1
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Agarwal SM, Stogios N, Ahsan ZA, Lockwood JT, Duncan MJ, Takeuchi H, Cohn T, Taylor VH, Remington G, Faulkner GEJ, Hahn M. Pharmacological interventions for prevention of weight gain in people with schizophrenia. Cochrane Database Syst Rev 2022; 10:CD013337. [PMID: 36190739 PMCID: PMC9528976 DOI: 10.1002/14651858.cd013337.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Antipsychotic-induced weight gain is an extremely common problem in people with schizophrenia and is associated with increased morbidity and mortality. Adjunctive pharmacological interventions may be necessary to help manage antipsychotic-induced weight gain. This review splits and updates a previous Cochrane Review that focused on both pharmacological and behavioural approaches to this problem. OBJECTIVES To determine the effectiveness of pharmacological interventions for preventing antipsychotic-induced weight gain in people with schizophrenia. SEARCH METHODS The Cochrane Schizophrenia Information Specialist searched Cochrane Schizophrenia's Register of Trials on 10 February 2021. There are no language, date, document type, or publication status limitations for inclusion of records in the register. SELECTION CRITERIA We included all randomised controlled trials (RCTs) that examined any adjunctive pharmacological intervention for preventing weight gain in people with schizophrenia or schizophrenia-like illnesses who use antipsychotic medications. DATA COLLECTION AND ANALYSIS At least two review authors independently extracted data and assessed the quality of included studies. For continuous outcomes, we combined mean differences (MD) in endpoint and change data in the analysis. For dichotomous outcomes, we calculated risk ratios (RR). We assessed risk of bias for included studies and used GRADE to judge certainty of evidence and create summary of findings tables. The primary outcomes for this review were clinically important change in weight, clinically important change in body mass index (BMI), leaving the study early, compliance with treatment, and frequency of nausea. The included studies rarely reported these outcomes, so, post hoc, we added two new outcomes, average endpoint/change in weight and average endpoint/change in BMI. MAIN RESULTS Seventeen RCTs, with a total of 1388 participants, met the inclusion criteria for the review. Five studies investigated metformin, three topiramate, three H2 antagonists, three monoamine modulators, and one each investigated monoamine modulators plus betahistine, melatonin and samidorphan. The comparator in all studies was placebo or no treatment (i.e. standard care alone). We synthesised all studies in a quantitative meta-analysis. Most studies inadequately reported their methods of allocation concealment and blinding of participants and personnel. The resulting risk of bias and often small sample sizes limited the overall certainty of the evidence. Only one reboxetine study reported the primary outcome, number of participants with clinically important change in weight. Fewer people in the treatment condition experienced weight gains of more than 5% and more than 7% of their bodyweight than those in the placebo group (> 5% weight gain RR 0.27, 95% confidence interval (CI) 0.11 to 0.65; 1 study, 43 participants; > 7% weight gain RR 0.24, 95% CI 0.07 to 0.83; 1 study, 43 participants; very low-certainty evidence). No studies reported the primary outcomes, 'clinically important change in BMI', or 'compliance with treatment'. However, several studies reported 'average endpoint/change in body weight' or 'average endpoint/change in BMI'. Metformin may be effective in preventing weight gain (MD -4.03 kg, 95% CI -5.78 to -2.28; 4 studies, 131 participants; low-certainty evidence); and BMI increase (MD -1.63 kg/m2, 95% CI -2.96 to -0.29; 5 studies, 227 participants; low-certainty evidence). Other agents that may be slightly effective in preventing weight gain include H2 antagonists such as nizatidine, famotidine and ranitidine (MD -1.32 kg, 95% CI -2.09 to -0.56; 3 studies, 248 participants; low-certainty evidence) and monoamine modulators such as reboxetine and fluoxetine (weight: MD -1.89 kg, 95% CI -3.31 to -0.47; 3 studies, 103 participants; low-certainty evidence; BMI: MD -0.66 kg/m2, 95% CI -1.05 to -0.26; 3 studies, 103 participants; low-certainty evidence). Topiramate did not appear effective in preventing weight gain (MD -4.82 kg, 95% CI -9.99 to 0.35; 3 studies, 168 participants; very low-certainty evidence). For all agents, there was no difference between groups in terms of individuals leaving the study or reports of nausea. However, the results of these outcomes are uncertain given the very low-certainty evidence. AUTHORS' CONCLUSIONS There is low-certainty evidence to suggest that metformin may be effective in preventing weight gain. Interpretation of this result and those for other agents, is limited by the small number of studies, small sample size, and short study duration. In future, we need studies that are adequately powered and with longer treatment durations to further evaluate the efficacy and safety of interventions for managing weight gain.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Zohra A Ahsan
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Jonathan T Lockwood
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Markus J Duncan
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Hiroyoshi Takeuchi
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Tony Cohn
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Valerie H Taylor
- Department of Psychiatry, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Remington
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Guy E J Faulkner
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Margaret Hahn
- Complex Care and Recovery, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Repeated Preoperative Intranasal Administration of Insulin Decreases the Incidence of Postoperative Delirium in Elderly Patients Undergoing Laparoscopic Radical Gastrointestinal Surgery: A Randomized, Placebo-Controlled, Double-Blinded Clinical Study. Am J Geriatr Psychiatry 2021; 29:1202-1211. [PMID: 33757723 DOI: 10.1016/j.jagp.2021.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/06/2023]
Abstract
STUDY OBJECTIVES This study aimed to investigate the effects of repeated preoperative intranasal administration of insulin on the incidence of postoperative delirium (POD) and the levels of serum pro-inflammatory markers in elderly patients undergoing laparoscopic radical gastrointestinal surgery. DESIGN Prospective, randomized, double-blinded, placebo-controlled clinical study. SETTING General Hospital of Western Theater Command from August 2019 to December 2019. PATIENTS Ninety elderly patients underwent laparoscopic radical gastrointestinal tumor resections under general anesthesia. INTERVENTIONS Patients were randomly divided into a control group (0.5 mL saline administered intranasally) or an insulin group (20 U/0.5 mL insulin administered intranasally) for 2 days prior to surgery, with 45 patients in each group. MEASUREMENTS The incidence of delirium was measured at postoperative day 1 (T2), day 3 (T3), and day 5 (T4) using the Confusion Assessment Method for the intensive care unit (CAM-ICU). Plasma levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured at T0 (before insulin or saline administration), T1 (at the end of surgery), T2, T3, and T4 by enzyme-linked immunosorbent assay. MAIN RESULTS Compared with the control group, the insulin group demonstrated a decreased POD incidence (12.5% vs. 47.5%, p = 0.001) within 5 days after surgery. The incidence of POD was significantly lower in the Ins group than in the Con group at T2 (12.5% vs. 32.5%, p = 0.032) and at T3 (2.5% vs. 20%, p = 0.034). The incidence of POD decreased in both groups over time and was similar at T4 (0% vs 10%, p = 0.116). Compared with the baseline value at T0, serum TNF-α, IL-6 and IL-1β concentrations increased significantly at T1-4 (p <0.05). Compared with the control group at the same time point, the expression levels of TNF-α, IL-6 and IL-1β in group I at T2 and T3 were significantly reduced (p <0.05). The incidence rates of adverse events were similar in the two groups. CONCLUSIONS Repeated preoperative intranasal administration of insulin prevented the occurrence of delirium after laparoscopic radical gastrointestinal surgery in elderly patients and reduced TNF-α, IL-1β, and IL-6 levels.
Collapse
|
4
|
Chen Q, Cao T, Li N, Zeng C, Zhang S, Wu X, Zhang B, Cai H. Repurposing of Anti-Diabetic Agents as a New Opportunity to Alleviate Cognitive Impairment in Neurodegenerative and Neuropsychiatric Disorders. Front Pharmacol 2021; 12:667874. [PMID: 34108878 PMCID: PMC8182376 DOI: 10.3389/fphar.2021.667874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment is a shared abnormality between type 2 diabetes mellitus (T2DM) and many neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease (AD) and schizophrenia. Emerging evidence suggests that brain insulin resistance plays a significant role in cognitive deficits, which provides the possibility of anti-diabetic agents repositioning to alleviate cognitive deficits. Both preclinical and clinical studies have evaluated the potential cognitive enhancement effects of anti-diabetic agents targeting the insulin pathway. Repurposing of anti-diabetic agents is considered to be promising for cognitive deficits prevention or control in these neurodegenerative and neuropsychiatric disorders. This article reviewed the possible relationship between brain insulin resistance and cognitive deficits. In addition, promising therapeutic interventions, especially current advances in anti-diabetic agents targeting the insulin pathway to alleviate cognitive impairment in AD and schizophrenia were also summarized.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
5
|
Kanagasundaram P, Lee J, Prasad F, Costa-Dookhan KA, Hamel L, Gordon M, Remington G, Hahn MK, Agarwal SM. Pharmacological Interventions to Treat Antipsychotic-Induced Dyslipidemia in Schizophrenia Patients: A Systematic Review and Meta Analysis. Front Psychiatry 2021; 12:642403. [PMID: 33815174 PMCID: PMC8010007 DOI: 10.3389/fpsyt.2021.642403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Introduction: Antipsychotic-induced dyslipidemia represents a common adverse effect faced by patients with schizophrenia that increases risk for developing further metabolic complications and cardiovascular disease. Despite its burden, antipsychotic-induced dyslipidemia is often left untreated, and the effectiveness of pharmacological interventions for mitigating dyslipidemia has not been well-addressed. This review aims to assess the effectiveness of pharmacological interventions in alleviating dyslipidemia in patients with schizophrenia. Methods: Medline, PsychInfo, and EMBASE were searched for all relevant English articles from 1950 to November 2020. Randomized placebo-controlled trials were included. Differences in changes in triglycerides, HDL cholesterol, LDL cholesterol, and VLDL cholesterol levels between treatment and placebo groups were meta-analyzed as primary outcomes. Results: Our review identified 48 randomized controlled trials that comprised a total of 3,128 patients and investigated 29 pharmacological interventions. Overall, pharmacological interventions were effective in lowering LDL cholesterol, triglycerides, and total cholesterol levels while increasing the levels of HDL cholesterol. Within the intervention subgroups, approved lipid-lowering agents did not reduce lipid parameters other than total cholesterol level, while antipsychotic switching and antipsychotic add-on interventions improved multiple lipid parameters, including triglycerides, LDL cholesterol, HDL cholesterol, and total cholesterol. Off label lipid lowering agents improved triglycerides and total cholesterol levels, with statistically significant changes seen with metformin. Conclusion: Currently available lipid lowering agents may not work as well in patients with schizophrenia who are being treated with antipsychotics. Additionally, antipsychotic switching, antipsychotic add-ons, and certain off label interventions might be more effective in improving some but not all associated lipid parameters. Future studies should explore novel interventions for effectively managing antipsychotic-induced dyslipidemia. Registration: PROSPERO 2020 CRD42020219982; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020219982.
Collapse
Affiliation(s)
- Pruntha Kanagasundaram
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jiwon Lee
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Femin Prasad
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Madeleine Gordon
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Trevino JT, Quispe RC, Khan F, Novak V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. JOURNAL OF CLINICAL TRIALS 2020; 10:439. [PMID: 33505777 PMCID: PMC7836101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intranasal drug administration is a promising method for delivering drugs directly to the brain. Animal studies have described pathways and potential brain targets, but nose-to-brain delivery and treatment efficacy in humans remains debated. We describe the proposed pathways and barriers for nose-to-brain drug delivery in humans, drug properties that influence central nervous system delivery, clinically tested methods to enhance absorption, and the devices used in clinical trials. This review compiles the available evidence for nose-to-brain drug delivery in humans and summarizes the factors involved in nose-to-brain drug delivery.
Collapse
Affiliation(s)
- J T Trevino
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R C Quispe
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - F Khan
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - V Novak
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Bloch K, Gil-Ad I, Vanichkin A, Hornfeld SH, Taler M, Dar S, Azarov D, Vardi P, Weizman A. Intracranial Transplantation of Pancreatic Islets Attenuates Cognitive and Peripheral Metabolic Dysfunctions in a Rat Model of Sporadic Alzheimer's Disease. J Alzheimers Dis 2019; 65:1445-1458. [PMID: 30175977 DOI: 10.3233/jad-180623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is often associated with brain insulin resistance and peripheral metabolic dysfunctions. Recently, we developed a model of sporadic AD associated with obesity-related peripheral metabolic abnormalities in Lewis rats using intracerebroventricular administration of streptozotocin (icv-STZ). OBJECTIVE We aimed to assess the effect of intracranially grafted pancreatic islets on cognitive and peripheral metabolic dysfunctions in the icv-STZ Lewis rats. METHODS AD-like dementia associated with obesity was induced in inbred Lewis rats using a single icv-STZ. Two months after icv-STZ, syngeneic islets (100 islets per recipient) were implanted in the cranial subarachnoid cavity of icv-STZ rats. Morris water maze and marble burying tests were used for studying cognitive and behavioral functions. Central and peripheral metabolic alterations were assessed by histological and biochemical assays. RESULTS The icv-STZ induced increases in food intake, body weight, and blood levels of insulin and leptin without alteration of glucose homeostasis. Grafted islets reduced body weight gain, food consumption, peripheral insulin resistance, and hyperleptinemia. Biochemical and histological analysis of the brain revealed viable grafted islets expressing insulin and glucagon. The grafted islets did not affect expression of brain insulin receptors and peripheral glucose homeostasis. Two months after islet transplantation, cognitive and behavioral functioning in transplanted rats were significantly better than the sham-operated icv-STZ rats. No significant differences in the locomotor activity between transplanted and non-transplanted icv-STZ rats were found. CONCLUSIONS Intracranial islet transplantation attenuates cognitive decline and peripheral metabolic dysfunctions providing a novel therapeutic approach for sporadic AD associated with peripheral metabolic dysfunctions.
Collapse
Affiliation(s)
- Konstantin Bloch
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Irit Gil-Ad
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Alexey Vanichkin
- Laboratory of Transplantation, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Shay Henry Hornfeld
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Michal Taler
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Shira Dar
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Dmitry Azarov
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Pnina Vardi
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Abraham Weizman
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel.,Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| |
Collapse
|
8
|
Agarwal SM, Kowalchuk C, Castellani L, Costa-Dookhan KA, Caravaggio F, Asgariroozbehani R, Chintoh A, Graff-Guerrero A, Hahn M. Brain insulin action: Implications for the treatment of schizophrenia. Neuropharmacology 2019; 168:107655. [PMID: 31152767 DOI: 10.1016/j.neuropharm.2019.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Insulin action in the central nervous system is a major regulator of energy balance and cognitive processes. The development of central insulin resistance is associated with alterations in dopaminergic reward systems and homeostatic signals affecting food intake, glucose metabolism, body weight and cognitive performance. Emerging evidence has highlighted a role for antipsychotics (APs) to modulate central insulin-mediated pathways. Although APs remain the cornerstone treatment for schizophrenia they are associated with severe metabolic complications and fail to address premorbid cognitive deficits, which characterize the disorder of schizophrenia. In this review, we first explore how the hypothesized association between schizophrenia and CNS insulin dysregulation aligns with the use of APs. We then investigate the proposed relationship between CNS insulin action and AP-mediated effects on metabolic homeostasis, and different domains of psychopathology, including cognition. We briefly discuss a potential role of CNS insulin signaling to explain the hypothesized, but somewhat controversial association between therapeutic efficacy and metabolic side effects of APs. Finally, we propose how this knowledge might inform novel treatment strategies to target difficult to treat domains of schizophrenia. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Schmid V, Kullmann S, Gfrörer W, Hund V, Hallschmid M, Lipp HP, Häring HU, Preissl H, Fritsche A, Heni M. Safety of intranasal human insulin: A review. Diabetes Obes Metab 2018; 20:1563-1577. [PMID: 29508509 DOI: 10.1111/dom.13279] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
AIMS To conduct a review in order to assess the safety of intranasal human insulin in clinical studies as well as the temporal stability of nasal insulin sprays. MATERIAL AND METHODS An electronic search was performed using MEDLINE. We selected original research on intranasal human insulin without further additives in humans. The studies included could be of any design as long as they used human intranasal insulin as their study product. All outcomes and adverse side effects were extracted. RESULTS A total of 38 studies in 1092 individuals receiving acute human intranasal insulin treatment and 18 studies in 832 individuals receiving human intranasal insulin treatment lasting between 21 days and 9.7 years were identified. No cases of symptomatic hypoglycaemia or severe adverse events (AEs) were reported. Transient local side effects in the nasal area were frequently experienced after intranasal insulin and placebo spray, while other AEs were less commonly reported. There were no reports of participants being excluded as a result of AEs. No instances of temporal stability of nasal insulin were reported in the literature. Tests on insulin that had been repacked into spray flasks showed that it had a chemical stability of up to 57 days. CONCLUSIONS Our retrospective review of published studies on intranasal insulin did not reveal any safety concerns; however, there were insufficient data to ensure the long-term safety of this method of chronic insulin administration. Improved insulin preparations that cause less nasal irritation would be desirable for future treatment.
Collapse
MESH Headings
- Administration, Intranasal
- Aerosols
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Drug Compounding
- Drug Stability
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/therapeutic use
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/adverse effects
- Insulin, Regular, Human/chemistry
- Insulin, Regular, Human/therapeutic use
- Protein Stability
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Vera Schmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
| | | | - Verena Hund
- University Pharmacy, University Hospital, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Centre at Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Kowalchuk C, Teo C, Wilson V, Chintoh A, Lam L, Agarwal SM, Giacca A, Remington GJ, Hahn MK. In male rats, the ability of central insulin to suppress glucose production is impaired by olanzapine, whereas glucose uptake is left intact. J Psychiatry Neurosci 2017; 42:424-431. [PMID: 29083297 PMCID: PMC5662464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Insulin receptors are widely expressed in the brain and may represent a crossroad between metabolic and cognitive disorders. Although antipsychotics, such as olanzapine, are the cornerstone treatment for schizophrenia, they are associated with high rates of type 2 diabetes and lack efficacy for illness-related cognitive deficits. Historically, this risk of diabetes was attributed to the weight gain propensity of antipsychotics, but recent work suggests antipsychotics can have weight-independent diabetogenic effects involving unknown brain-mediated mechanisms. Here, we examined whether antipsychotics disrupt central insulin action, hypothesizing that olanzapine would impair the well-established ability of central insulin to supress hepatic glucose production. METHODS Pancreatic euglycemic clamps were used to measure glucose kinetics alongside a central infusion of insulin or vehicle into the third ventricle. Male rats were pretreated with olanzapine or vehicle per our established model of acute olanzapine-induced peripheral insulin resistance. Groups included (central-peripheral) vehicle-vehicle (n = 11), insulin-vehicle (n = 10), insulin-olanzapine (n = 10) and vehicle-olanzapine (n = 8). RESULTS There were no differences in peripheral glucose or insulin levels. Unexpectedly, we showed that central insulin increased glucose uptake, and this effect was not perturbed by olanzapine. We replicated suppression of glucose production by insulin (clamp relative to basal: 77.9% ± 13.1%, all p < 0.05), an effect abolished by olanzapine (insulin-olanzapine: 7.7% ± 14%). LIMITATIONS This study used only male rats and an acute dose of olanzapine. CONCLUSION To our knowledge, this is the first study suggesting olanzapine may impair central insulin sensing, elucidating a potential mechanism of antipsychotic-induced diabetes and opening avenues of investigation related to domains of schizophrenia psychopathology.
Collapse
Affiliation(s)
| | | | - Virginia Wilson
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| | - Araba Chintoh
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| | - Loretta Lam
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| | - Sri Mahavir Agarwal
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| | - Adria Giacca
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| | - Gary J. Remington
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| | - Margaret K. Hahn
- From the Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kowalchuk, Teo, Wilson, Chintoh, Agarwal, Remington, Hahn); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kowalchuk, Giacca, Remington, Hahn); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Chintoh, Remington, Hahn); and the Department of Physiology, University of Toronto, Toronto, Ont., Canada (Lam, Giacca)
| |
Collapse
|
11
|
Kowalchuk C, Teo C, Wilson V, Chintoh A, Lam L, Agarwal SM, Giacca A, Remington GJ, Hahn MK. In male rats, the ability of central insulin to suppress glucose production is impaired by olanzapine, whereas glucose uptake is left intact. J Psychiatry Neurosci 2017; 42. [PMID: 29083297 PMCID: PMC5662464 DOI: 10.1503/jpn.170092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Insulin receptors are widely expressed in the brain and may represent a crossroad between metabolic and cognitive disorders. Although antipsychotics, such as olanzapine, are the cornerstone treatment for schizophrenia, they are associated with high rates of type 2 diabetes and lack efficacy for illness-related cognitive deficits. Historically, this risk of diabetes was attributed to the weight gain propensity of antipsychotics, but recent work suggests antipsychotics can have weight-independent diabetogenic effects involving unknown brain-mediated mechanisms. Here, we examined whether antipsychotics disrupt central insulin action, hypothesizing that olanzapine would impair the well-established ability of central insulin to supress hepatic glucose production. METHODS Pancreatic euglycemic clamps were used to measure glucose kinetics alongside a central infusion of insulin or vehicle into the third ventricle. Male rats were pretreated with olanzapine or vehicle per our established model of acute olanzapine-induced peripheral insulin resistance. Groups included (central-peripheral) vehicle-vehicle (n = 11), insulin-vehicle (n = 10), insulin-olanzapine (n = 10) and vehicle-olanzapine (n = 8). RESULTS There were no differences in peripheral glucose or insulin levels. Unexpectedly, we showed that central insulin increased glucose uptake, and this effect was not perturbed by olanzapine. We replicated suppression of glucose production by insulin (clamp relative to basal: 77.9% ± 13.1%, all p < 0.05), an effect abolished by olanzapine (insulin-olanzapine: 7.7% ± 14%). LIMITATIONS This study used only male rats and an acute dose of olanzapine. CONCLUSION To our knowledge, this is the first study suggesting olanzapine may impair central insulin sensing, elucidating a potential mechanism of antipsychotic-induced diabetes and opening avenues of investigation related to domains of schizophrenia psychopathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Margaret K. Hahn
- Correspondence to: M.K. Hahn, Centre for Addiction and Mental Health, 250 College St, Toronto ON M5T 1R8;
| |
Collapse
|
12
|
The Effectiveness of Pharmacological and Non-Pharmacological Interventions for Improving Glycaemic Control in Adults with Severe Mental Illness: A Systematic Review and Meta-Analysis. PLoS One 2017; 12:e0168549. [PMID: 28056018 PMCID: PMC5215855 DOI: 10.1371/journal.pone.0168549] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
People with severe mental illness (SMI) have reduced life expectancy compared with the general population, which can be explained partly by their increased risk of diabetes. We conducted a meta-analysis to determine the clinical effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in people with SMI (PROSPERO registration: CRD42015015558). A systematic literature search was performed on 30/10/2015 to identify randomised controlled trials (RCTs) in adults with SMI, with or without a diagnosis of diabetes that measured fasting blood glucose or glycated haemoglobin (HbA1c). Screening and data extraction were carried out independently by two reviewers. We used random effects meta-analysis to estimate effectiveness, and subgroup analysis and univariate meta-regression to explore heterogeneity. The Cochrane Collaboration’s tool was used to assess risk of bias. We found 54 eligible RCTs in 4,392 adults (40 pharmacological, 13 behavioural, one mixed intervention). Data for meta-analysis were available from 48 RCTs (n = 4052). Both pharmacological (mean difference (MD), -0.11mmol/L; 95% confidence interval (CI), [-0.19, -0.02], p = 0.02, n = 2536) and behavioural interventions (MD, -0.28mmol//L; 95% CI, [-0.43, -0.12], p<0.001, n = 956) were effective in lowering fasting glucose, but not HbA1c (pharmacological MD, -0.03%; 95% CI, [-0.12, 0.06], p = 0.52, n = 1515; behavioural MD, 0.18%; 95% CI, [-0.07, 0.42], p = 0.16, n = 140) compared with usual care or placebo. In subgroup analysis of pharmacological interventions, metformin and antipsychotic switching strategies improved HbA1c. Behavioural interventions of longer duration and those including repeated physical activity had greater effects on fasting glucose than those without these characteristics. Baseline levels of fasting glucose explained some of the heterogeneity in behavioural interventions but not in pharmacological interventions. Although the strength of the evidence is limited by inadequate trial design and reporting and significant heterogeneity, there is some evidence that behavioural interventions, antipsychotic switching, and metformin can lead to clinically important improvements in glycaemic measurements in adults with SMI.
Collapse
|
13
|
Jiang Y, Li Y, Liu X. Intranasal delivery: circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv 2015. [PMID: 26206202 DOI: 10.1517/17425247.2015.1065812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is like an iron curtain that prevents exogenous substances, including most drugs, from entering the CNS. Intranasal delivery has been demonstrated to circumvent the BBB due to the special anatomy of the olfactory and trigeminal neural pathways that connect the nasal mucosa with the brain and the perivascular pathway within the CNS. In the last two decades, the concepts, mechanisms and pathways of intranasal delivery to the CNS have led to great success both in preclinical and clinical studies. More researchers have translated results from bench to bedside, and a number of publications have reported the clinical application of intranasal delivery. AREAS COVERED This review summarizes results from recent clinical trials utilizing intranasal delivery of therapeutics to explore its pharmacokinetics and application to treating neurological disorders. Moreover, existing problems with the methods and possible solutions have also been discussed. The promising results from clinical trials have demonstrated that intranasal delivery provides an extraordinary approach for circumventing the BBB. Many drugs, including high-molecular-weight molecules, could potentially improve the treatment of neurological disorders via intranasal administration. EXPERT OPINION Intranasal delivery is a novel method with great potential for delivering and targeting therapeutics to the CNS to treat neurological disorders.
Collapse
Affiliation(s)
- Yongjun Jiang
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Yun Li
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Xinfeng Liu
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| |
Collapse
|
14
|
Mizuno Y, Suzuki T, Nakagawa A, Yoshida K, Mimura M, Fleischhacker WW, Uchida H. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 2014; 40:1385-403. [PMID: 24636967 PMCID: PMC4193713 DOI: 10.1093/schbul/sbu030] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Antipsychotic-induced metabolic adversities are often difficult to manage. Using concomitant medications to counteract these adversities may be a rational option. OBJECTIVE To systematically determine the effectiveness of medications to counteract antipsychotic-induced metabolic adversities in patients with schizophrenia. DATA SOURCES Published articles until November 2013 were searched using 5 electronic databases. Clinical trial registries were searched for unpublished trials. STUDY SELECTION Double-blind randomized placebo-controlled trials focusing on patients with schizophrenia were included if they evaluated the effects of concomitant medications on antipsychotic-induced metabolic adversities as a primary outcome. DATA EXTRACTION Variables relating to participants, interventions, comparisons, outcomes, and study design were extracted. The primary outcome was change in body weight. Secondary outcomes included clinically relevant weight change, fasting glucose, hemoglobin A1c, fasting insulin, insulin resistance, cholesterol, and triglycerides. DATA SYNTHESIS Forty trials representing 19 unique interventions were included in this meta-analysis. Metformin was the most extensively studied drug in regard to body weight, the mean difference amounting to -3.17 kg (95% CI: -4.44 to -1.90 kg) compared to placebo. Pooled effects for topiramate, sibutramine, aripiprazole, and reboxetine were also different from placebo. Furthermore, metformin and rosiglitazone improved insulin resistance, while aripiprazole, metformin, and sibutramine decreased blood lipids. CONCLUSION When nonpharmacological strategies alone are insufficient, and switching antipsychotics to relatively weight-neutral agents is not feasible, the literature supports the use of concomitant metformin as first choice among pharmacological interventions to counteract antipsychotic-induced weight gain and other metabolic adversities in schizophrenia.
Collapse
Affiliation(s)
- Yuya Mizuno
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takefumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, Inokashira Hospital, Tokyo, Japan
| | - Atsuo Nakagawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Center for Clinical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|