical reactions, it is often necessary to prepare or examine the reagent droplets before, during, and after the reaction. With OEW, single droplets with volumes of 50–250 nl can be moved, analyzed, and merged in one pipetting step. To ensure analysis sensitivity in many applications, lab-chips should only be used once due to contamination of the surface and chemical modification of the layers by the droplets. Single-use chip preparation without a lithographic step, e.g., for the definition of the spacer layer, reduces efforts and costs. Here, exemplarily, we demonstrate the OEW-driven movement and mixing of chemical reagents in a simple color change reaction analyzed by absorption spectroscopy. Stripes made from the insulating tape serve as spacers between sub and superstrate, and any lithographic step can be avoided.
Collapse
|
21
|
Aitekenov S, Sultangaziyev A, Abdirova P, Yussupova L, Gaipov A, Utegulov Z, Bukasov R. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers. Crit Rev Anal Chem 2022; 53:1561-1590. [PMID: 35157535 DOI: 10.1080/10408347.2022.2036941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This review surveys Infrared, Raman/SERS and Brillouin spectroscopies for medical diagnostics and detection of biomarkers in biofluids, that include urine, blood, saliva and other biofluids. These optical sensing techniques are non-contact, noninvasive and relatively rapid, accurate, label-free and affordable. However, those techniques still have to overcome some challenges to be widely adopted in routine clinical diagnostics. This review summarizes and provides insights on recent advancements in research within the field of vibrational spectroscopy for medical diagnostics and its use in detection of many health conditions such as kidney injury, cancers, cardiovascular and infectious diseases. The six comprehensive tables in the review and four tables in supplementary information summarize a few dozen experimental papers in terms of such analytical parameters as limit of detection, range, diagnostic sensitivity and specificity, and other figures of merits. Critical comparison between SERS and FTIR methods of analysis reveals that on average the reported sensitivity for biomarkers in biofluids for SERS vs FTIR is about 103 to 105 times higher, since LOD SERS are lower than LOD FTIR by about this factor. High sensitivity gives SERS an edge in detection of many biomarkers present in biofluids at low concentration (nM and sub nM), which can be particularly advantageous for example in early diagnostics of cancer or viral infections.HighlightsRaman, Infrared spectroscopies use low volume of biofluidic samples, little sample preparation, fast time of analysis and relatively inexpensive instrumentation.Applications of SERS may be a bit more complicated than applications of FTIR (e.g., limited shelf life for nanoparticles and substrates, etc.), but this can be generously compensated by much higher (by several order of magnitude) sensitivity in comparison to FTIR.High sensitivity makes SERS a noninvasive analytical method of choice for detection, quantification and diagnostics of many health conditions, metabolites, and drugs, particularly in diagnostics of cancer, including diagnostics of its early stages.FTIR, particularly ATR-FTIR can be a method of choice for efficient sensing of many biomarkers, present in urine, blood and other biofluids at sufficiently high concentrations (mM and even a few µM)Brillouin scattering spectroscopy detecting visco-elastic properties of probed liquid medium, may also find application in clinical analysis of some biofluids, such as cerebrospinal fluid and urine.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Perizat Abdirova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Lyailya Yussupova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|