1
|
Wang J, Jiang L, Shang Z, Ye Z, Yuan D, Cui X. A Prognostic Model for Prostate Cancer Patients Based on Two DNA Damage Response Mutation-Related Immune Genes. Cancer Biother Radiopharm 2024; 39:306-317. [PMID: 37610864 DOI: 10.1089/cbr.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background: DNA damage response (DDR) mutation-related genes and composition of immune cells are core factors affecting the effectiveness of immune checkpoint inhibitor therapy. The aim of this study is to combine DDR with immune-related genes to screen the prognostic signature for prostate cancer (PCa). Methods: Gene expression profile and somatic mutation were downloaded from The Cancer Genome Atlas (TCGA). DDR-related genes were obtained from published study. After identification of prognostic-related DDR genes, samples were divided into mutation and nonmutation groups. Differentially expressed genes between these two groups were screened, followed by selection of immune-related DDR genes. Univariate and multivariate Cox analyses were performed to screen genes for constructing prognostic model. Nomogram model was also developed. The expression level of signature was detected by quantitative real-time PCR (qPCR). Results: Two genes (MYBBP1A and PCDHA9) were screened to construct the prognostic model, and it showed good risk prediction of PCa prognosis. Survival analysis showed that patients in high-risk group had worse overall survival than those in low-risk group. Cox analyses indicated that risk score could be used as an independent prognostic factor for PCa. qPCR results indicated that MYBBP1A was upregulated, whereas PCDHA9 was downregulated in PCa cell lines. Conclusions: A prognostic model based on DDR mutation-related genes for PCa was established, which serves as an effective tool for prognostic differentiation in patients with PCa.
Collapse
Affiliation(s)
- Jian Wang
- Department of Urology Surgery, The First People's Hospital of Foshan, Affiliated Hospital of Sun Yat-sen University, Foshan City, China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenhua Shang
- Department of Urology, Xuan Wu Hospital Capital Medical University, Beijing, China
| | - Zhaohua Ye
- Department of Urology Surgery, The People's Hospital of Dongguan, Dongguan City, China
| | - Dan Yuan
- Department of Urology, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Cui
- Department of Urology, Xuan Wu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Mol Psychiatry 2021; 26:2070-2081. [PMID: 32398722 PMCID: PMC7657979 DOI: 10.1038/s41380-020-0705-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
Substantial genetic liability is shared across psychiatric disorders but less is known about risk variants that are specific to a given disorder. We used multi-trait conditional and joint analysis (mtCOJO) to adjust GWAS summary statistics of one disorder for the effects of genetically correlated traits to identify putative disorder-specific SNP associations. We applied mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric Genomics Consortium-schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). Most genome-wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on multiple psychiatric disorders) and hence have reduced mtCOJO conditional effect sizes. However, subsets of genome-wide significant variants had larger conditional effect sizes consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. We show that decreased expression of VPS29 in the brain may increase risk to SCZ only and increased expression of CSE1L is associated with SCZ and MD, but not with BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of MD but decreased risk of SCZ and BIP.
Collapse
|
3
|
Jia Z, Wu Q. Clustered Protocadherins Emerge as Novel Susceptibility Loci for Mental Disorders. Front Neurosci 2020; 14:587819. [PMID: 33262685 PMCID: PMC7688460 DOI: 10.3389/fnins.2020.587819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clustered protocadherins (cPcdhs) are a subfamily of type I single-pass transmembrane cell adhesion molecules predominantly expressed in the brain. Their stochastic and combinatorial expression patterns encode highly diverse neural identity codes which are central for neuronal self-avoidance and non-self discrimination in brain circuit formation. In this review, we first briefly outline mechanisms for generating a tremendous diversity of cPcdh cell-surface assemblies. We then summarize the biological functions of cPcdhs in a wide variety of neurodevelopmental processes, such as neuronal migration and survival, dendritic arborization and self-avoidance, axonal tiling and even spacing, and synaptogenesis. We focus on genetic, epigenetic, and 3D genomic dysregulations of cPcdhs that are associated with various neuropsychiatric and neurodevelopmental diseases. A deeper understanding of regulatory mechanisms and physiological functions of cPcdhs should provide significant insights into the pathogenesis of mental disorders and facilitate development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Qiang Wu
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, School of Life Sciences and Biotechnology, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
An epigenome-wide association study of early-onset major depression in monozygotic twins. Transl Psychiatry 2020; 10:301. [PMID: 32843619 PMCID: PMC7447798 DOI: 10.1038/s41398-020-00984-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Major depression (MD) is a debilitating mental health condition with peak prevalence occurring early in life. Genome-wide examination of DNA methylation (DNAm) offers an attractive complement to studies of allelic risk given it can reflect the combined influence of genes and environment. The current study used monozygotic twins to identify differentially and variably methylated regions of the genome that distinguish twins with and without a lifetime history of early-onset MD. The sample included 150 Caucasian monozygotic twins between the ages of 15 and 20 (73% female; Mage = 17.52 SD = 1.28) who were assessed during a developmental stage characterized by relatively distinct neurophysiological changes. All twins were generally healthy and currently free of medications with psychotropic effects. DNAm was measured in peripheral blood cells using the Infinium Human BeadChip 450 K Array. MD associations with early-onset MD were detected at 760 differentially and variably methylated probes/regions that mapped to 428 genes. Genes and genomic regions involved neural circuitry formation, projection, functioning, and plasticity. Gene enrichment analyses implicated genes related to neuron structures and neurodevelopmental processes including cell-cell adhesion genes (e.g., PCDHA genes). Genes previously implicated in mood and psychiatric disorders as well as chronic stress (e.g., NRG3) also were identified. DNAm regions associated with early-onset MD were found to overlap genetic loci identified in the latest Psychiatric Genomics Consortium meta-analysis of depression. Understanding the time course of epigenetic influences during emerging adulthood may clarify developmental phases where changes in the DNA methylome may modulate individual differences in MD risk.
Collapse
|
5
|
Campos AI, Verweij KJH, Statham DJ, Madden PAF, Maciejewski DF, Davis KAS, John A, Hotopf M, Heath AC, Martin NG, Rentería ME. Genetic aetiology of self-harm ideation and behaviour. Sci Rep 2020; 10:9713. [PMID: 32546850 PMCID: PMC7297971 DOI: 10.1038/s41598-020-66737-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Family studies have identified a heritable component to self-harm that is partially independent from comorbid psychiatric disorders. However, the genetic aetiology of broad sense (non-suicidal and suicidal) self-harm has not been characterised on the molecular level. In addition, controversy exists about the degree to which suicidal and non-suicidal self-harm share a common genetic aetiology. In the present study, we conduct genome-wide association studies (GWAS) on lifetime self-harm ideation and self-harm behaviour (i.e. any lifetime self-harm act regardless of suicidal intent) using data from the UK Biobank (n > 156,000). We also perform genome wide gene-based tests and characterize the SNP heritability and genetic correlations between these traits. Finally, we test whether polygenic risk scores (PRS) for self-harm ideation and self-harm behaviour predict suicide attempt, suicide thoughts and non-suicidal self-harm (NSSH) in an independent target sample of 8,703 Australian adults. Our GWAS results identified one genome-wide significant locus associated with each of the two phenotypes. SNP heritability (hsnp2) estimates were ~10%, and both traits were highly genetically correlated (LDSC rg > 0.8). Gene-based tests identified seven genes associated with self-harm ideation and four with self-harm behaviour. Furthermore, in the target sample, PRS for self-harm ideation were significantly associated with suicide thoughts and NSSH, and PRS for self-harm behaviour predicted suicide thoughts and suicide attempt. Follow up regressions identified a shared genetic aetiology between NSSH and suicide thoughts, and between suicide thoughts and suicide attempt. Evidence for shared genetic aetiology between NSSH and suicide attempt was not statistically significant.
Collapse
Affiliation(s)
- Adrian I Campos
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia.
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Dixie J Statham
- Discipline of Psychology, School of Health and Life Sciences, Federation University, Ballarat, VIC, 3550, Australia
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Dominique F Maciejewski
- Department of Developmental Psychopathology, Behavioural Science Institute, Nijmegen, the Netherlands
| | - Katrina A S Davis
- KCL Institute of Psychiatry, Psychology and Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ann John
- HDRUK, Swansea University Medical School, Swansea, UK
| | - Matthew Hotopf
- KCL Institute of Psychiatry, Psychology and Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Nicholas G Martin
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia.
| |
Collapse
|
6
|
Fahira A, Wang D, Wang K, Wadood A, Shi Y. Functional annotation of regulatory single nucleotide polymorphisms associated with schizophrenia. Schizophr Res 2020; 218:326-328. [PMID: 32044204 DOI: 10.1016/j.schres.2019.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Smirnova L, Seregin A, Boksha I, Dmitrieva E, Simutkin G, Kornetova E, Savushkina O, Letova A, Bokhan N, Ivanova S, Zgoda V. The difference in serum proteomes in schizophrenia and bipolar disorder. BMC Genomics 2019; 20:535. [PMID: 31291891 PMCID: PMC6620192 DOI: 10.1186/s12864-019-5848-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Purpose of study is revealing significant differences in serum proteomes in schizophrenia and bipolar disorder (BD). RESULTS Quantitative mass-spectrometry based proteomic analysis was used to quantify proteins in the blood serum samples after the depletion of six major blood proteins. Comparison of proteome profiles of different groups revealed 27 proteins being specific for schizophrenia, and 18 - for BD. Protein set in schizophrenia was mostly associated with immune response, cell communication, cell growth and maintenance, protein metabolism and regulation of nucleic acid metabolism. Protein set in BD was mostly associated with immune response, regulating transport processes across cell membrane and cell communication, development of neurons and oligodendrocytes and cell growth. Concentrations of ankyrin repeat domain-containing protein 12 (ANKRD12) and cadherin 5 in serum samples were determined by ELISA. Significant difference between three groups was revealed in ANKRD12 concentration (p = 0.02), with maximum elevation of ANKRD12 concentration (median level) in schizophrenia followed by BD. Cadherin 5 concentration differed significantly (p = 0.035) between schizophrenic patients with prevailing positive symptoms (4.78 [2.71, 7.12] ng/ml) and those with prevailing negative symptoms (1.86 [0.001, 4.11] ng/ml). CONCLUSIONS Our results are presumably useful for discovering the new pathways involved in endogenous psychotic disorders.
Collapse
Affiliation(s)
- Liudmila Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexander Seregin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | - Elena Dmitrieva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | - German Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Elena Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | | | | | - Nikolay Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Svetlana Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Petrykey K, Lippé S, Robaey P, Sultan S, Laniel J, Drouin S, Bertout L, Beaulieu P, St-Onge P, Boulet-Craig A, Rezgui A, Yasui Y, Sapkota Y, Krull KR, Hudson MM, Laverdière C, Sinnett D, Krajinovic M. Influence of genetic factors on long-term treatment related neurocognitive complications, and on anxiety and depression in survivors of childhood acute lymphoblastic leukemia: The Petale study. PLoS One 2019; 14:e0217314. [PMID: 31181069 PMCID: PMC6557490 DOI: 10.1371/journal.pone.0217314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A substantial number of survivors of childhood acute lymphoblastic leukemia suffer from treatment-related late adverse effects including neurocognitive impairment. While multiple studies have described neurocognitive outcomes in childhood acute lymphoblastic leukemia (ALL) survivors, relatively few have investigated their association with individual genetic constitution. METHODS To further address this issue, genetic variants located in 99 genes relevant to the effects of anticancer drugs and in 360 genes implicated in nervous system function and predicted to affect protein function, were pooled from whole exome sequencing data of childhood ALL survivors (PETALE cohort) and analyzed for an association with neurocognitive complications, as well as with anxiety and depression. Variants that sustained correction for multiple testing were genotyped in entire cohort (n = 236) and analyzed with same outcomes. RESULTS Common variants in MTR, PPARA, ABCC3, CALML5, CACNB2 and PCDHB10 genes were associated with deficits in neurocognitive tests performance, whereas a variant in SLCO1B1 and EPHA5 genes was associated with anxiety and depression. Majority of associations were modulated by intensity of treatment. Associated variants were further analyzed in an independent SJLIFE cohort of 545 ALL survivors. Two variants, rs1805087 in methionine synthase, MTR and rs58225473 in voltage-dependent calcium channel protein encoding gene, CACNB2 are of particular interest, since associations of borderline significance were found in replication cohort and remain significant in combined discovery and replication groups (OR = 1.5, 95% CI, 1-2.3; p = 0.04 and; OR = 3.7, 95% CI, 1.25-11; p = 0.01, respectively). Variant rs4149056 in SLCO1B1 gene also deserves further attention since previously shown to affect methotrexate clearance and short-term toxicity in ALL patients. CONCLUSIONS Current findings can help understanding of the influence of genetic component on long-term neurocognitive impairment. Further studies are needed to confirm whether identified variants may be useful in identifying survivors at increased risk of these complications.
Collapse
Affiliation(s)
- Kateryna Petrykey
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Robaey
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Serge Sultan
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Laniel
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Drouin
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Laurence Bertout
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Aubrée Boulet-Craig
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Aziz Rezgui
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Yutaka Yasui
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yadav Sapkota
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Kevin R. Krull
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Melissa M. Hudson
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
- Oncology Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Caroline Laverdière
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
10
|
Srikanth P, Lagomarsino VN, Pearse RV, Liao M, Ghosh S, Nehme R, Seyfried N, Eggan K, Young-Pearse TL. Convergence of independent DISC1 mutations on impaired neurite growth via decreased UNC5D expression. Transl Psychiatry 2018; 8:245. [PMID: 30410030 PMCID: PMC6224395 DOI: 10.1038/s41398-018-0281-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
The identification of convergent phenotypes in different models of psychiatric illness highlights robust phenotypes that are more likely to be implicated in disease pathophysiology. Here, we utilize human iPSCs harboring distinct mutations in DISC1 that have been found in families with major mental illness. One mutation was engineered to mimic the consequences on DISC1 protein of a balanced translocation linked to mental illness in a Scottish pedigree; the other mutation was identified in an American pedigree with a high incidence of mental illness. Directed differentiation of these iPSCs using NGN2 expression shows rapid conversion to a homogenous population of mature excitatory neurons. Both DISC1 mutations result in reduced DISC1 protein expression, and show subtle effects on certain presynaptic proteins. In addition, RNA sequencing and qPCR showed decreased expression of UNC5D, DPP10, PCDHA6, and ZNF506 in neurons with both DISC1 mutations. Longitudinal analysis of neurite outgrowth revealed decreased neurite outgrowth in neurons with each DISC1 mutation, which was mimicked by UNC5D knockdown and rescued by transient upregulation of endogenous UNC5D. This study shows a narrow range of convergent phenotypes of two mutations found in families with major mental illness, and implicates dysregulated netrin signaling in DISC1 biology.
Collapse
Affiliation(s)
- Priya Srikanth
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Valentina N. Lagomarsino
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Richard V. Pearse
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Meichen Liao
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Sulagna Ghosh
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Ralda Nehme
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Nicholas Seyfried
- 0000 0001 0941 6502grid.189967.8Department of Biochemistry, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Kevin Eggan
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Tracy L. Young-Pearse
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
11
|
Barker ED, Walton E, Cecil CA, Rowe R, Jaffee SR, Maughan B, O'Connor TG, Stringaris A, Meehan AJ, McArdle W, Relton CL, Gaunt TR. A Methylome-Wide Association Study of Trajectories of Oppositional Defiant Behaviors and Biological Overlap With Attention Deficit Hyperactivity Disorder. Child Dev 2018; 89:1839-1855. [PMID: 28929496 PMCID: PMC6207925 DOI: 10.1111/cdev.12957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 671 mother-child (49% male) pairs from an epidemiological birth cohort, we investigated (a) prospective associations between DNA methylation (at birth) and trajectories (ages 7-13) of oppositional defiant disorder (ODD), and the ODD subdimensions of irritable and headstrong; (b) common biological pathways, indexed by DNA methylation, between ODD trajectories and attention deficit hyperactivity disorder (ADHD); (c) genetic influence on DNA methylation; and (d) prenatal risk exposure associations. Methylome-wide significant associations were identified for the ODD and headstrong, but not for irritable. Overlap analysis indicated biological correlates between ODD, headstrong, and ADHD. DNA methylation in ODD and headstrong was (to a degree) genetically influenced. DNA methylation associated with prenatal risk exposures of maternal anxiety (headstrong) and cigarette smoking (ODD and headstrong).
Collapse
|
12
|
Fan L, Lu Y, Shen X, Shao H, Suo L, Wu Q. Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. eLife 2018; 7:e35242. [PMID: 29911975 PMCID: PMC6047886 DOI: 10.7554/elife.35242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Diverse clustered protocadherins are thought to function in neurite morphogenesis and neuronal connectivity in the brain. Here, we report that the protocadherin alpha (Pcdha) gene cluster regulates neuronal migration during cortical development and cytoskeletal dynamics in primary cortical culture through the WAVE (Wiskott-Aldrich syndrome family verprolin homologous protein, also known as Wasf) complex. In addition, overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as Ptk2b, Cakβ, Raftk, Fak2, and Cadtk), a non-receptor cell-adhesion kinase and scaffold protein downstream of Pcdhα, impairs cortical neuron migration via inactivation of the small GTPase Rac1. Thus, we define a molecular Pcdhα/WAVE/Pyk2/Rac1 axis from protocadherin cell-surface receptors to actin cytoskeletal dynamics in cortical neuron migration and dendrite morphogenesis in mouse brain.
Collapse
Affiliation(s)
- Li Fan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yichao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiulian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong Shao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lun Suo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Assisted ReproductionShanghai Jiao Tong University Medical SchoolShanghaiChina
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
13
|
Shen Q, Zhang H, Su Y, Wen Z, Zhu Z, Chen G, Peng L, Du C, Xie H, Li H, Lv X, Lu C, Xia Y, Tang W. Identification of two novel PCDHA9 mutations associated with Hirschsprung's disease. Gene 2018; 658:96-104. [PMID: 29477871 DOI: 10.1016/j.gene.2018.02.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
Abstract
Hirschsprung's disease (HSCR) is a complex disorder with multiple pathogenic gene mutations. Protocadherin alpha 9 (PCDHA9) was identified as a potential candidate gene for HSCR by whole-exome sequencing in a Chinese family. Sanger sequencing in 298 HSCR cases revealed two sporadic Chinese patients with a novel missence PCDHΑ9 mutation (NM_031857; c.1280C > T[p.Ala427Val]) and one sporadic Chinese patient with another novel missence PCDHΑ9 mutation (c.1425C > G[p.Phe475Leu]).The silico predictions and 3D modeling suggest the deleterious effect of identified mutations on protein function. Immunohistochemistry analysis showed PCDHΑ9 was predominantly expressed in the myenteric plexus of human colon tissues. For mouse embryos, PCDHΑ9 was expressed in the stomach but rarely seen in the intestine during E10.5-12.5, then obviously expressed in the intestinal mucosa at E13.5 and extensively expressed in intestinal muscularis and mucosa at E14.5. Moreover, the down-regulation of PCDHΑ9 in the SH-SY5Y cell line promoted the proliferation and migration rate but inhibited the apoptotic rate. In summary, PCDHΑ9 is potentially related to HSCR and the clustered protocadherins (Pcdhs) may involve in the enteric nervous system (ENS) ontogeny.
Collapse
Affiliation(s)
- Qiyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zechao Wen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhongxian Zhu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China.
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
14
|
Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:38-49. [PMID: 29017764 DOI: 10.1016/j.pnpbp.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Antipsychotic response in schizophrenia is a complex, multifactorial trait influenced by pharmacogenetic factors. With genetic studies thus far providing little biological insight or clinical utility, the field of pharmacoepigenomics has emerged to tackle the so-called "missing heritability" of drug response in disease. Research on psychiatric disorders has only recently started to assess the link between epigenetic alterations and treatment outcomes. DNA methylation, the best characterised epigenetic mechanism to date, is discussed here in the context of schizophrenia and antipsychotic treatment outcomes. The majority of published studies have assessed the influence of antipsychotics on methylation levels in specific neurotransmitter-associated candidate genes or at the genome-wide level. While these studies illustrate the epigenetic modifications associated with antipsychotics, very few have assessed clinical outcomes and the potential of differential DNA methylation profiles as predictors of antipsychotic response. Results from other psychiatric disorder studies, such as depression and bipolar disorder, provide insight into what may be achieved by schizophrenia pharmacoepigenomics. Other aspects that should be addressed in future research include methodological challenges, such as tissue specificity, and the influence of genetic variation on differential methylation patterns.
Collapse
Affiliation(s)
- Ellen S Ovenden
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nathaniel W McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robin A Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg 7505, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
15
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Lefebvre JL. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semin Cell Dev Biol 2017; 69:111-121. [DOI: 10.1016/j.semcdb.2017.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023]
|
17
|
Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol 2017; 60:67-75. [PMID: 28187949 DOI: 10.1016/j.alcohol.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life.
Collapse
|
18
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
19
|
Ortega A, Gil-Cayuela C, Tarazón E, García-Manzanares M, Montero JA, Cinca J, Portolés M, Rivera M, Roselló-Lletí E. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction. PLoS One 2016; 11:e0160168. [PMID: 27472518 PMCID: PMC4966940 DOI: 10.1371/journal.pone.0160168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | | | - Estefanía Tarazón
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | | | - José Anastasio Montero
- Cardiovascular Surgery Service, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Juan Cinca
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
- * E-mail:
| |
Collapse
|
20
|
Douglas LN, McGuire AB, Manzardo AM, Butler MG. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder. Gene 2016; 586:136-47. [PMID: 27063557 PMCID: PMC6675571 DOI: 10.1016/j.gene.2016.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/21/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
Abstract
Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families.
Collapse
Affiliation(s)
- Lindsay N Douglas
- Department of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Austen B McGuire
- Department of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ann M Manzardo
- Department of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Merlin G Butler
- Department of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
21
|
Strong E, Butcher D, Singhania R, Mervis C, Morris C, De Carvalho D, Weksberg R, Osborne L. Symmetrical Dose-Dependent DNA-Methylation Profiles in Children with Deletion or Duplication of 7q11.23. Am J Hum Genet 2015; 97:216-27. [PMID: 26166478 DOI: 10.1016/j.ajhg.2015.05.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.
Collapse
|
22
|
Keeler AB, Schreiner D, Weiner JA. Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization. J Biol Chem 2015; 290:20674-20686. [PMID: 26139604 DOI: 10.1074/jbc.m115.642306] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 11/06/2022] Open
Abstract
The γ-protocadherins (γ-Pcdhs) are a family of 22 adhesion molecules with multiple critical developmental functions, including the proper formation of dendritic arbors by forebrain neurons. The γ-Pcdhs bind to and inhibit focal adhesion kinase (FAK) via a constant C-terminal cytoplasmic domain shared by all 22 proteins. In cortical neurons lacking the γ-Pcdhs, aberrantly high activity of FAK and of PKC disrupts dendrite arborization. Little is known, however, about how γ-Pcdh function is regulated by other factors. Here we show that PKC phosphorylates a serine residue situated within a phospholipid binding motif at the shared γ-Pcdh C terminus. Western blots using a novel phospho-specific antibody against this site suggest that a portion of γ-Pcdh proteins is phosphorylated in the cortex in vivo. We find that PKC phosphorylation disrupts both phospholipid binding and the γ-Pcdh inhibition of (but not binding to) FAK. Introduction of a non-phosphorylatable (S922A) γ-Pcdh construct into wild-type cortical neurons significantly increases dendrite arborization. This same S922A construct can also rescue dendrite arborization defects in γ-Pcdh null neurons cell autonomously. Consistent with these data, introduction of a phosphomimetic (S/D) γ-Pcdh construct or treatment with a PKC activator reduces dendrite arborization in wild-type cortical neurons. Together, these data identify a novel mechanism through which γ-Pcdh control of a signaling pathway important for dendrite arborization is regulated.
Collapse
Affiliation(s)
- Austin B Keeler
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242; Neuroscience Graduate Program, The University of Iowa, Iowa City, Iowa 52242
| | - Dietmar Schreiner
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242; Neuroscience Graduate Program, The University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
23
|
Otsuka I, Watanabe Y, Hishimoto A, Boku S, Mouri K, Shiroiwa K, Okazaki S, Nunokawa A, Shirakawa O, Someya T, Sora I. Association analysis of the Cadherin13 gene with schizophrenia in the Japanese population. Neuropsychiatr Dis Treat 2015; 11:1381-93. [PMID: 26082635 PMCID: PMC4461090 DOI: 10.2147/ndt.s84736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cadherin13 (CDH13) is a glycosylphosphatidylinositol-anchored cell adhesion molecule that plays a crucial role in morphogenesis and the maintenance of neuronal circuitry. CDH13 has been implicated in the susceptibility to a variety of psychiatric diseases. A recent genome-wide association study using Danish samples showed, for the first time, the involvement of a single nucleotide polymorphism (SNP) of CDH13 (intronic SNP rs8057927) in schizophrenia. Here, we investigated the association between other SNPs of CDH13 and schizophrenia and tried to replicate the association for the SNP of rs8057927, in the Japanese population. METHODS Using TaqMan(®) SNP genotyping assays, five tag SNPs (rs12925602, rs7193788, rs736719, rs6565051, and rs7204454) in the promoter region of CDH13 were examined for their association with schizophrenia in two independent samples. The first sample comprised 665 patients and 760 controls, and the second sample comprised 677 patients and 667 controls. One tag SNP for rs8057927 was also examined for the association with schizophrenia in the first sample set. RESULTS A GACAG haplotype of the five SNPs in the promoter region of CDH13 was significantly associated with schizophrenia in the first sample set (P=0.016 and corrected P=0.098). A combined analysis of the GACAG haplotype with the second sample set enhanced the significance (P=0.0026 and corrected P=0.021). We found no association between rs8057927 and schizophrenia in the first sample set. CONCLUSION Our results suggest that CDH13 may contribute to the genetic risk of schizophrenia. Further replication on the association of CDH13 with schizophrenia and functional studies are required to confirm the current findings.
Collapse
Affiliation(s)
- Ikuo Otsuka
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kyoichi Shiroiwa
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, School of Medicine, Kinki University, Osaka, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ichiro Sora
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
24
|
Melka MG, Castellani CA, Rajakumar N, O'Reilly R, Singh SM. Olanzapine-induced methylation alters cadherin gene families and associated pathways implicated in psychosis. BMC Neurosci 2014; 15:112. [PMID: 25266742 PMCID: PMC4261529 DOI: 10.1186/1471-2202-15-112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The complex aetiology of most mental disorders involves gene-environment interactions that may operate using epigenetic mechanisms particularly DNA methylation. It may explain many of the features seen in mental disorders including transmission, expression and antipsychotic treatment responses. This report deals with the assessment of DNA methylation in response to an antipsychotic drug (olanzapine) on brain (cerebellum and hippocampus), and liver as a non-neural reference in a rat model. The study focuses on the Cadherin/protocadherins encoded by a multi-gene family that serve as adhesion molecules and are involved in cell-cell communication in the mammalian brain. A number of these molecules have been implicated in the causation of schizophrenia and related disorders. RESULTS The results show that olanzapine causes changes in DNA methylation, most specific to the promoter region of specific genes. This response is tissue specific and involves a number of cadherin genes, particularly in cerebellum. Also, the genes identified have led to the identification of several pathways significantly affected by DNA methylation in cerebellum, hippocampus and liver. These included the Gα12/13 Signalling (p = 9.2E-08) and Wnt signalling (p = 0.01) pathways as contributors to psychosis that is based on its responsiveness to antipsychotics used in its treatment. CONCLUSION The results suggest that DNA methylation changes on the promoter regions of the Cadherin/protocadherin genes impact the response of olanzapine treatment. These impacts have been revealed through the identified pathways and particularly in the identification of pathways that have been previously implicated in psychosis.
Collapse
Affiliation(s)
| | | | | | | | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
25
|
Fanciulli M, Pasini E, Malacrida S, Striano P, Striano S, Michelucci R, Ottman R, Nobile C. Copy number variations and susceptibility to lateral temporal epilepsy: A study of 21 pedigrees. Epilepsia 2014; 55:1651-8. [DOI: 10.1111/epi.12767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Elena Pasini
- Unit of Neurology; Bellaria Hospital; IRCCS of Neurological Sciences; Bologna Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Disease Unit; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health; “G. Gaslini” Institute; University of Genoa; Genova Italy
| | - Salvatore Striano
- Department of Neurological Sciences; Federico II University; Napoli Italy
| | - Roberto Michelucci
- Unit of Neurology; Bellaria Hospital; IRCCS of Neurological Sciences; Bologna Italy
| | - Ruth Ottman
- Departments of Epidemiology and Neurology and the G.H. Sergievsky Center; Columbia University; New York New York U.S.A
- Division of Epidemiology; New York State Psychiatric Institute; New York New York U.S.A
| | - Carlo Nobile
- CNR-Neuroscience Institute; Section of Padua; Padova Italy
| |
Collapse
|
26
|
Expansion of stochastic expression repertoire by tandem duplication in mouse Protocadherin-α cluster. Sci Rep 2014; 4:6263. [PMID: 25179445 PMCID: PMC4151104 DOI: 10.1038/srep06263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/13/2014] [Indexed: 11/08/2022] Open
Abstract
Tandem duplications are concentrated within the Pcdh cluster throughout vertebrate evolution and as copy number variations (CNVs) in human populations, but the effects of tandem duplication in the Pcdh cluster remain elusive. To investigate the effects of tandem duplication in the Pcdh cluster, here we generated and analyzed a new line of the Pcdh cluster mutant mice. In the mutant allele, a 218-kb region containing the Pcdh-α2 to Pcdh-αc2 variable exons with their promoters was duplicated and the individual duplicated Pcdh isoforms can be disctinguished. The individual duplicated Pcdh-α isoforms showed diverse expression level with stochastic expression manner, even though those have an identical promoter sequence. Interestingly, the 5'-located duplicated Pcdh-αc2, which is constitutively expressed in the wild-type brain, shifted to stochastic expression accompanied by increased DNA methylation. These results demonstrate that tandem duplication in the Pcdh cluster expands the stochastic expression repertoire irrespective of sequence divergence.
Collapse
|
27
|
Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014; 156:195-207. [PMID: 24439376 DOI: 10.1016/j.cell.2013.11.048] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | - Zhucheng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chi W Pak
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuxing Liao
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuoyong Shi
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Common Variants in the CDH7 Gene are Associated with Major Depressive Disorder in the Han Chinese Population. Behav Genet 2014; 44:97-101. [DOI: 10.1007/s10519-014-9645-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
29
|
Hirabayashi T, Yagi T. Protocadherins in neurological diseases. ADVANCES IN NEUROBIOLOGY 2014; 8:293-314. [PMID: 25300142 DOI: 10.1007/978-1-4614-8090-7_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherins were originally isolated as calcium-dependent cell adhesion molecules and are characterized by their cadherin motifs in the extracellular domain. In vertebrates, including humans, there are more than 100 different cadherin-related genes, which constitute the cadherin superfamily. The protocadherin (Pcdh) family comprises a large subgroup within the cadherin superfamily. The Pcdhs are divided into clustered and non-clustered Pcdhs, based on their genomic structure. Almost all the Pcdh genes are expressed widely in the brain and play important roles in brain development and in the regulation of brain function. This chapter presents an overview of Pcdh family members with regard to their functions, knockout mouse phenotypes, and association with neurological diseases and tumors.
Collapse
|
30
|
Sivkov S, Akabaliev V, Mantarkov M, Ahmed-Popova F, Akabalieva K. Discriminating value of total minor physical anomaly score on the Waldrop scale between patients with bipolar I disorder and normal controls. Psychiatry Res 2013; 210:451-6. [PMID: 23890698 DOI: 10.1016/j.psychres.2013.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 07/23/2012] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Minor physical anomalies (MPAs) are slight structural aberrations indicative of abnormal neurodevelopment. Most studies of MPAs in bipolar disorder have yielded limited results. We attempted to assess the potential value of MPAs as a classifying test in the status bipolar I patients vs. normal controls. Sixty one bipolar I patients and 103 controls were evaluated for MPAs using a slightly modified version of the Waldrop scale. The specificity, sensitivity and predictive value of different total MPA (MPA-T) scores were determined. The cut-off MPA-T scores that optimally discriminated patients from controls (exhibiting the most balanced sets of sensitivity, specificity, positive and negative predictive values) were MPA-T ≥ 4 and MPA-T ≥ 5. These values set a "border zone" in which bipolar I patients began to prevail significantly over controls. The latter presented most frequently with MPA-T ≤ 3 and rarely with MPA-T ≥ 6. Bipolar I patients prevailed among outliers (subjects with significantly higher MPA-T scores). Our data establish MPA-T score as a reliable index in distinguishing between bipolar I patients and normal controls and are consistent with the hypothesis of abnormal neurodevelopment in bipolar disorder.
Collapse
Affiliation(s)
- Stefan Sivkov
- Department of Anatomy, Histology and Embryology, Medical University, Plovdiv, Bulgaria
| | | | | | | | | |
Collapse
|
31
|
XLMR protein related to neurite extension (Xpn/KIAA2022) regulates cell-cell and cell-matrix adhesion and migration. Neurochem Int 2013; 63:561-9. [PMID: 24071057 DOI: 10.1016/j.neuint.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 11/22/2022]
Abstract
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR protein related to neurite extension (Xpn, also known as KIAA2022) has been implicated as a gene responsible for XLMR in humans. Although Xpn is highly expressed in the developing brain and is involved in neurite outgrowth in PC12 cells and neurons, little is known about the functional role of Xpn. Here, we show that Xpn regulates cell-cell and cell-matrix adhesion and migration in PC12 cells. Xpn knockdown enhanced cell-cell and cell-matrix adhesion mediated by N-cadherin and β1-integrin, respectively. N-Cadherin and β1-integrin expression at the mRNA and protein levels was significantly increased in Xpn knockdown PC12 cells. Furthermore, overexpressed Xpn protein was strongly expressed in the nuclei of PC12 and 293T cells. Finally, depletion of Xpn perturbed cellular migration by enhancing N-cadherin and β1-integrin expression in a PC12 cell wound healing assay. We conclude that Xpn regulates cell-cell and cell-matrix adhesion and cellular migration by regulating the expression of adhesion molecules.
Collapse
|
32
|
Anitha A, Thanseem I, Nakamura K, Yamada K, Iwayama Y, Toyota T, Iwata Y, Suzuki K, Sugiyama T, Tsujii M, Yoshikawa T, Mori N. Protocadherin α (PCDHA) as a novel susceptibility gene for autism. J Psychiatry Neurosci 2013; 38:192-8. [PMID: 23031252 PMCID: PMC3633712 DOI: 10.1503/jpn.120058] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Synaptic dysfunction has been shown to be involved in the pathogenesis of autism. We hypothesized that the protocadherin α gene cluster (PCDHA), which is involved in synaptic specificity and in serotonergic innervation of the brain, could be a suitable candidate gene for autism. METHODS We examined 14 PCDHA single nucleotide polymorphisms (SNPs) for genetic association with autism in DNA samples of 3211 individuals (841 families, including 574 multiplex families) obtained from the Autism Genetic Resource Exchange. RESULTS Five SNPs (rs251379, rs1119032, rs17119271, rs155806 and rs17119346) showed significant associations with autism. The strongest association (p < 0.001) was observed for rs1119032 (z score of risk allele G = 3.415) in multiplex families; SNP associations withstand multiple testing correction in multiplex families (p = 0.041). Haplotypes involving rs1119032 showed very strong associations with autism, withstanding multiple testing corrections. In quantitative transmission disequilibrium testing of multiplex fam - ilies, the G allele of rs1119032 showed a significant association (p = 0.033) with scores on the Autism Diagnostic Interview-Revised (ADI-R)_D (early developmental abnormalities). We also found a significant difference in the distribution of ADI-R_A (social interaction) scores between the A/A, A/G and G/G genotypes of rs17119346 (p = 0.002). LIMITATIONS Our results should be replicated in an independent population and/or in samples of different racial backgrounds. CONCLUSION Our study provides strong genetic evidence of PCDHA as a potential candidate gene for autism.
Collapse
Affiliation(s)
| | | | - Kazuhiko Nakamura
- Correspondence to: K. Nakamura, Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Higashi-ku, Shizuoka 431-3192, Japan;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ukkola-Vuoti L, Kanduri C, Oikkonen J, Buck G, Blancher C, Raijas P, Karma K, Lähdesmäki H, Järvelä I. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One 2013; 8:e56356. [PMID: 23460800 PMCID: PMC3584088 DOI: 10.1371/journal.pone.0056356] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.
Collapse
Affiliation(s)
- Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rare missense neuronal cadherin gene (CDH2) variants in specific obsessive-compulsive disorder and Tourette disorder phenotypes. Eur J Hum Genet 2013; 21:850-4. [PMID: 23321619 DOI: 10.1038/ejhg.2012.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 12/21/2022] Open
Abstract
The recent finding that the neuronal cadherin gene CDH2 confers a highly significant risk for canine compulsive disorder led us to investigate whether missense variants within the human ortholog CDH2 are associated with altered susceptibility to obsessive-compulsive disorder (OCD), Tourette disorder (TD) and related disorders. Exon resequencing of CDH2 in 320 individuals identified four non-synonymous single-nucleotide variants, which were subsequently genotyped in OCD probands, Tourette disorder probands and relatives, and healthy controls (total N=1161). None of the four variants was significantly associated with either OCD or TD. One variant, N706S, was found only in the OCD/TD groups, but not in controls. By examining clinical data, we found there were significant TD-related phenotype differences between those OCD probands with and without the N845S variant with regard to the co-occurrence of TD (Fisher's exact test P=0.014, OR=6.03). Both N706S and N845S variants conferred reduced CDH2 protein expression in transfected cells. Although our data provide no overall support for association of CDH2 rare variants in these disorders considered as single entities, the clinical features and severity of probands carrying the uncommon non-synonymous variants suggest that CDH2, along with other cadherin and cell adhesion genes, is an interesting gene to pursue as a plausible contributor to OCD, TD and related disorders with repetitive behaviors, including autism spectrum disorders.
Collapse
|
35
|
Cadherins and neuropsychiatric disorders. Brain Res 2012; 1470:130-44. [PMID: 22765916 DOI: 10.1016/j.brainres.2012.06.020] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023]
Abstract
Cadherins mediate cell-cell adhesion but are also involved in intracellular signaling pathways associated with neuropsychiatric disease. Most of the ∼100 cadherins that are expressed in the brain exhibit characteristic spatiotemporal expression profiles. Cadherins have been shown to regulate neural tube regionalization, neuronal migration, gray matter differentiation, neural circuit formation, spine morphology, synapse formation and synaptic remodeling. The dysfunction of the cadherin-based adhesive system may alter functional connectivity and coherent information processing in the human brain in neuropsychiatric disease. Several neuropsychiatric disorders, such as epilepsy/mental retardation, autism, bipolar disease and schizophrenia, have been associated with cadherins, mostly by genome-wide association studies. For example, CDH15 and PCDH19 are associated with cognitive impairment; CDH5, CDH8, CDH9, CDH10, CDH13, CDH15, PCDH10, PCDH19 and PCDHb4 with autism; CDH7, CDH12, CDH18, PCDH12 and FAT with bipolar disease and schizophrenia; and CDH11, CDH12 and CDH13 with methamphetamine and alcohol dependency. To date, disease-causing mutations are established for PCDH19 in patients with epilepsy, cognitive impairment and/or autistic features. In conclusion, genes encoding members of the cadherin superfamily are of special interest in the pathogenesis of neuropsychiatric disease because cadherins play a pivotal role in the development of the neural circuitry as well as in mature synaptic function.
Collapse
|
36
|
Suo L, Lu H, Ying G, Capecchi MR, Wu Q. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol 2012; 4:362-76. [PMID: 22730554 DOI: 10.1093/jmcb/mjs034] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dendritic patterning and spine morphogenesis are crucial for the assembly of neuronal circuitry to ensure normal brain development and synaptic connectivity as well as for understanding underlying mechanisms of neuropsychiatric diseases and cognitive impairments. The Rho GTPase family is essential for neuronal morphogenesis and synaptic plasticity by modulating and reorganizing the cytoskeleton. Here, we report that protocadherin (Pcdh) clusters and cell adhesion kinases (CAKs) play important roles in dendritic development and spine elaboration. The knockout of the entire Pcdhα cluster results in the dendritic simplification and spine loss in CA1 pyramidal neurons in vivo and in cultured primary hippocampal neurons in vitro. The knockdown of the whole Pcdhγ cluster or in combination with the Pcdhα knockout results in similar dendritic and spine defects in vitro. The overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as CAKβ, RAFTK, FAK2, and CADTK) recapitulates these defects and its knockdown rescues the phenotype. Moreover, the genetic deletion of the Pcdhα cluster results in phosphorylation and activation of Pyk2 and focal adhesion kinase (Fak) and the inhibition of Rho GTPases in vivo. Finally, the overexpression of Pyk2 leads to inactivation of Rac1 and, conversely, the constitutive active Rac1 rescues the dendritic and spine morphogenesis defects caused by the knockout of the Pcdhα cluster and the knockdown of the Pcdhγ cluster. Thus, the involvement of the Pcdh-CAK-Rho GTPase pathway in the dendritic development and spine morphogenesis has interesting implications for proper assembly of neuronal connections in the brain.
Collapse
Affiliation(s)
- Lun Suo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Medicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
37
|
Golan-Mashiach M, Grunspan M, Emmanuel R, Gibbs-Bar L, Dikstein R, Shapiro E. Identification of CTCF as a master regulator of the clustered protocadherin genes. Nucleic Acids Res 2011; 40:3378-91. [PMID: 22210889 PMCID: PMC3333863 DOI: 10.1093/nar/gkr1260] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The brain is a large and complex network of neurons. Specific neuronal connectivity is thought to be based on the combinatorial expression of the 52 protocadherins (Pcdh) membrane adhesion proteins, whereby each neuron expresses only a specific subset. Pcdh genes are arranged in tandem, in a cluster of three families: Pcdhα, Pcdhβ and Pcdhγ. The expression of each Pcdh gene is regulated by a promoter that has a regulatory conserved sequence element (CSE), common to all 52 genes. The mechanism and factors controlling individual Pcdh gene expression are currently unknown. Here we show that the promoter of each Pcdh gene contains a gene-specific conserved control region, termed specific sequence element (SSE), located adjacent and upstream to the CSE and activates transcription together with the CSE. We purified the complex that specifically binds the SSE-CSE region and identified the CCTC binding-factor (CTCF) as a key molecule that binds and activates Pcdh promoters. Our findings point to CTCF as a factor essential for Pcdh expression and probably governing neuronal connectivity.
Collapse
Affiliation(s)
- Michal Golan-Mashiach
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Miyake K, Hirasawa T, Soutome M, Itoh M, Goto YI, Endoh K, Takahashi K, Kudo S, Nakagawa T, Yokoi S, Taira T, Inazawa J, Kubota T. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC Neurosci 2011; 12:81. [PMID: 21824415 PMCID: PMC3160964 DOI: 10.1186/1471-2202-12-81] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/08/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Rett syndrome is a neurodevelopmental and autistic disease caused by mutations of Methyl-CpG-binding protein 2 (MECP2) gene. MeCP2 protein is mainly expressed in neurons and binds to methylated gene promoters to suppress their expression, indicating that Rett syndrome is caused by the deregulation of target genes in neurons. However, it is likely that there are more unidentified neuronal MeCP2-targets associated with the neurological features of RTT. RESULTS Using a genome-microarray approach, we found 22 genomic regions that contain sites potentially regulated by MeCP2 based on the features of MeCP2 binding, DNA methylation, and repressive histone modification in human cell lines. Within these regions, Chromatin immunoprecipitation (ChIP) analysis revealed that MeCP2 binds to the upstream regions of the protocadherin genes PCDHB1 and PCDH7 in human neuroblastoma SH-SY5Y cells. PCDHB1 and PCDH7 promoter activities were down-regulated by MeCP2, but not by MBD-deleted MeCP2. These gene expression were up-regulated following MeCP2 reduction with siRNA in SH-SY5Y cells and in the brains of Mecp2-null mice. Furthermore, PCDHB1 was up-regulated in postmortem brains from Rett syndrome patients. CONCLUSIONS We identified MeCP2 target genes that encode neuronal adhesion molecules using ChIP-on-BAC array approach. Since these protocadherin genes are generally essential for brain development, aberrant regulation of these molecules may contribute to the pathogenesis of the neurological features observed in Rett syndrome.
Collapse
Affiliation(s)
- Kunio Miyake
- Department of Epigenetic Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the 'genes that make us human' also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
40
|
Hattori T, Shimizu S, Koyama Y, Yamada K, Kuwahara R, Kumamoto N, Matsuzaki S, Ito A, Katayama T, Tohyama M. DISC1 regulates cell-cell adhesion, cell-matrix adhesion and neurite outgrowth. Mol Psychiatry 2010; 15:778, 798-809. [PMID: 20479754 DOI: 10.1038/mp.2010.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a promising susceptibility gene for major mental illness. Recent studies have implicated DISC1 in key neurodevelopmental processes, including neurite outgrowth, neuronal migration and proliferation. Here, we report that DISC1 regulates cell-cell and cell-matrix adhesion and neurite outgrowth. DISC1 overexpression increased expression of the adherence junction protein N-cadherin and enhanced cell-cell adhesion. The increased N-cadherin accumulated in the areas of cell-cell contact. DISC1 overexpression also enhanced cell-matrix adhesion by inducing expression of beta1-integrin protein. In the presence of nerve growth factor (NGF), DISC1 overexpression increased beta1-integrin expression at the cell membrane and growth cone. NGF-induced neurite extension was enhanced by DISC1, and anti-beta1-integrin antibody reduced the neurite outgrowth of DISC1-overexpressing cells to the control level. Furthermore, DISC1 also regulated N-cadherin and beta1-integrin expression at the cell membrane in primary neurons. We conclude that DISC1 regulates cell-cell adhesion and cell-matrix adhesion by regulating the expression of adhesion molecules.
Collapse
Affiliation(s)
- T Hattori
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pedrosa E, Kaushik S, Lachman HM. ChIP-chip analysis of neurexins and other candidate genes for addiction and neuropsychiatric disorders. J Neurogenet 2010; 24:5-17. [PMID: 19968605 DOI: 10.3109/01677060903305658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several addiction susceptibility genes have been mapped by linkage and genomewide association. However, functional alleles associated with disease risk have not been identified, with a few possible exceptions. In addition, little is known about the cis- and trans-acting factors involved in regulating their expression. To address these issues, we used a ChIP-chip approach to identify regulatory elements in fetal-brain- targeting genes implicated in addiction and other neuropsychiatric conditions. Our data point to a number of putative regulatory elements, several of which, we show, are functionally significant. Many established or putative regulatory elements map near-disease-associated SNPs. These regions would be of interest to survey for patient-specific functional variants involved in disease susceptibility.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
42
|
Pae CU, Chiesa A, Mandelli L, De Ronchi D, Serretti A. No influence of FAT polymorphisms in response to aripiprazole. J Hum Genet 2009; 55:32-6. [DOI: 10.1038/jhg.2009.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Pedrosa E, Locker J, Lachman HM. Survey of Schizophrenia and Bipolar Disorder Candidate Genes using Chromatin Immunoprecipitation and Tiled Microarrays (ChIP-chip). J Neurogenet 2009; 23:341-52. [DOI: 10.1080/01677060802669766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas. J Neurosci 2009; 29:9137-47. [PMID: 19625505 DOI: 10.1523/jneurosci.5478-08.2009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Serotonergic axons from the raphe nuclei in the brainstem project to every region of the brain, where they make connections through their extensive terminal arborizations. This serotonergic innervation contributes to various normal behaviors and psychiatric disorders. The protocadherin-alpha (Pcdha) family of clustered protocadherins consists of 14 cadherin-related molecules generated from a single gene cluster. We found that the Pcdhas were strongly expressed in the serotonergic neurons. To elucidate their roles, we examined serotonergic fibers in a mouse mutant (Pcdha(Delta CR/Delta CR)) lacking the Pcdha cytoplasmic region-encoding exons, which are common to the gene cluster. In the first week after birth, the distribution pattern of serotonergic fibers in Pcdha(Delta CR/Delta CR) mice was similar to wild-type, but by 3 weeks of age, when the serotonergic axonal termini complete their arborizations, the distribution of the projections was abnormal. In some target regions, notably the globus pallidus and substantia nigra, the normally even distribution of serotonin axonal terminals was, in the mutants, dense at the periphery of each region, but sparse in the center. In the stratum lacunosum-molecular of the hippocampus, the mutants showed denser serotonergic innervation than in wild-type, and in the dentate gyrus of the hippocampus and the caudate-putamen, the innervation was sparser. Together, the abnormalities suggested that Pcdha proteins are important in the late-stage maturation of serotonergic projections. Further examination of alternatively spliced exons encoding the cytoplasmic tail showed that the A-type (but not the B-type) cytoplasmic tail was essential for the normal development of serotonergic projections.
Collapse
|
45
|
Kaneko R, Kawaguchi M, Toyama T, Taguchi Y, Yagi T. Expression levels of Protocadherin-α transcripts are decreased by nonsense-mediated mRNA decay with frameshift mutations and by high DNA methylation in their promoter regions. Gene 2009; 430:86-94. [DOI: 10.1016/j.gene.2008.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/19/2008] [Accepted: 10/21/2008] [Indexed: 11/29/2022]
|
46
|
Fukuda E, Hamada S, Hasegawa S, Katori S, Sanbo M, Miyakawa T, Yamamoto T, Yamamoto H, Hirabayashi T, Yagi T. Down-regulation of protocadherin-α A isoforms in mice changes contextual fear conditioning and spatial working memory. Eur J Neurosci 2008; 28:1362-76. [DOI: 10.1111/j.1460-9568.2008.06428.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|