1
|
Besso L, Larivière S, Roes M, Sanford N, Percival C, Damascelli M, Momeni A, Lavigne K, Menon M, Aleman A, Ćurčić-Blake B, Woodward TS. Hypoactivation of the language network during auditory imagery contributes to hallucinations in Schizophrenia. Psychiatry Res Neuroimaging 2024; 341:111824. [PMID: 38754348 DOI: 10.1016/j.pscychresns.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Auditory verbal hallucinations (AVHs) involve perceptions, often voices, in the absence of external stimuli, and rank among the most common symptoms of schizophrenia. Metrical stress evaluation requires determination of the stronger syllable in words, and therefore requires auditory imagery, of interest for investigation of hallucinations in schizophrenia. The current functional magnetic resonance imaging study provides an updated whole-brain network analysis of a previously published study on metrical stress, which showed reduced directed connections between Broca's and Wernicke's regions of interest (ROIs) for hallucinations. Three functional brain networks were extracted, with the language network (LN) showing an earlier and shallower blood-oxygen-level dependent (BOLD) response for hallucinating patients, in the auditory imagery condition only (the reduced activation for hallucinations observed in the original ROI-based results were not specific to the imagery condition). This suggests that hypoactivation of the LN during internal auditory imagery may contribute to the propensity to hallucinate. This accords with cognitive accounts holding that an impaired balance between internal and external linguistic processes (underactivity in networks involved in internal auditory imagery and overactivity in networks involved in speech perception) contributes to our understanding of the biological underpinnings of hallucinations.
Collapse
Affiliation(s)
- Luca Besso
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sara Larivière
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meighen Roes
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Sanford
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Percival
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matteo Damascelli
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ava Momeni
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Katie Lavigne
- Douglas Research Centre, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Todd S Woodward
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Mehta DD, Siddiqui S, Ward HB, Steele VR, Pearlson GD, George TP. Functional and structural effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations in schizophrenia: A systematic review. Schizophr Res 2024; 267:86-98. [PMID: 38531161 PMCID: PMC11531343 DOI: 10.1016/j.schres.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a disabling symptom for people with schizophrenia (SCZ), and do not always respond to antipsychotics. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for medication-refractory AVH, though the underlying neural mechanisms by which rTMS produces these effects remain unclear. This systematic review evaluated the structural and functional impact of rTMS for AVH in SCZ, and its association with clinical outcomes. METHODS A systematic search was conducted in Medline, PsychINFO, and PubMed using terms for four key concepts: AVH, SCZ, rTMS, neuroimaging. Using PRISMA guidelines, 18 studies were identified that collected neuroimaging data of an rTMS intervention for AVH in SCZ. Risk of bias assessments was conducted. RESULTS Low frequency (<5 Hz) rTMS targeting left hemispheric language processing regions may normalize brain abnormalities in AVH patients at structural, functional, electrophysiological, and topological levels, with concurrent symptom improvement. Amelioration of aberrant neural activity in frontotemporal networks associated with speech and auditory processing was commonly observed, as well as in cerebellar and emotion regulation regions. Neuroimaging analyses identified neural substrates with direct correlations to post-rTMS AVH severity, propounding their use as therapeutic targets. DISCUSSION Combined rTMS-neuroimaging highlights the multidimensional alterations of rTMS on brain activity and structure in treatment-resistant AVH, which may be used to develop more efficacious therapies. Larger randomized, sham-controlled studies are needed. Future studies should explore alternate stimulation targets, investigate the neural effects of high-frequency rTMS and evaluate long-term neuroimaging outcomes.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Salsabil Siddiqui
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Heather B Ward
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vaughn R Steele
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Godfrey D Pearlson
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Tony P George
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
3
|
Xue F, Wang X, Kong F, Yin T, Wang Y, Shi L, Liu X, Yu H, Liu L, Zhu P, Qi X, Xu X, Hu H, Li S. Effects of bilateral repetitive transcranial magnetic stimulation on prospective memory in patients with schizophrenia: A double-blind randomized controlled clinical trial. Neuropsychopharmacol Rep 2024; 44:97-108. [PMID: 38053478 PMCID: PMC10932802 DOI: 10.1002/npr2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
AIMS To investigate effects of repetitive transcranial magnetic stimulation (rTMS) on the prospective memory (PM) in patients with schizophrenia (SCZ). METHODS Fifty of 71 patients completed this double-blind placebo-controlled randomized trial and compared with 18 healthy controls' (HCs) PM outcomes. Bilateral 20 Hz rTMS to the dorsolateral prefrontal cortex at 90% RMT administered 5 weekdays for 4 weeks for a total of 20 treatments. The Positive and Negative Symptom Scale (PANSS), the Scale for the Assessment of Negative Symptoms (SANS), and PM test were assessed before and after treatment. RESULTS Both Event-based PM (EBPM) and Time-based PM (TBPM) scores at baseline were significantly lower in patients with SCZ than that in HCs. After rTMS treatments, the scores of EBPM in patients with SCZ was significantly improved and had no differences from that in HCs, while the scores of TBPM did not improved. The negative symptom scores on PANSS and the scores of almost all subscales and total scores of SANS were significantly improved in both groups. CONCLUSIONS Our findings indicated that bilateral high-frequency rTMS treatment can alleviate EBPM but not TBPM in patients with SCZ, as well as improve the negative symptoms. SIGNIFICANCE Our results provide one therapeutic option for PM in patients with SCZ.
Collapse
Affiliation(s)
- Fen Xue
- Mental Health Hospital, Dongcheng districtBeijingChaci communityChina
| | - Xin‐Fu Wang
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Fan‐Ni Kong
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence ResearchPeking UniversityBeijingHaidian DistrictChina
| | - Tian‐Lu Yin
- Institute of Medical InformationChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yu‐Hong Wang
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Li‐Da Shi
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Xiao‐Wen Liu
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Hui‐Jing Yu
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Li‐Jun Liu
- Rong Jun Hospital, Hebei ProvinceBaodingLianchi DistrictChina
| | - Ping Zhu
- Mental Health Hospital, Dongcheng districtBeijingChaci communityChina
| | - Xiao‐Xue Qi
- Mental Health Hospital, Dongcheng districtBeijingChaci communityChina
| | - Xue‐Jing Xu
- College of EducationTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Hong‐Pu Hu
- Institute of Medical InformationChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Su‐Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence ResearchPeking UniversityBeijingHaidian DistrictChina
| |
Collapse
|
4
|
Li X, Dai J, Liu Q, Zhao Z, Zhang X. Efficacy and safety of non-invasive brain stimulation on cognitive function for cognitive impairment associated with schizophrenia: A systematic review and meta-analysis. J Psychiatr Res 2024; 170:174-186. [PMID: 38150769 DOI: 10.1016/j.jpsychires.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Based on existing evidence of the effects of the most commonly used non-invasive brain stimulation (NIBS), which includes transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), we conducted a meta-analysis to investigate the cognitive improvement and safety of NIBS on schizophrenia-related cognitive impairment. PubMed, EMBASE, Cochrane Library, and Web of Science were searched. The Cochrane Risk of Bias tool was used to assess the risk of bias of the included RCTs; Review Manager, version 5.4.1, was used to perform the statistical analysis. Twenty double-blind, randomized, sham-controlled trials involving 997 patients were included. As a result, no significant improvement in cognitive function was observed after NIBS treatment. However, the overall treatment effect of the two main NIBS modes (i.e., rTMS and tDCS) was associated with significantly larger improvements in negative symptoms and good tolerability in patients with schizophrenia compared to sham-controls (SMD = -0.56, 95% CI [-1.03, -0.08], p = 0.02, I2 = 88%). NIBS model and stimulus parameters influenced the effect of NIBS. More favorable effects were observed in patients who received rTMS stimulation (SMD = 0.25, 95% CI [0.01, 0.49], p = 0.04, I2 = 0%) in the left dorsolateral prefrontal cortex with a stimulation intensity of 20 Hz (p = 0.004) for a period longer than 1 month (p < 0.05). Yet, due to the limited number of included studies and heterogeneity in both study design and target population, the results of this analysis need to be interpreted with caution.
Collapse
Affiliation(s)
- Xueyan Li
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China.
| | - Jie Dai
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| | - Qingran Liu
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| | - Zhenying Zhao
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| | - Xiaofeng Zhang
- Neurology Department, Cangzhou City Center Hospital, Cangzhou, 061000, China
| |
Collapse
|
5
|
Güntekin B, O'Donnell BF. Special Issue: Update on Neural Oscillations in Neuropsychiatric Disorders. Clin EEG Neurosci 2023; 54:347-348. [PMID: 37378601 DOI: 10.1177/15500594231181523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Affiliation(s)
- Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Brian F O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
6
|
Gornerova N, Brunovsky M, Klirova M, Novak T, Zaytseva Y, Koprivova J, Bravermanova A, Horacek J. The effect of low-frequency rTMS on auditory hallucinations, EEG source localization and functional connectivity in schizophrenia. Neurosci Lett 2023; 794:136977. [PMID: 36427815 DOI: 10.1016/j.neulet.2022.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) diminishes auditory hallucinations (AHs). The aims of our study were a) to assess the efficacy of LF-rTMS in a randomized, sham-controlled double-blind alignment, b) to identify the electrophysiological changes accompanying the LF-rTMS, and c) to identify the influence of LF-rTMS on brain functional connectivity (FC). METHODS Nineteen schizophrenia patients with antipsychotic-resistant AHs were randomized to either active (n = 10) or sham (n = 9) LF-rTMS administered over the left temporo-parietal region for ten days. The clinical effect was assessed by the Auditory Hallucination Rating Scale (AHRS). The localization of the differences in electrical activity was identified by standardized low resolution brain electromagnetic tomography (sLORETA) and FC was measured by lagged phase synchronization. RESULTS AHRS scores were significantly improved for patients receiving active rTMS compared to the sham (median reduction: 40 % vs 12 %; p = 0.01). sLORETA revealed a decrease of alpha-2, beta-1,-2 bands in the left hemisphere in the active group. Active rTMS led to a decrease of the lagged phase connectivity in beta bands originating in areas close to the site of stimulation, and to a prevailing increase of alpha-2 FC. No significant differences in current density or FC were observed in the sham group. LIMITATIONS Limitations to our study included the small group sizes, and the disability of LORETA to assess subcortical neuronal activity. CONCLUSIONS LF-rTMS attenuated AHs and induced a decrease of higher frequency bands on the left hemisphere. The FC changes support the assumption that LF-rTMS is linked to the modulation of cortico-cortical coupling.
Collapse
Affiliation(s)
- Natalie Gornerova
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic.
| | - Martin Brunovsky
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Monika Klirova
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Yuliya Zaytseva
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Jana Koprivova
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | | | - Jiri Horacek
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Su X, Wang X, Pan X, Zhang X, Lu X, Zhao L, Chen Y, Shang Y, Zhu L, Lu S, Zhu X, Wu F, Xiu M. Effect of Repetitive Transcranial Magnetic Stimulation in Inducing Weight Loss in Patients with Chronic Schizophrenia: A Randomized, Double-Blind Controlled 4-Week Study. Curr Neuropharmacol 2023; 21:417-423. [PMID: 35611778 PMCID: PMC10190142 DOI: 10.2174/1570159x20666220524123315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES There is emerging evidence that high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) may promote weight loss in individuals with obesity in the general population. However, no study has been conducted on patients with schizophrenia (SZ). This study evaluated the efficacy of 10Hz rTMS in reducing body weight in patients with chronic SZ. METHODS Forty-seven SZ patients were randomly assigned to two groups: 10Hz rTMS or sham stimulation over DLPFC (applied once daily) for 20 consecutive treatments. Body weight was assessed at baseline, at the end of week 1, week 2, week 3 and week 4. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS) at baseline and at the end of week 4. RESULTS We found that compared with patients in the sham group, 10Hz rTMS treatment significantly reduced body weight in patients with chronic SZ after a period of 4 weeks of stimulation. Interestingly, further analysis found that from the first week (5 sessions) of treatment, there was a significant difference in body weight between active and sham groups after controlling for baseline weight. However, active rTMS treatment did not improve the psychotic symptoms compared to sham stimulation. CONCLUSION Our results suggest that add-on HF rTMS could be an effective therapeutic strategy for body weight control in patients with chronic SZ.
Collapse
Affiliation(s)
- Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuling Pan
- Hebei Province Veterans Hospital, Baoding, China
| | - Xuan Zhang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xinyan Lu
- Hebei Province Veterans Hospital, Baoding, China
| | - Long Zhao
- Hebei Province Veterans Hospital, Baoding, China
| | - Yingnan Chen
- Hebei Province Veterans Hospital, Baoding, China
| | - Yujie Shang
- Hebei Province Veterans Hospital, Baoding, China
| | - Lin Zhu
- Hebei Province Veterans Hospital, Baoding, China
| | - Shulan Lu
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiaolin Zhu
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLong Guan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Meihong Xiu
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLong Guan Hospital, Beijing, China
| |
Collapse
|
8
|
Xie Y, Guan M, He Y, Wang Z, Ma Z, Fang P, Wang H. The Static and dynamic functional connectivity characteristics of the left temporoparietal junction region in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2023; 14:1071769. [PMID: 36761865 PMCID: PMC9907463 DOI: 10.3389/fpsyt.2023.1071769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a core symptom of schizophrenia. Low-frequency (e.g., 1 Hz) repetitive transcranial magnetic stimulation (rTMS) targeting language processing regions (e.g., left TPJ) has been evident as a potential treatment for AVH. However, the underlying neural mechanisms of the rTMS treatment effect remain unclear. The present study aimed to investigate the effects of 1 Hz rTMS on functional connectivity (FC) of the temporoparietal junction area (TPJ) seed with the whole brain in schizophrenia patients with AVH. METHODS Using a single-blind placebo-controlled randomized clinical trial, 55 patients with AVH were randomly divided into active treatment group (n = 30) or placebo group (n = 25). The active treatment group receive 15-day 1 Hz rTMS stimulation to the left TPJ, whereas the placebo group received sham rTMS stimulation to the same site. Resting-state fMRI scans and clinical measures were acquired for all patients before and after treatment. The seed-based (left TPJ) static and DFC was used to assess the connectivity characteristics during rTMS treatment in patients with AVH. RESULTS Overall, symptom improvement following 1 Hz rTMS treatment was found in the active treatment group, whereas no change occurred in the placebo group. Moreover, decreased static FC (SFC) of the left TPJ with the right temporal lobes, as well as increased SFC with the prefrontal cortex and subcortical structure were observed in active rTMS group. Increased dynamic FC (DFC) of the left TPJ with frontoparietal areas was also found in the active rTMS group. However, seed-based SFC and DFC were reduced to a great extent in the placebo group. In addition, these changed FC (SFC) strengths in the active rTMS group were associated with reduced severity of clinical outcomes (e.g., positive symptoms). CONCLUSION The application of 1 Hz rTMS over the left TPJ may affect connectivity characteristics of the targeted region and contribute to clinical improvement, which shed light on the therapeutic effect of rTMS on schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Du XD, Li Z, Yuan N, Yin M, Zhao XL, Lv XL, Zou SY, Zhang J, Zhang GY, Li CW, Pan H, Yang L, Wu SQ, Yue Y, Wu YX, Zhang XY. Delayed improvements in visual memory task performance among chronic schizophrenia patients after high-frequency repetitive transcranial magnetic stimulation. World J Psychiatry 2022; 12:1169-1182. [PMID: 36186505 PMCID: PMC9521529 DOI: 10.5498/wjp.v12.i9.1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cognitive impairments are core characteristics of schizophrenia, but are largely resistant to current treatments. Several recent studies have shown that high-frequency repetitive transcranial magnetic stimulation (rTMS) of the left dor-solateral prefrontal cortex (DLPFC) can reduce negative symptoms and improve certain cognitive deficits in schizophrenia patients. However, results are inconsistent across studies. AIM To examine if high-frequency rTMS of the DLPFC can improve visual memory deficits in patients with schizophrenia. METHODS Forty-seven chronic schizophrenia patients with severe negative symptoms on stable treatment regimens were randomly assigned to receive active rTMS to the DLPFC (n = 25) or sham stimulation (n = 22) on weekdays for four consecutive weeks. Patients performed the pattern recognition memory (PRM) task from the Cambridge Neuropsychological Test Automated Battery at baseline, at the end of rTMS treatment (week 4), and 4 wk after rTMS treatment (week 8). Clinical symptoms were also measured at these same time points using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS). RESULTS There were no significant differences in PRM performance metrics, SANS total score, SANS subscores, PANSS total score, and PANSS subscores between active and sham rTMS groups at the end of the 4-wk treatment period, but PRM performance metrics (percent correct and number correct) and changes in these metrics from baseline were significantly greater in the active rTMS group at week 8 compared to the sham group (all P < 0.05). Active rTMS treatment also significantly reduced SANS score at week 8 compared to sham treatment. Moreover, the improvement in visual memory was correlated with the reduction in negative symptoms at week 8. In contrast, there were no between-group differences in PANSS total score and subscale scores at either week 4 or week 8 (all P > 0.05). CONCLUSION High-frequency transcranial magnetic stimulation improves visual memory and reduces negative symptoms in schizophrenia, but these effects are delayed, potentially due to the requirement for extensive neuroplastic changes within DLPFC networks.
Collapse
Affiliation(s)
- Xiang-Dong Du
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Zhe Li
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Nian Yuan
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Ming Yin
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Xue-Li Zhao
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Xiao-Li Lv
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Si-Yun Zou
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Jun Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Guang-Ya Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Chuan-Wei Li
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu Province, China
| | - Hui Pan
- Department of Psychiatry, Third People’s Hospital of Changshu, Changshu 215501, Jiangsu Province, China
| | - Li Yang
- Department of Psychiatry, Third People’s Hospital of Changshu, Changshu 215501, Jiangsu Province, China
| | - Si-Qi Wu
- School of Psychology and Mental Health, North China University of Science and Technology, Langfang 065201, Hebei Province, China
| | - Yan Yue
- Department of Psychiatry, Medical College of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Yu-Xuan Wu
- Department of Psychiatry, Medical College of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Xie Y, He Y, Guan M, Wang Z, Zhou G, Ma Z, Wang H, Yin H. Low-frequency rTMS treatment alters the topographical organization of functional brain networks in schizophrenia patients with auditory verbal hallucination. Psychiatry Res 2022; 309:114393. [PMID: 35042065 DOI: 10.1016/j.psychres.2022.114393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
Abstract
Auditory verbal hallucinations (AVH) are an important characteristic of schizophrenia. Repeated transcranial magnetic stimulation (rTMS) has been evidence to be effective in treating AVH. We evaluated the topological properties of resting-state functional brain networks in schizophrenia patients with AVH (n = 32) who received 1-Hz rTMS treatment and matched healthy controls (n = 33). The results showed that the psychotic symptoms and certain neurocognitive performances in patients were improved by rTMS treatment. Furthermore, the pretreatment patients showed abnormal global topological metrics compared with the controls, including lower global efficiency (Eglob, represents the relative quality of information transmission between all nodes in the network) and higher characteristic path length (Lp, characterizes the mean shortest distance between any two nodes in the network). The pretreament patients also showed decreased local topological metrics relative to the controls, including the nodal shortest path (NLp, quantifies the mean distance between the given node and the other nodes in the network) and nodal efficiency (Ne, measures the information interchange among the neighbor nodes when one node is removed), mainly located in the prefrontal cortex, occipital cortex, and subcortical regions. While the abnormal global and local topological patterns were normalized in patients after rTMS treatment. The multiple linear regression analysis indicated that the baseline topological metrics could be associated with the clinical responses after treatment in the patient group. The results suggested that the topological organization of the functional brain network was globally and regionally altered in schizophrenia patients with AVH after rTMS treatment and may be a potential therapeutic effect for AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Su X, Zhao L, Shang Y, Chen Y, Liu X, Wang X, Xiu M, Yu H, Liu L. Repetitive transcranial magnetic stimulation for psychiatric symptoms in long-term hospitalized veterans with schizophrenia: A randomized double-blind controlled trial. Front Psychiatry 2022; 13:873057. [PMID: 36213928 PMCID: PMC9537384 DOI: 10.3389/fpsyt.2022.873057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Multiple lines of evidence demonstrate that high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) may improve clinical outcomes in patients with schizophrenia (SCZ). However, the efficacy of HF-rTMS on psychiatric symptoms remains unknown in veterans with SCZ. This study aimed to investigate whether HF-rTMS was beneficial in alleviating the clinical symptoms in veterans with SCZ. Forty-seven long-term hospitalized veterans with SCZ were randomly allocated to receive neuronavigated 10 Hz rTMS or sham stimulation over the left dorsolateral prefrontal cortex once daily for four consecutive weeks. Symptoms were assessed by using the Positive and Negative Syndrome Scale at baseline and at the end of week 4. We also collected easily available routine biochemical markers including blood sugar, lipid profiles, hormone, and blood cell counts, considering that these markers may potentially be used to predict the outcomes of rTMS treatment. We found that there was a significant interaction effect of time and group on the positive symptoms. Compared with the sham group, the positive factor score of veterans with SCZ was significantly decreased after treatment in the real rTMS group. Interestingly, the improvement of positive symptoms from baseline to 4-week follow-up was significantly associated with the whole white blood cells (WBC) counts at baseline in the real rTMS group, and baseline WBC counts were predictive of the symptom improvement after rTMS treatment. Our findings indicate that add-on 10 Hz rTMS is beneficial for clinical symptoms in veterans with SCZ. In addition, the baseline WBC counts were predictive of the outcomes after treatment. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, identifier NCT03774927.
Collapse
Affiliation(s)
- Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Long Zhao
- Hebei Province Veterans Hospital, Baoding, China
| | - Yujie Shang
- Hebei Province Veterans Hospital, Baoding, China
| | - Yingnan Chen
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiaowen Liu
- Hebei Province Veterans Hospital, Baoding, China
| | - Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Huijing Yu
- Hebei Province Veterans Hospital, Baoding, China
| | - Lijun Liu
- Hebei Province Veterans Hospital, Baoding, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To provide recent evidence on real-time neurofeedback (NFB) training for auditory verbal hallucinations (AVH) in schizophrenia patients. RECENT FINDINGS NFB is a promising technique that allows patients to gain control over their AVH by modulating their own speech-related/language-related networks including superior temporal gyrus (STG) and anterior cingulate cortex (ACC) using fMRI, fNIRS and EEG/MEG. A recent limited number of studies showed that while an EEG-based NFB study failed to regulate auditory-evoked potentials and reduce AVH, downregulation of STG hyperactivity and upregulation of ACC activity with fMRI-based NFB appear to alleviate treatment-resistant AVH in schizophrenia patients. A deeper understanding of AVH and development of more effective methodologies are still needed. SUMMARY Despite recent innovations in antipsychotics, many schizophrenia patients continue to suffer from treatment-resistant AVH and social dysfunctions. Recent studies suggested that real-time NFB shows promise in enabling patients to gain control over AVH by regulating their own speech-related/language-related networks. Although fMRI-NFB is suitable for regulating localized activity, EEG/MEG-NFB are ideal for regulating the ever-changing AVH. Although there are still many challenges including logistic complexity and burden on patients, we hope that such innovative real-time NFB trainings will help patients to alleviate severe symptoms and improve social functioning.
Collapse
|
13
|
Homan S, Muscat W, Joanlanne A, Marousis N, Cecere G, Hofmann L, Ji E, Neumeier M, Vetter S, Seifritz E, Dierks T, Homan P. Treatment effect variability in brain stimulation across psychiatric disorders: A meta-analysis of variance. Neurosci Biobehav Rev 2021; 124:54-62. [PMID: 33482243 DOI: 10.1016/j.neubiorev.2020.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation methods such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are promising add-on treatments for a number of psychiatric conditions. Yet, some of the initial excitement is wearing off. Randomized controlled trials (RCT) have found inconsistent results. This inconsistency is suspected to be the consequence of variation in treatment effects and solvable by identifying responders in RCTs and individualizing treatment. However, is there enough evidence from RCTs that patients respond differently to treatment? This question can be addressed by comparing the variability in the active stimulation group with the variability in the sham group. We searched MEDLINE/PubMed and included all double-blinded, sham-controlled RCTs and crossover trials that used TMS or tDCS in adults with a unipolar or bipolar depression, bipolar disorder, schizophrenia spectrum disorder, or obsessive compulsive disorder. In accordance with the PRISMA guidelines to ensure data quality and validity, we extracted a measure of variability of the primary outcome. A total of 130 studies with 5748 patients were considered in the analysis. We calculated variance-weighted variability ratios for each comparison of active stimulation vs sham and entered them into a random-effects model. We hypothesized that treatment effect variability in TMS or tDCS would be reflected by increased variability after active compared with sham stimulation, or in other words, a variability ratio greater than one. Across diagnoses, we found only a minimal increase in variability after active stimulation compared with sham that did not reach statistical significance (variability ratio = 1.03; 95% CI, 0.97, 1.08, P = 0.358). In conclusion, this study found little evidence for treatment effect variability in brain stimulation, suggesting that the need for personalized or stratified medicine is still an open question.
Collapse
Affiliation(s)
- Stephanie Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Whitney Muscat
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Andrea Joanlanne
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | | | - Giacomo Cecere
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Lena Hofmann
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Ellen Ji
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Maria Neumeier
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Stefan Vetter
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Erich Seifritz
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA.
| |
Collapse
|
14
|
Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med 2020; 50:2465-2486. [PMID: 33070785 PMCID: PMC7737055 DOI: 10.1017/s0033291720003670] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognition is commonly affected in brain disorders. Non-invasive brain stimulation (NIBS) may have procognitive effects, with high tolerability. This meta-analysis evaluates the efficacy of transcranial magnetic stimulation (TMS) and transcranial Direct Current Stimulation (tDCS) in improving cognition, in schizophrenia, depression, dementia, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. METHODS A PRISMA systematic search was conducted for randomized controlled trials. Hedges' g was used to quantify effect sizes (ES) for changes in cognition after TMS/tDCS v. sham. As different cognitive functions may have unequal susceptibility to TMS/tDCS, we separately evaluated the effects on: attention/vigilance, working memory, executive functioning, processing speed, verbal fluency, verbal learning, and social cognition. RESULTS We included 82 studies (n = 2784). For working memory, both TMS (ES = 0.17, p = 0.015) and tDCS (ES = 0.17, p = 0.021) showed small but significant effects. Age positively moderated the effect of TMS. TDCS was superior to sham for attention/vigilance (ES = 0.20, p = 0.020). These significant effects did not differ across the type of brain disorder. Results were not significant for the other five cognitive domains. CONCLUSIONS Our results revealed that both TMS and tDCS elicit a small trans-diagnostic effect on working memory, tDCS also improved attention/vigilance across diagnoses. Effects on the other domains were not significant. Observed ES were small, yet even slight cognitive improvements may facilitate daily functioning. While NIBS can be a well-tolerated treatment, its effects appear domain specific and should be applied only for realistic indications (i.e. to induce a small improvement in working memory or attention).
Collapse
Affiliation(s)
- Marieke J. Begemann
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bodyl A. Brand
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris E. Sommer
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Badcock JC, Larøi F, Kamp K, Kelsall-Foreman I, Bucks RS, Weinborn M, Begemann M, Taylor JP, Collerton D, O’Brien JT, El Haj M, Ffytche D, Sommer IE. Hallucinations in Older Adults: A Practical Review. Schizophr Bull 2020; 46:1382-1395. [PMID: 32638012 PMCID: PMC7707075 DOI: 10.1093/schbul/sbaa073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Older adults experience hallucinations in a variety of social, physical, and mental health contexts. Not everyone is open about these experiences, as hallucinations are surrounded with stigma. Hence, hallucinatory experiences in older individuals are often under-recognized. They are also commonly misunderstood by service providers, suggesting that there is significant scope for improvement in the training and practice of professionals working with this age group. The aim of the present article is to increase knowledge about hallucinations in older adults and provide a practical resource for the health and aged-care workforce. Specifically, we provide a concise narrative review and critique of (1) workforce competency and training issues, (2) assessment tools, and (3) current treatments and management guidelines. We conclude with a brief summary including suggestions for service and training providers and future research.
Collapse
Affiliation(s)
- Johanna C Badcock
- School of Psychological Science, University of Western Australia, Perth, Australia
- Perth Voices Clinic, Murdoch, Australia
- To whom correspondence should be addressed; School of Psychological Science, The University of Western Australia, 35 Stirling Highway, Perth, 6009; tel: 0423123665, fax: 61864881006, e-mail:
| | - Frank Larøi
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Psychology and Neuroscience of Cognition Research Unit, University of Liege, Liege, Belgium
- Norwegian Centre of Excellence for Mental Disorders Research, University of Oslo, Oslo, Norway
| | - Karina Kamp
- Department of Psychology and Behavioural Science, Aarhus University, Aarhus C, Denmark
| | | | - Romola S Bucks
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Michael Weinborn
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Marieke Begemann
- Department of Biomedical Sciences of Cells and Systems, University Medical Center, Rijks Universiteit Groningen (RUG), Groningen, The Netherlands
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Collerton
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Mohamad El Haj
- Laboratoire de Psychologie des Pays de la Loire (LPPL-EA 4638), Nantes Université, Univ Angers, Nantes, France
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Iris E Sommer
- Rijks Universiteit Groningen (RUG), Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The Netherlands
| |
Collapse
|
16
|
Abstract
Perceptual disturbances in psychosis, such as auditory verbal hallucinations, are associated with increased baseline activity in the associative auditory cortex and increased dopamine transmission in the associative striatum. Perceptual disturbances are also associated with perceptual biases that suggest increased reliance on prior expectations. We review theoretical models of perceptual inference and key supporting physiological evidence, as well as the anatomy of associative cortico-striatal loops that may be relevant to auditory perceptual inference. Integrating recent findings, we outline a working framework that bridges neurobiology and the phenomenology of perceptual disturbances via theoretical models of perceptual inference.
Collapse
|
17
|
High-frequency neuronavigated rTMS effect on clinical symptoms and cognitive dysfunction: a pilot double-blind, randomized controlled study in Veterans with schizophrenia. Transl Psychiatry 2020; 10:79. [PMID: 32098946 PMCID: PMC7042343 DOI: 10.1038/s41398-020-0745-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Cognitive impairment is a central aspect of schizophrenia (SCZ) that occurs at the onset of the disease and is related to poor social function and outcome in patients with SCZ. Recent literatures have revealed repetitive transcranial magnetic stimulation (rTMS) to be one of the efficient medical interventions for cognitive impairments. However, no study has been conducted to investigate the treatment effectiveness of 20 Hz rTMS with neuronavigation system administered to the left dorsolateral prefrontal cortex (DLPFC) in patients with schizophrenia. In this randomized, double-blind and sham-controlled study, 56 patients were enrolled in 20 Hz rTMS (n = 28) or sham stimulation (n = 28) over left DLPFC for 8 weeks. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to measure the cognitive function at baseline and after 8 weeks of rTMS treatment. The positive and negative syndrome scales (PANSS) was performed to assess the clinical symptoms at baseline, after 2-week treatment, 4-week treatment, 6-week treatment, and 8-week treatment. Totally, 15 subjects (seven in active group and eight in sham group) dropped out during the trial and the main findings were from completed 41 patients. At 2 weeks, 4 weeks, and 6 weeks, there were no significant differences in PANSS total score and subscores between the sham and treatment groups. At 8 weeks, the 20 Hz rTMS significantly increased the immediate memory score compared with the sham. Furthermore, the improvement in the immediate memory score was correlated with the decrease in the excitement factor score of the patients with SCZ. Our results suggest that 20 Hz rTMS appears to be an effective treatment for improving the cognitive performance and reducing the clinical symptoms of patients with SCZ.
Collapse
|
18
|
Abstract
One of the fundamental questions in neuroscience is how brain activity relates to conscious experience. Even though self-consciousness is considered an emergent property of the brain network, a quantum physics-based theory assigns a momentum of consciousness to the single neuron level. In this work, we present a brain self theory from an evolutionary biological perspective by analogy with the immune self. In this scheme, perinatal reactivity to self inputs would guide the selection of neocortical neurons within the subplate, similarly to T lymphocytes in the thymus. Such self-driven neuronal selection would enable effective discrimination of external inputs and avoid harmful "autoreactive" responses. Multiple experimental and clinical evidences for this model are provided. Based on this self tenet, we outline the postulates of the so-called autophrenic diseases, to then make the case for schizophrenia, an archetypic disease with rupture of the self. Implications of this model are discussed, along with potential experimental verification.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | - Florence Faure
- INSERM U932, PSL Research University, Institut Curie, Paris, France
| |
Collapse
|
19
|
Kennedy NI, Lee WH, Frangou S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: A meta-analysis of randomized controlled trials. Eur Psychiatry 2020; 49:69-77. [DOI: 10.1016/j.eurpsy.2017.12.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/16/2022] Open
Abstract
AbstractBackgroundTranscranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) have shown promise in the treatment of schizophrenia.ObjectiveTo quantify the efficacy of double-blind randomized controlled trials (RCT) of tDCS and rTMS for the positive and negative symptoms of schizophrenia and identify significant moderators relating to patient-related features and stimulation parameters.MethodsSystemic review and meta-analyses of the relevant literature published until February 1st, 2017 to assess treatment efficacy and quantify the contribution of potential moderator variables.ResultsWe identified 7 RCTs on tDCS (involving 105 participants) and 30 RCTs on rTMS (involving 768 participants). Compared to sham, tDCS improved all symptom dimensions but the effect reached significance for negative symptoms (Hedge’s g = −0.63, p = 0.02). Efficacy for positive but not negative symptoms was linearly associated with cumulative tDCS stimulation. Compared to sham, rTMS improved hallucinations (Hedge’s g = −0.51, p < 0.001) and negative symptoms (Hedge’s g = −0.49, p = 0.01) but was associated with modest, non-significant worsening of positive symptoms (Hedge’s g = 0.28, p = 0.13). Higher pulse frequency (>10 Hz), motor threshold intensity of 110%, left prefrontal cortical treatment site and trial duration over 3 weeks were associated with improvement in negative symptoms and worsening in positive symptoms (all p < 0.03).ConclusionsThe symptom dimensions in schizophrenia may respond differently to brain stimulation interventions in a way that may reflect the interaction between disease- and treatment-related mechanisms. Our findings underscore the need for further research into patient selection prior to treatment assignment and greater refinement of stimulation protocols.
Collapse
|
20
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
21
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
22
|
Nucifora FC, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis 2019; 131:104257. [PMID: 30170114 PMCID: PMC6395548 DOI: 10.1016/j.nbd.2018.08.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/07/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Treatment resistant schizophrenia (TRS) refers to the significant proportion of schizophrenia patients who continue to have symptoms and poor outcomes despite treatment. While many definitions of TRS include failure of two different antipsychotics as a minimum criterion, the wide variability in inclusion criteria has challenged the consistency and reproducibility of results from studies of TRS. We begin by reviewing the clinical, neuroimaging, and neurobiological characteristics of TRS. We further review the current treatment strategies available, addressing clozapine, the first-line pharmacological agent for TRS, as well as pharmacological and non-pharmacological augmentation of clozapine including medication combinations, electroconvulsive therapy, repetitive transcranial magnetic stimulation, deep brain stimulation, and psychotherapies. We conclude by highlighting the most recent consensus for defining TRS proposed by the Treatment Response and Resistance in Psychosis Working Group, and provide our overview of future perspectives and directions that could help advance the field of TRS research, including the concept of TRS as a potential subtype of schizophrenia.
Collapse
Affiliation(s)
- Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Edgar Woznica
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Nicola Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| |
Collapse
|
23
|
Leung CCY, Gadelrab R, Ntephe CU, McGuire PK, Demjaha A. Clinical Course, Neurobiology and Therapeutic Approaches to Treatment Resistant Schizophrenia. Toward an Integrated View. Front Psychiatry 2019; 10:601. [PMID: 31551822 PMCID: PMC6735262 DOI: 10.3389/fpsyt.2019.00601] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Despite considerable psychotherapeutic advancement since the discovery of chlorpromazine, almost one third of patients with schizophrenia remain resistant to dopamine-blocking antipsychotics, and continue to be exposed to unwanted and often disabling side effects, but little if any clinical benefit. Even clozapine, the superior antipsychotic treatment, is ineffective in approximately half of these patients. Thus treatment resistant schizophrenia (TRS), continues to present a major therapeutic challenge to psychiatry. The main impediment to finding novel treatments is the lack of understanding of precise molecular mechanisms leading to TRS. Not only has the neurobiology been enigmatic for decades, but accurate and early detection of patients who are at risk of not responding to dopaminergic blockade remains elusive. Fortunately, recent work has started to unravel some of the neurobiological mechanisms underlying treatment resistance, providing long awaited answers, at least to some extent. Here we focus on the scientific advances in the field, from the clinical course of TRS to neurobiology and available treatment options. We specifically emphasize emerging evidence from TRS imaging and genetic literature that implicates dysregulation in several neurotransmitters, particularly dopamine and glutamate, and in addition genetic and neural alterations that concertedly may lead to the formation of TRS. Finally, we integrate available findings into a putative model of TRS, which may provide a platform for future studies in a bid to open the avenues for subsequent development of effective therapeutics.
Collapse
Affiliation(s)
- Cheryl Cheuk-Yan Leung
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Romayne Gadelrab
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | | | - Philip K. McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Thomas F, Bouaziz N, Gallea C, Schenin-King Andrianisaina P, Durand F, Bolloré O, Benadhira R, Isaac C, Braha-Zeitoun S, Moulier V, Valero-Cabré A, Januel D. Structural and functional brain biomarkers of clinical response to rTMS of medication-resistant auditory hallucinations in schizophrenia patients: study protocol for a randomized sham-controlled double-blind clinical trial. Trials 2019; 20:229. [PMID: 31014369 PMCID: PMC6480831 DOI: 10.1186/s13063-019-3311-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential of non-invasive repetitive transcranial magnetic stimulation (rTMS) to improve auditory verbal hallucinations (AVH) in schizophrenia patients has been increasingly explored over the past decade. Despite highly promising results, high inter-individual variability of clinical response and ineffective outcomes in a significant number of patients underscored the need to identify factors associated with the clinical response to rTMS. It should help improve the efficacy of rTMS in patients with medication-resistant AVH, and allow a better understanding of its neural impact. Here, we describe an exploratory study protocol which aims to identify structural and functional brain biomarkers associated with clinical response after an rTMS treatment for medication-resistant AVH in schizophrenia. METHODS Forty-five schizophrenia patients with medication-resistant AVH will be enrolled in a double-blind randomized sham-controlled monocentric clinical trial. Patients will be assigned to a regime of 20 sessions of active or sham 1 Hz rTMS delivered twice a day, 5 days a week for 2 weeks over the left temporo-parietal junction. Response will be assessed after rTMS and patients will be classified in responders or non-responders to treatment. Magnetic resonance imaging (MRI) sessions including diffusion weighted imaging and resting-state functional MRI sequences will be recorded before the onset of the rTMS treatment and 3 days following its discontinuation. The primary outcome measure is difference in fractional anisotropy between responder and non-responder patients at baseline. Differences in resting-state functional MRI data at baseline will be also investigated between responder and non-responder groups. Clinical, neuropsychological, neurophysiological, and blood serum BDNF assessments will be performed at baseline, 3 days, 1 month, and 3 months following rTMS. DISCUSSION The aim of this research project is to identify and assess the biomarker value of MRI-based structural and functional biomarkers predicting clinical response to rTMS for AVH in schizophrenia patients. The outcome of the trial should improve patient care by offering them a novel suitable therapy and deepen our understanding on how rTMS may impact AVH and develop more effective therapies adapted to individual patient needs. TRIAL REGISTRATION ClinicalTrials.gov, NCT02755623 . Registered on 22 April 2016.
Collapse
Affiliation(s)
- Fanny Thomas
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013, Paris, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Noomane Bouaziz
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France
| | - Cécile Gallea
- Movement Investigations and Therapeutics, MOV'IT, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Palmyre Schenin-King Andrianisaina
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Florence Durand
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Ombline Bolloré
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France
| | - René Benadhira
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Clémence Isaac
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Sonia Braha-Zeitoun
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Virginie Moulier
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013, Paris, France. .,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700 Albany Street, Boston, MA, W-702A, USA.
| | - Dominique Januel
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France. .,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France.
| |
Collapse
|
25
|
Kim J, Iwata Y, Plitman E, Caravaggio F, Chung JK, Shah P, Blumberger DM, Pollock BG, Remington G, Graff-Guerrero A, Gerretsen P. A meta-analysis of transcranial direct current stimulation for schizophrenia: "Is more better?". J Psychiatr Res 2019; 110:117-126. [PMID: 30639917 DOI: 10.1016/j.jpsychires.2018.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023]
Abstract
Transcranial direct current stimulation (tDCS) has generated interest in recent years as a potential adjunctive treatment for patients with schizophrenia. The primary objective of this meta-analysis was to evaluate the efficacy of tDCS on positive symptoms, particularly auditory hallucinations, and negative symptoms. A literature search of randomized sham-controlled trials was conducted using the OVID database on October 9, 2018. The standardized mean differences (SMDs) were calculated to examine changes in symptom severity between active and sham groups for the following symptom domains: auditory hallucinations, positive symptoms (including auditory hallucinations), and negative symptoms. Moderator analyses were performed to examine the effects of study design and participant demographics. We identified 10 eligible studies. Main-analyses showed no effects of tDCS on auditory hallucinations (7 studies, n = 242), positive symptoms (9 studies, n = 313), or negative symptoms (9 studies, n = 313). Subgroup analyses of studies that applied twice-daily stimulation showed a significant reduction in the severity of auditory hallucinations (4 studies, n = 138, SMD = 1.04, p = 0.02). Studies that applied ≥10 stimulation sessions showed a reduction in both auditory hallucination (5 studies, n = 186, SMD = 0.86, p = 0.009) and negative symptom severity (7 studies, n = 257, SMD = 0.41, p = 0.04). Meta-regression analyses revealed a negative association between mean age and the SMDs for auditory hallucinations and negative symptoms, and a positive association between baseline negative symptom severity and the SMDs for negative symptoms. Our findings highlight the need to optimize tDCS parameters and suggest twice-daily or 10 or more stimulation sessions may be needed to improve clinical outcomes in patients with schizophrenia.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Nathou C, Duprey E, Simon G, Razafimandimby A, Leroux E, Dollfus S, Etard O. Effects of low- and high-frequency repetitive transcranial magnetic stimulation on long-latency auditory evoked potentials. Neurosci Lett 2018; 686:198-204. [PMID: 30219485 DOI: 10.1016/j.neulet.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Long-latency auditory event potentials (LLAEPs) involving local and global auditory processes have been investigated to examine the impact of low-frequency (LF) and high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) on the cortical excitability of the temporal cortex. We hypothesized that both stimulation frequencies have the same modulation effect, in accordance with clinical data showing a reduction in auditory verbal hallucinations (AVHs) after LF and HF temporal rTMS in patients with schizophrenia. With 30 right-handed healthy volunteer participants enrolled in a crossover trial, we analyzed LLAEPs before and after LF- and HF-rTMS of the left temporal cortex. While we observed no changes in latencies, we did observe a similar inhibitory action of both rTMS frequencies on LLAEP amplitudes. Analysis of surface potential maps and cortical generators revealed some differences regarding auditory processes: HF-rTMS produced earlier, more diffuse, and more right-lateralized effects than LF-rTMS. Beyond a local impact, rTMS exerted a remote modulation influence on the frontal cortex that might be involved in attentional processes. This association could explain the therapeutic effect of temporal HF-rTMS on AVH.
Collapse
Affiliation(s)
- Clément Nathou
- CHU de Caen, Service de Psychiatrie adulte, Centre Esquirol, Caen, F-14000, France; Normandie Univ, UNICAEN, ISTS, EA 7466, GIP Cyceron, 14000, Caen, France.
| | - Emmanuelle Duprey
- CHU de Caen, Service de Psychiatrie adulte, Centre Esquirol, Caen, F-14000, France; Normandie Univ, UNICAEN, ISTS, EA 7466, GIP Cyceron, 14000, Caen, France
| | - Gregory Simon
- Université Paris-Descartes, Normandie Univ, UNICAEN, UMR CNRS 8240 LAPSYDE, 14000, Caen, France
| | | | - Elise Leroux
- Normandie Univ, UNICAEN, ISTS, EA 7466, GIP Cyceron, 14000, Caen, France
| | - Sonia Dollfus
- CHU de Caen, Service de Psychiatrie adulte, Centre Esquirol, Caen, F-14000, France; Normandie Univ, UNICAEN, ISTS, EA 7466, GIP Cyceron, 14000, Caen, France
| | - Olivier Etard
- Normandie Univ, UNICAEN, ISTS, EA 7466, GIP Cyceron, 14000, Caen, France; CHU de Caen, Service des explorations fonctionnelles du système nerveux, Caen, F-14000, France
| |
Collapse
|
27
|
Sommer IEC, Kleijer H, Visser L, van Laar T. Successful treatment of intractable visual hallucinations with 5-HT 2A antagonist ketanserin. BMJ Case Rep 2018; 2018:bcr-2018-224340. [PMID: 29950360 DOI: 10.1136/bcr-2018-224340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hallucinations, visual, auditory or in another sensory modality, often respond well to treatment in patients with schizophrenia. Some, however, do not and can be very chronic and debilitating. We present a patient with schizophrenia with intractable hallucinations despite state of the art care, including high-dose clozapine and transcranial magnetic stimulation. Based on the possible role of the 5-HT2A receptor in hallucinations, we treated her with the antihypertensive drug ketanserin, a 5-HT2A receptor antagonist.This significantly reduced her visual but not her auditory hallucinations, suggesting a possible role of the 5HT2A receptor in the pathophysiology of specifically visual hallucinations. This is the first time ketanserin has been described to successfully reduce visual hallucinations in a patient with schizophrenia.
Collapse
Affiliation(s)
- Iris E C Sommer
- Department of Psychiatry and Department of Neuroscience, Rijksuniversiteit Groningen (RUG), Universitair Medisch Centrum Groningen (UMCG), Groningen, The Netherlands.,Department of Psychology, Universitetet i Bergen Det Psykologiske Fakultet, Bergen, Norway
| | - Hidde Kleijer
- Department of Psychiatry and Department of Neuroscience, Rijksuniversiteit Groningen (RUG), Universitair Medisch Centrum Groningen (UMCG), Groningen, The Netherlands.,Department of Psychiatry, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Lucy Visser
- Department of Psychiatry, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Teus van Laar
- Department of Neurology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Cognitive effects of bilateral high frequency repetitive transcranial magnetic stimulation in early phase psychosis: a pilot study. Brain Imaging Behav 2018; 13:852-861. [DOI: 10.1007/s11682-018-9902-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Targeted neural network interventions for auditory hallucinations: Can TMS inform DBS? Schizophr Res 2018; 195:455-462. [PMID: 28969932 PMCID: PMC8141945 DOI: 10.1016/j.schres.2017.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022]
Abstract
The debilitating and refractory nature of auditory hallucinations (AH) in schizophrenia and other psychiatric disorders has stimulated investigations into neuromodulatory interventions that target the aberrant neural networks associated with them. Internal or invasive forms of brain stimulation such as deep brain stimulation (DBS) are currently being explored for treatment-refractory schizophrenia. The process of developing and implementing DBS is limited by symptom clustering within psychiatric constructs as well as a scarcity of causal tools with which to predict response, refine targeting or guide clinical decisions. Transcranial magnetic stimulation (TMS), an external or non-invasive form of brain stimulation, has shown some promise as a therapeutic intervention for AH but remains relatively underutilized as an investigational probe of clinically relevant neural networks. In this editorial, we propose that TMS has the potential to inform DBS by adding individualized causal evidence to an evaluation processes otherwise devoid of it in patients. Although there are significant limitations and safety concerns regarding DBS, the combination of TMS with computational modeling of neuroimaging and neurophysiological data could provide critical insights into more robust and adaptable network modulation.
Collapse
|
30
|
Dollfus S, Jaafari N, Guillin O, Trojak B, Plaze M, Saba G, Nauczyciel C, Montagne Larmurier A, Chastan N, Meille V, Krebs MO, Ayache SS, Lefaucheur JP, Razafimandimby A, Leroux E, Morello R, Marie Batail J, Brazo P, Lafay N, Wassouf I, Harika-Germaneau G, Guillevin R, Guillevin C, Gerardin E, Rotharmel M, Crépon B, Gaillard R, Delmas C, Fouldrin G, Laurent G, Nathou C, Etard O. High-Frequency Neuronavigated rTMS in Auditory Verbal Hallucinations: A Pilot Double-Blind Controlled Study in Patients With Schizophrenia. Schizophr Bull 2018; 44:505-514. [PMID: 29897597 PMCID: PMC5890503 DOI: 10.1093/schbul/sbx127] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite extensive testing, the efficacy of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of temporo-parietal targets for the treatment of auditory verbal hallucinations (AVH) in patients with schizophrenia is still controversial, but promising results have been reported with both high-frequency and neuronavigated rTMS. Here, we report a double-blind sham-controlled study to assess the efficacy of high-frequency (20 Hz) rTMS applied over a precise anatomical site in the left temporal region using neuronavigation. METHODS Fifty-nine of 74 randomized patients with schizophrenia or schizoaffective disorders (DSM-IV R) were treated with rTMS or sham treatment and fully evaluated over 4 weeks. The rTMS target was determined by morphological MRI at the crossing between the projection of the ascending branch of the left lateral sulcus and the superior temporal sulcus (STS). RESULTS The primary outcome was response to treatment, defined as a 30% decrease of the Auditory Hallucinations Rating Scale (AHRS) frequency item, observed at 2 successive evaluations. While there was no difference in primary outcome between the treatment groups, the percentages of patients showing a decrease of more than 30% of AHRS score (secondary outcome) did differ between the active (34.6%) and sham groups (9.1%) (P = .016) at day 14. DISCUSSION This controlled study reports negative results on the primary outcome but demonstrates a transient effect of 20 Hz rTMS guided by neuronavigation and targeted on an accurate anatomical site for the treatment of AVHs in schizophrenia patients.
Collapse
Affiliation(s)
- Sonia Dollfus
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen, France,Normandie Univ, UNICAEN, Imagerie et Strategies Therapeutiques de la schizophrenie (ISTS), EA4766, Caen, France,To whom correspondence should be addressed; CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen F-14000, France, tel: +332 3106 5018; Fax: +332 3106 4789; e-mail: , http://www.ists.cyceron.fr/
| | - Nemat Jaafari
- Centre Hospitalier Henri Laborit, Poitiers, France,Laboratoire expérimental et clinique en Neurosciences, Univ Poitiers, Poitiers, France
| | - Olivier Guillin
- Department of Psychiatry, CH Le Rouvray, Sotteville les Rouen, France,INSERM U 1079, University of Medicine, Rouen, France,CHU Charles Nicolle, Rouen, France
| | - Benoit Trojak
- CHU de Dijon, Service de psychiatrie et d’addictologie, Dijon, France
| | - Marion Plaze
- Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Ghassen Saba
- Henri Mondor Hospital, Paris-Est Créteil University, Créteil, France
| | | | | | | | - Vincent Meille
- CHU de Dijon, Service de psychiatrie et d’addictologie, Dijon, France
| | - Marie-Odile Krebs
- Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Samar S Ayache
- Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Paris-Est Créteil University, Créteil, France
| | - Jean Pascal Lefaucheur
- Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Paris-Est Créteil University, Créteil, France
| | - Annick Razafimandimby
- Normandie Univ, UNICAEN, Imagerie et Strategies Therapeutiques de la schizophrenie (ISTS), EA4766, Caen, France
| | - Elise Leroux
- Normandie Univ, UNICAEN, Imagerie et Strategies Therapeutiques de la schizophrenie (ISTS), EA4766, Caen, France
| | - Rémy Morello
- CHU de Caen, Unité de biostatistiques et recherche clinique, Caen, France
| | | | - Perrine Brazo
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen, France,Normandie Univ, UNICAEN, Imagerie et Strategies Therapeutiques de la schizophrenie (ISTS), EA4766, Caen, France
| | | | - Issa Wassouf
- Centre Hospitalier Henri Laborit, Poitiers, France
| | | | | | | | | | - Maud Rotharmel
- Department of Psychiatry, CH Le Rouvray, Sotteville les Rouen, France
| | - Benoit Crépon
- Centre Hospitalier Sainte-Anne, Service de neurophysiologie clinique, Paris, France
| | - Raphael Gaillard
- Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Delmas
- Department of Psychiatry, CH Le Rouvray, Sotteville les Rouen, France
| | | | - Guillaume Laurent
- Department of Psychiatry, CH Le Rouvray, Sotteville les Rouen, France
| | - Clément Nathou
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen, France,Normandie Univ, UNICAEN, Imagerie et Strategies Therapeutiques de la schizophrenie (ISTS), EA4766, Caen, France,Department of Psychiatry, CH Le Rouvray, Sotteville les Rouen, France
| | - Olivier Etard
- Normandie Univ, UNICAEN, Imagerie et Strategies Therapeutiques de la schizophrenie (ISTS), EA4766, Caen, France,CHU de Caen, Service des explorations fonctionnelles du système nerveux, Caen, France
| |
Collapse
|
31
|
Rieger K, Rarra MH, Moor N, Diaz Hernandez L, Baenninger A, Razavi N, Dierks T, Hubl D, Koenig T. Neurofeedback-Based Enhancement of Single Trial Auditory Evoked Potentials: Feasibility in Healthy Subjects. Clin EEG Neurosci 2018; 49:79-92. [PMID: 28516807 DOI: 10.1177/1550059417708935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.
Collapse
Affiliation(s)
- Kathryn Rieger
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,2 Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Marie-Helene Rarra
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Nicolas Moor
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Laura Diaz Hernandez
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,2 Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Anja Baenninger
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Nadja Razavi
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Daniela Hubl
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- 1 Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,2 Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Cortical folding abnormalities in patients with schizophrenia who have persistent auditory verbal hallucinations. Eur Neuropsychopharmacol 2018; 28:297-306. [PMID: 29305294 DOI: 10.1016/j.euroneuro.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 01/28/2023]
Abstract
In schizophrenia temporal cortical volume loss differs between patients presenting with persistent auditory verbal hallucinations (pAVH) in contrast to those without hallucinatory symptoms (nAVH). However, it is unknown whether this deficit reflects a neural signature of neurodevelopmental origin or if abnormal temporal cortical volume is reflective of factors which may be relevant at later stages of the disorder. Here, we tested the hypothesis that local gyrification index (LGI) in regions of the temporal cortex differs between patients with pAVH (n=10) and healthy controls (n=14), and that abnormal temporal LGI discriminates between pAVH and nAVH (n=10). Structural magnetic resonance imaging at 3T along with surface-based data analysis methods was used. Contrary to our expectations, patients with pAVH showed lower LGI in Broca´s region compared to both healthy persons and nAVH. Compared to nAVH, those individuals presenting with pAVH also showed lower LGI in right Broca's homologue and right superior middle frontal cortex, together with increased LGI in the precuneus and superior parietal cortex. Regions with abnormal LGI common to both patient samples were found in anterior cingulate and superior frontal areas. Inferior cortical regions exhibiting abnormal LGI in pAVH patients were associated with overall symptom load (BPRS), but not with measures of AVH symptom severity. The pattern of abnormal cortical folding in this sample suggests a neurodevelopmental signature in Broca's region, consistent with current AVH models emphasizing the pivotal role of language circuits and inner speech. Temporal cortical deficits may characterize patients with pAVH during later stages of the disorder.
Collapse
|
33
|
Slotema CW, Blom JD, Niemantsverdriet MBA, Sommer IEC. Auditory Verbal Hallucinations in Borderline Personality Disorder and the Efficacy of Antipsychotics: A Systematic Review. Front Psychiatry 2018; 9:347. [PMID: 30108529 PMCID: PMC6079212 DOI: 10.3389/fpsyt.2018.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/10/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Auditory verbal hallucinations (AVH) are experienced more frequently by patients with borderline personality disorder (BPD) than previously assumed. However, consensus is lacking on how to treat them. Objective: To provide a systematic review of studies reporting on AVH in patients with BPD, with a focus on the efficacy of treatment of psychotic symptoms. Methods: For this review a systematic search was made in the PubMed and Ovid databases, and mean weighted prevalence rates, adjusted for sample size, were computed. Results: The search yielded 36 studies describing a total of 1,263 patients. Auditory hallucinations (including AVH) were reported in 27% of hospitalized BPD patients; AVH were reported in 25% of all patients and in 24% of outpatients. Of the hallucinating patients, 78% experienced AVH at least once per day, for a duration of several days to many years. On the whole, patients with BPD regarded their voices as malevolent and omnipotent in nature. Compared to patients with schizophrenia, the phenomenological characteristics of AVH were similar and the ensuing distress was equal or even higher, whereas scores for other positive symptoms were lower. The presence of AVH in BPD was associated with an increase of suicide plans and attempts, and more frequent hospitalization. Moreover, AVH in the context of BPD were associated with higher prevalence rates for post-traumatic stress disorder and emotional abuse. The efficacy of antipsychotics was investigated in 21 studies. Based on these studies, we conclude that both typical and atypical antipsychotics tend to have positive effects on AVH experienced in the context of BPD. The efficacy of cognitive-behavioral therapy and non-invasive brain stimulation has not yet been systematically assessed. Conclusions: These findings indicate that AVH experienced in the context of BPD are in need of proper diagnosis and treatment, and that antipsychotics tend to be beneficial in treating these (and other psychotic) symptoms.There is an urgent need for studies assessing the efficacy of cognitive-behavioral therapy and non-invasive brain stimulation in this underdiagnosed and undertreated group.
Collapse
Affiliation(s)
- Christina W Slotema
- Department of Personality Disorders, Parnassia Psychiatric Institute, The Hague, Netherlands
| | - Jan Dirk Blom
- Department of Personality Disorders, Parnassia Psychiatric Institute, The Hague, Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, Netherlands.,Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | | | - Iris E C Sommer
- Department of Neuroscience, University Medical Center Groningen, Groningen, Netherlands.,Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
34
|
MacKay MAB, Paylor JW, Wong JTF, Winship IR, Baker GB, Dursun SM. Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front Psychiatry 2018; 9:537. [PMID: 30425662 PMCID: PMC6218602 DOI: 10.3389/fpsyt.2018.00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a very complex syndrome that involves widespread brain multi-dysconnectivity. Neural circuits within specific brain regions and their links to corresponding regions are abnormal in the illness. Theoretical models of dysconnectivity and the investigation of connectomics and brain network organization have been examined in schizophrenia since the early nineteenth century. In more recent years, advancements have been achieved with the development of neuroimaging tools that have provided further clues to the structural and functional organization of the brain and global neural networks in the illness. Neural circuitry that extends across prefrontal, temporal and parietal areas of the cortex as well as limbic and other subcortical brain regions is disrupted in schizophrenia. As a result, many patients have a poor response to antipsychotic treatment and treatment failure is common. Treatment resistance that is specific to positive, negative, and cognitive domains of the illness may be related to distinct circuit phenotypes unique to treatment-refractory disease. Currently, there are no customized neural circuit-specific and targeted therapies that address this neural dysconnectivity. Investigation of targeted therapeutics that addresses particular areas of substantial regional dysconnectivity is an intriguing approach to precision medicine in schizophrenia. This review examines current findings of system and circuit-level brain dysconnectivity in treatment-resistant schizophrenia based on neuroimaging studies. Within a connectome context, on-off circuit connectivity synonymous with excitatory and inhibitory neuronal pathways is discussed. Mechanistic cellular, neurochemical and molecular studies are included with specific emphasis given to cell pathology and synaptic communication in glutamatergic and GABAergic systems. In this review we attempt to deconstruct how augmenting treatments may be applied within a circuit context to improve circuit integration and treatment response. Clinical studies that have used a variety of glutamate receptor and GABA interneuron modulators, nitric oxide-based therapies and a variety of other strategies as augmenting treatments with antipsychotic drugs are included. This review supports the idea that the methodical mapping of system-level networks to both on (excitatory) and off (inhibitory) cellular circuits specific to treatment-resistant disease may be a logical and productive approach in directing future research toward the advancement of targeted pharmacotherapeutics in schizophrenia.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - John W Paylor
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - James T F Wong
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Yang X, Tang Y, Wei Q, Lang B, Tao H, Zhang X, Liu Y, Tang A. Up-regulated expression of oxytocin mRNA in peripheral blood lymphocytes from first-episode schizophrenia patients. Oncotarget 2017; 8:78882-78889. [PMID: 29108272 PMCID: PMC5668005 DOI: 10.18632/oncotarget.20252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia (SZ) is a severe neuropsychiatric disorder with significant social cognition impairment. Increasing evidence has suggested that neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) are important mediators of complex social cognition and behavior associates with SZ. In the present study, forty-three first-episode schizophrenia (FES) patients and forty-seven healthy controls (HC) were included. The peripheral mRNA expression of OXT, OXT receptor (OXTR), AVP, AVP 1a receptor (AVPR1a) and CD38 was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The FES patients have a relatively higher mRNA level of OXT and OXTR genes and lower expression of AVP and CD38 genes than HC. No difference was found for AVPR1a between FES patients and HC. As for the sex difference, the mRNA expression of OXT and OXTR showed no difference in both male and female FES patients compared to HC group. The AVP and CD38 genes in female FES patients showed decreased mRNA expression than female HC. Our findings support disrupted OXT and AVP systems in the FES patients.
Collapse
Affiliation(s)
- Xiudeng Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qinling Wei
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510631, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China, Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China, China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xianghui Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China, Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China, China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China, Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China, China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
36
|
Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:105-113. [PMID: 28442422 DOI: 10.1016/j.pnpbp.2017.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/15/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. METHODS Patients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. RESULTS rTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. CONCLUSION rTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples.
Collapse
|
37
|
Nasser A, Batista JS, Brandão P, Grippe T. A case of coenesthetic hallucinations treated with low-frequency repetitive transcranial magnetic stimulation. Brain Stimul 2017; 10:845-846. [DOI: 10.1016/j.brs.2017.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022] Open
|
38
|
He H, Lu J, Yang L, Zheng J, Gao F, Zhai Y, Feng J, Fan Y, Ma X. Repetitive transcranial magnetic stimulation for treating the symptoms of schizophrenia: A PRISMA compliant meta-analysis. Clin Neurophysiol 2017; 128:716-724. [PMID: 28315614 DOI: 10.1016/j.clinph.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
|
39
|
Thomas F, Moulier V, Valéro-Cabré A, Januel D. Brain connectivity and auditory hallucinations: In search of novel noninvasive brain stimulation therapeutic approaches for schizophrenia. Rev Neurol (Paris) 2016; 172:653-679. [PMID: 27742234 DOI: 10.1016/j.neurol.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
Auditory verbal hallucinations (AVH) are among the most characteristic symptoms of schizophrenia and have been linked to likely disturbances of structural and functional connectivity within frontal, temporal, parietal and subcortical networks involved in language and auditory functions. Resting-state functional magnetic resonance imaging (fMRI) has shown that alterations in the functional connectivity activity of the default-mode network (DMN) may also subtend hallucinations. Noninvasive neurostimulation techniques such as repetitive transcranial magnetic stimulation (rTMS) have the ability to modulate activity of targeted cortical sites and their associated networks, showing a high potential for modulating altered connectivity subtending schizophrenia. Notwithstanding, the clinical benefit of these approaches remains weak and variable. Further studies in the field should foster a better understanding concerning the status of networks subtending AVH and the neural impact of rTMS in relation with symptom improvement. Additionally, the identification and characterization of clinical biomarkers able to predict response to treatment would be a critical asset allowing better care for patients with schizophrenia.
Collapse
Affiliation(s)
- F Thomas
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France.
| | - V Moulier
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France
| | - A Valéro-Cabré
- UMR 7225 CRICM CNRS, Université Pierre-et-Marie-Curie, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France; Université Pierre-et-Marie-Curie, CNRS UMR 7225-Inserm UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - D Januel
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France
| |
Collapse
|
40
|
Blanco-Lopez MJ, Cudeiro-Blanco J, Iglesias G, Gago A, Cudeiro J. A simple, repeated rTMS protocol effectively removes auditory verbal hallucinations in a single patient study. Schizophr Res 2016; 172:224-5. [PMID: 26897475 DOI: 10.1016/j.schres.2016.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 11/24/2022]
Affiliation(s)
| | | | | | - Ana Gago
- Psychiatry-Santiago de Compostela, Spain
| | - Javier Cudeiro
- Centro de Estimulación Cerebral de Galicia, A Coruña, Spain; Neuroscience and Motor control Group (NEUROcom) and INIBIC, University of A Coruña, Spain.
| |
Collapse
|
41
|
Dollfus S, Lecardeur L, Morello R, Etard O. Placebo Response in Repetitive Transcranial Magnetic Stimulation Trials of Treatment of Auditory Hallucinations in Schizophrenia: A Meta-Analysis. Schizophr Bull 2016; 42:301-8. [PMID: 26089351 PMCID: PMC4753589 DOI: 10.1093/schbul/sbv076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several meta-analyses have assessed the response of patients with schizophrenia with auditory verbal hallucinations (AVH) to treatment with repetitive transcranial magnetic stimulation (rTMS); however, the placebo response has never been explored. Typically observed in a therapeutic trial, the placebo effect may have a major influence on the effectiveness of rTMS. The purpose of this meta-analysis is to evaluate the magnitude of the placebo effect observed in controlled studies of rTMS treatment of AVH, and to determine factors that can impact the magnitude of this placebo effect, such as study design considerations and the type of sham used.The study included twenty-one articles concerning 303 patients treated by sham rTMS. A meta-analytic method was applied to obtain a combined, weighted effect size, Hedges's g. The mean weighted effect size of the placebo effect across these 21 studies was 0.29 (P < .001). Comparison of the parallel and crossover studies revealed distinct results for each study design; placebo has a significant effect size in the 13 parallel studies (g = 0.44, P < 10(-4)), but not in the 8 crossover studies (g = 0.06, P = .52). In meta-analysis of the 13 parallel studies, the 45° position coil showed the highest effect size. Our results demonstrate that placebo effect should be considered a major source of bias in the assessment of rTMS efficacy. These results fundamentally inform the design of further controlled studies, particularly with respect to studies of rTMS treatment in psychiatry.
Collapse
Affiliation(s)
| | - Laurent Lecardeur
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen, F-14000, France;,CNRS, UMR 6301, ISTCT, ISTS Group, GIP Cyceron, Caen, F-14074, France
| | - Rémy Morello
- CHU de Caen, Unité de Biostatistique et de Recherche Clinique, F-14000, France
| | - Olivier Etard
- UCBN, UFR de Médecine, Caen, F-14000, France;,CHU de Caen, Laboratoire d’Explorations Fonctionnelles Neurologiques, Caen, F-14000, France
| |
Collapse
|
42
|
Moseley P, Alderson-Day B, Ellison A, Jardri R, Fernyhough C. Non-invasive Brain Stimulation and Auditory Verbal Hallucinations: New Techniques and Future Directions. Front Neurosci 2016; 9:515. [PMID: 26834541 PMCID: PMC4717303 DOI: 10.3389/fnins.2015.00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022] Open
Abstract
Auditory verbal hallucinations (AVHs) are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS) to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localize the targeted cortical area, and the state-dependent effects of brain stimulation), as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH.
Collapse
Affiliation(s)
- Peter Moseley
- School of Psychology, University of Central Lancashire Preston, UK
| | - Ben Alderson-Day
- Science Laboratories, Department of Psychology, Durham University Durham, UK
| | - Amanda Ellison
- Science Laboratories, Department of Psychology, Durham University Durham, UK
| | - Renaud Jardri
- Centre National de la Recherche Scientifique UMR-9193, SCA-Lab & CHU Lille, Fontan Hospital, CURE Platform, Lille University Lille, France
| | - Charles Fernyhough
- Science Laboratories, Department of Psychology, Durham University Durham, UK
| |
Collapse
|
43
|
Cortical Anatomical Variations and Efficacy of rTMS in the Treatment of Auditory Hallucinations. Brain Stimul 2015; 8:1162-7. [DOI: 10.1016/j.brs.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/23/2015] [Accepted: 06/07/2015] [Indexed: 11/20/2022] Open
|
44
|
Sex hormones and oxytocin augmentation strategies in schizophrenia: A quantitative review. Schizophr Res 2015; 168:603-13. [PMID: 25914107 DOI: 10.1016/j.schres.2015.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/05/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Sex differences in incidence, onset and course of schizophrenia suggest sex hormones play a protective role in the pathophysiology. Such a role is also proposed for oxytocin, another important regulator of reproduction function. Evidence on the efficacy of sex hormones and oxytocin in the treatment of schizophrenia is summarized. METHODS Double-blind, placebo-controlled, randomized studies were included, examining augmentation with estrogens, selective estrogen receptor modulators (SERMs), testosterone, dehydroepiandrosterone (DHEA), pregnenolone, and oxytocin. Outcome measures were total symptom severity, positive and negative symptom subscores, and cognition. In meta-analyses, combined weighted effect sizes (Hedges' g) per hormone were calculated. RESULTS Twenty-four studies were included, examining 1149 patients. Significant effects were found for estrogen action (k=10), regarding total symptoms (Hedges' g=0.63, p=0.001), positive (Hedges' g=0.42, p<0.001), and negative symptoms (Hedges' g=0.35, p=0.001). Subgroup analyses yielded significant results for estrogens in premenopausal women (k=6) for total, positive, and negative symptoms, and for the SERM raloxifene in postmenopausal women (k=3) for total and negative, but not positive symptoms. Testosterone augmentation in males (k=1) was beneficial only for negative symptoms (Hedges' g=0.82, p=0.027). No overall effects were found for DHEA (k=4), pregnenolone (k=4), and oxytocin (k=6). Results for cognition (k=12) were too diverse for meta-analyses, and inspection of these data showed no consistent benefit. CONCLUSIONS Estrogens and SERMs could be effective augmentation strategies in the treatment of women with schizophrenia, although potential side effects, partially associated with longer duration use, should be taken into account. Future trials are needed to study long-term effects and effects on cognition.
Collapse
|
45
|
Kubera KM, Barth A, Hirjak D, Thomann PA, Wolf RC. Noninvasive brain stimulation for the treatment of auditory verbal hallucinations in schizophrenia: methods, effects and challenges. Front Syst Neurosci 2015; 9:131. [PMID: 26528145 PMCID: PMC4601083 DOI: 10.3389/fnsys.2015.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022] Open
Abstract
This mini-review focuses on noninvasive brain stimulation techniques as an augmentation method for the treatment of persistent auditory verbal hallucinations (AVH) in patients with schizophrenia. Paradigmatically, we place emphasis on transcranial magnetic stimulation (TMS). We specifically discuss rationales of stimulation and consider methodological questions together with issues of phenotypic diversity in individuals with drug-refractory and persistent AVH. Eventually, we provide a brief outlook for future investigations and treatment directions. Taken together, current evidence suggests TMS as a promising method in the treatment of AVH. Low-frequency stimulation of the superior temporal cortex (STC) may reduce symptom severity and frequency. Yet clinical effects are of relatively short duration and effect sizes appear to decrease over time along with publication of larger trials. Apart from considering other innovative stimulation techniques, such as transcranial Direct Current Stimulation (tDCS), and optimizing stimulation protocols, treatment of AVH using noninvasive brain stimulation will essentially rely on accurate identification of potential responders and non-responders for these treatment modalities. In this regard, future studies will need to consider distinct phenotypic presentations of AVH in patients with schizophrenia, together with the putative functional neurocircuitry underlying these phenotypes.
Collapse
Affiliation(s)
- Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg Heidelberg, Germany
| | - Anja Barth
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg Heidelberg, Germany
| | - Dusan Hirjak
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg Heidelberg, Germany
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg Heidelberg, Germany ; Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University Homburg, Germany
| |
Collapse
|
46
|
WU Y, XU W, LIU X, XU Q, TANG L, WU S. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer's disease: a randomized, double-blind, sham-controlled study. SHANGHAI ARCHIVES OF PSYCHIATRY 2015; 27:280-8. [PMID: 26977125 PMCID: PMC4764002 DOI: 10.11919/j.issn.1002-0829.215107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/20/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Behavioral and psychological symptoms of dementia (BPSD) occur in 70-90% of patients at different stages of Alzheimer's Disease (AD), but the available methods for managing these problems are of limited effectiveness. AIM Assess the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS), applied over the left dorsolateral prefrontal cortex (DLPFC), on BPSD and cognitive function in persons with AD. METHODS Fifty-four patients with AD and accompanying BPSD were randomly divided into an intervention group (n=27) and a control group (n=27). In addition to standard antipsychotic treatment, the intervention group was treated with 20Hz rTMS five days a week for four weeks, while the control group was treated with sham rTMS.The Behavioral Pathology in Alzheimer's Disease Rating Scale (BEHAVE-AD), the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog), and the Treatment Emergent Symptom Scale (TESS) were administered by raters who were blind to the group assignment of patients before and after four weeks of treatment. RESULTS Twenty-six subjects from each group completed the study. After four weeks of antipsychotic treatment with adjunctive real or sham rTMS treatment, the mean (sd) total BEHAVE-AD scores and mean total ADAS-Cog scores of both groups significantly decreased from baseline. After adjusting for baseline values, the intervention group had significantly lower scores (i.e., greater improvement) than the control group on the BEHAVE-AD total score, on five of the seven BEHAVE-AD factor scores (activity disturbances, diurnal rhythm, aggressiveness, affective disturbances, anxieties and phobias), on the ADAS-Cog total score, and on all four ADAS-Cog factor scores (memory, language, constructional praxis, and attention). The proportion of individuals whose behavioral symptoms met a predetermined level of improvement (i.e., a drop in BEHAVE-AD total score of > 30% from baseline) in the intervention group was greater than that in the control group (73.1% vs.42.3%, X (2)=5.04, p=0.025). CONCLUSION Compared to treatment of AD with low-dose antipsychotic medications alone, the combination of low-dose antipsychotic medication with adjunctive treatment with high frequency rTMS can significantly improve both cognitive functioning and the behavioral and psychological symptoms that often accompany AD.
Collapse
Affiliation(s)
- Yue WU
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Wenwei XU
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Xiaowei LIU
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Qing XU
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Li TANG
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Shuyan WU
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
47
|
Toh WL, Thomas N, Rossell SL. Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): A systematic review. J Affect Disord 2015; 184:18-28. [PMID: 26066781 DOI: 10.1016/j.jad.2015.05.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Auditory verbal hallucinations (AVHs) are not uncommon in bipolar disorder (BD) and major depressive disorder (MDD), but there has been scant research in the area. The current paper aims to draw together and provide a critical overview of existing studies of AVHs in BD and MDD. METHODS A systematic review was undertaken using the search terms 'hallucinations' or 'hearing voices' in conjunction with 'bipolar disorder', 'mania' or 'manic-depressive' or 'major depressive disorder' or 'depression' or 'affective disorder' or 'mood disorder'. After applying a pre-defined set of inclusion criteria, 14 eligible peer-reviewed publications were accepted for further analysis. RESULTS Prevalence rates of AVHs in BD (11.3-62.8%) and MDD (5.4-40.6%) varied. When psychotic features were examined, persecutory and grandiose delusions were especially common in BD (though the latter did not necessarily occur in conjunction with AVHs). A single known neuroimaging study has suggested increased fronto-temporal connectivity relating to AVHs in BD. LIMITATIONS Methodological challenges relating to fluctuations in mood states and limited use of validated instruments, coupled with post-episode recall bias, pose as specific barriers to the collection of meaningful phenomenological information. CONCLUSIONS AVHs remains a central but largely understudied symptom in BD and MDD. Future research examining its phenomenology and clinical/neural correlates could bring about positive clinical implications as well as adapted therapeutic applications.
Collapse
Affiliation(s)
- Wei Lin Toh
- Brain and Psychological Sciences Research Centre (BPsyC), Swinburne University of Technology, Melbourne, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred Hospital and Monash University School of Psychology and Psychiatry, Melbourne, VIC, Australia.
| | - Neil Thomas
- Brain and Psychological Sciences Research Centre (BPsyC), Swinburne University of Technology, Melbourne, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred Hospital and Monash University School of Psychology and Psychiatry, Melbourne, VIC, Australia
| | - Susan L Rossell
- Brain and Psychological Sciences Research Centre (BPsyC), Swinburne University of Technology, Melbourne, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred Hospital and Monash University School of Psychology and Psychiatry, Melbourne, VIC, Australia; Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Donaldson PH, Rinehart NJ, Enticott PG. Noninvasive stimulation of the temporoparietal junction: A systematic review. Neurosci Biobehav Rev 2015; 55:547-72. [DOI: 10.1016/j.neubiorev.2015.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 01/15/2023]
|
49
|
George MS, Baron Short E, Kerns SE, Li X, Hanlon C, Pelic C, Taylor JJ, Badran BW, Borckardt JJ, Williams N, Fox J. Therapeutic Applications of rTMS for Psychiatric and Neurological Conditions. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
50
|
Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev Psychopathol 2015; 27:615-35. [PMID: 25997775 PMCID: PMC6283269 DOI: 10.1017/s095457941500019x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This "dysplastic" model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.
Collapse
Affiliation(s)
- Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jaya L. Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Jai L. Shah
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|