1
|
Chronic N-Acetylcysteine Treatment Prevents Amphetamine-Induced Hyperactivity in Heterozygous Disc1 Mutant Mice, a Putative Prodromal Schizophrenia Animal Model. Int J Mol Sci 2022; 23:ijms23169419. [PMID: 36012679 PMCID: PMC9408838 DOI: 10.3390/ijms23169419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Symptoms of schizophrenia (SZ) typically emerge during adolescence to young adulthood, which gives a window before full-blown psychosis for early intervention. Strategies for preventing the conversion from the prodromal phase to the psychotic phase are warranted. Heterozygous (Het) Disc1 mutant mice are considered a prodromal model of SZ, suitable for studying psychotic conversion. We evaluated the preventive effect of chronic N-acetylcysteine (NAC) administration, covering the prenatal era to adulthood, on the reaction following the Amph challenge, which mimics the outbreak or conversion of psychosis, in adult Het Disc1 mice. Biochemical and morphological features were examined in the striatum of NAC-treated mice. Chronic NAC treatment normalized the Amph-induced activity in the Het Disc1 mice. Furthermore, the striatal phenotypes of Het Disc1 mice were rescued by NAC including dopamine receptors, the expression of GSK3s, MSN dendritic impairments, and striatal PV density. The current study demonstrated a potent preventive effect of chronic NAC treatment in Disc1 Het mice on the acute Amph test, which mimics the outbreak of psychosis. Our findings not only support the benefit of NAC as a dietary supplement for SZ prodromes, but also advance our knowledge of striatal dopamine receptors, PV neurons, and GSK3 signaling pathways as therapeutic targets for treating or preventing the pathogenesis of mental disorders.
Collapse
|
2
|
Uehara T, Kurachi M, Kondo T, Abe H, Itoh H, Sumiyoshi T, Suzuki M. Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine. J Pers Med 2022; 12:jpm12030366. [PMID: 35330366 PMCID: PMC8951253 DOI: 10.3390/jpm12030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Accumulating evidence implicates oxidative stress as a potential pathophysiological mechanism of schizophrenia. Accordingly, we synthesized new chemicals using apocynin and tandospirone as lead compounds (A-2, A-3 and A-4). These novel compounds decreased reactive oxygen species (ROS) concentrations in vitro and reversed decreases in glutathione levels in the medial prefrontal cortex of rats transiently exposed to MK-801, an N-methyl-d-aspartate receptor antagonist, in the neonatal period. To determine whether A-2, A-3 and A-4 show behavioral effects associated with antipsychotic properties, the effects of these compounds on methamphetamine (MAP)-induced locomotor and vertical activity were examined in the model rats. A-2 and A-3, administered for 14 days around the puberty period, ameliorated MAP-induced hyperlocomotion in MK-801-treated rats in the post-puberty period, while A-4 suppressed MAP-induced vertical activity. These findings indicate that apocynin-tandospirone derivatives present anti-dopaminergic effects and may alleviate psychotic symptoms of schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Uchinada 920-0293, Japan
- Correspondence: ; Tel.: +81-76-286-2211 (ext. 3437); Fax: +81-76-286-3341
| | - Masayoshi Kurachi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.K.); (H.I.); (M.S.)
| | - Takashi Kondo
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya 464-8603, Japan;
| | - Hitoshi Abe
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan;
| | - Hiroko Itoh
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.K.); (H.I.); (M.S.)
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.K.); (H.I.); (M.S.)
| |
Collapse
|
3
|
Benvenutti R, Gallas-Lopes M, Sachett A, Marcon M, Strogulski NR, Reis CG, Chitolina R, Piato A, Herrmann AP. How do zebrafish (Danio rerio) respond to MK-801 and amphetamine? Relevance for assessing schizophrenia-related endophenotypes in alternative model organisms. J Neurosci Res 2021; 99:2844-2859. [PMID: 34496062 DOI: 10.1002/jnr.24948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/21/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Schizophrenia pathophysiology has been associated with dopaminergic hyperactivity, NMDA receptor hypofunction, and redox dysregulation. Most behavioral assays and animal models to study this condition were developed in rodents, leaving room for species-specific biases that could be avoided by cross-species approaches. As MK-801 and amphetamine are largely used in mice and rats to mimic schizophrenia features, this study aimed to compare the effects of these drugs in several zebrafish (Danio rerio) behavioral assays. Male and female adult zebrafish were exposed to MK-801 (1, 5, and 10 μM) or amphetamine (0.625, 2.5, and 10 mg/L) and observed in paradigms of locomotor activity and social behavior. Oxidative parameters were quantified in brain tissue. Our results demonstrate that MK-801 disrupted social interaction, an effect that resembles the negative symptoms of schizophrenia. It also altered locomotion in a context-dependent manner, with hyperactivity when fish were tested in the presence of social cues and hypoactivity when tested alone. On the other hand, exposure to amphetamine was devoid of effects on locomotion and social behavior, while it increased lipid peroxidation in the brain. Key outcomes induced by MK-801 in rodents, such as social interaction deficit and locomotor alterations, were replicated in zebrafish, corroborating previous studies and reinforcing the use of zebrafish to study schizophrenia-related endophenotypes. More studies are necessary to assess the predictive validity of preclinical paradigms with this species and ultimately optimize the screening of potential novel treatments.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Matheus Gallas-Lopes
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adrieli Sachett
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Matheus Marcon
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nathan Ryzewski Strogulski
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Guilherme Reis
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Chitolina
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Angelo Piato
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Herrmann
- Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Post-weaning social isolation impairs purinergic signaling in rat brain. Neurochem Int 2021; 148:105111. [PMID: 34171414 DOI: 10.1016/j.neuint.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023]
Abstract
Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.
Collapse
|
5
|
Smaga I, Frankowska M, Filip M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br J Pharmacol 2021; 178:2569-2594. [PMID: 33760228 DOI: 10.1111/bph.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
N-acetylcysteine (NAC) is a well-known and safe mucolytic agent, also used in patients with paracetamol overdose. In addition to these effects, recent preclinical and clinical studies have shown that NAC exerts beneficial effects on different psychiatric disorders. Many potential mechanisms have been proposed to underlie the therapeutic effects of NAC, including the regulation of several neurotransmitters, oxidative homeostasis, and inflammatory mediators. In this paper, we summarize the current knowledge on the ability of NAC to ameliorate symptoms and neuropathologies related to different psychiatric disorders, including attention deficit hyperactivity disorder, anxiety, bipolar disorder, depression, obsessive-compulsive disorder, obsessive-compulsive-related disorder, posttraumatic stress disorder, and schizophrenia. Although preclinical studies have shown a positive effect of NAC on animal models of psychiatric disorders, the clinical efficacy of NAC is not fully established. NAC remains a strong candidate for adjunct treatment for many psychiatric disorders, but additional preclinical and clinical studies are needed.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
6
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
7
|
Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther 2020; 210:107520. [PMID: 32165136 DOI: 10.1016/j.pharmthera.2020.107520] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.
Collapse
|
8
|
Zhang XQ, Yu ZP, Ling Y, Zhao QQ, Zhang ZY, Wang ZC, Shen HW. Enduring effects of juvenile social isolation on physiological properties of medium spiny neurons in nucleus accumbens. Psychopharmacology (Berl) 2019; 236:3281-3289. [PMID: 31197434 DOI: 10.1007/s00213-019-05284-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
RATIONALE Juvenile social isolation (SI) and neglect is associated with a wide range of psychiatric disorders. While dysfunction of the corticolimbic pathway is considered to link various abnormal behaviors in SI models of schizophrenia, the enduring effects of early social deprivation on physiological properties of medium spiny neurons (MSNs) in nucleus accumbens (NAc) are not well understood. OBJECTIVES This study investigated the impacts of juvenile SI on locomotor activity to methamphetamine (METH) and neurophysiological characteristics of MSNs in the core of NAc. METHODS Socially isolated C57BL/6 mice experienced single housing for 4 weeks on postnatal day (PND) 21. The locomotor response to METH (1.0 mg/kg) was observed in both socially isolated and group-housed mice at PND 56. The effects of juvenile SI on the excitatory synaptic events in MSNs and the intrinsic excitability of MSNs in NAc core were investigated in other batches during PND 63-70. RESULTS Socially isolated mice showed locomotor hypersensitivity to METH, although the expression of locomotor sensitization to METH in socially isolated mice was not different from group-housed mice. The recordings from MSNs of SI-reared mice exhibited higher frequency and smaller amplitude of miniature/spontaneous excitatory postsynaptic current than those from group-reared mice. Moreover, SI resulted in increased intrinsic excitability of MSNs in adult mice. CONCLUSIONS These results demonstrate neuronal hyperactivity in the NAc of socially isolated mice, which could contribute to locomotor hypersensitivity to METH. Furthermore, the findings indicate a biological link between early negative life events and the vulnerability to psychostimulant-induced psychosis in adulthood.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Yu Ling
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Qi-Qi Zhao
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhong-Yu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Zheng-Chun Wang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
9
|
Fosnocht AQ, Lucerne KE, Ellis AS, Olimpo NA, Briand LA. Adolescent social isolation increases cocaine seeking in male and female mice. Behav Brain Res 2018; 359:589-596. [PMID: 30296530 DOI: 10.1016/j.bbr.2018.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023]
Abstract
Childhood and adolescent adversity are associated with a wide range of psychiatric disorders, including an increased risk for substance abuse. Despite this, the mechanisms underlying the ability of chronic stress during adolescence to alter reward signaling remains largely unexplored. Understanding how adolescent stress increases addiction-like phenotypes could inform the development of targeted interventions both before and after drug use. The current study examined how prolonged isolation stress, beginning during adolescence, affected behavioral and neuronal underpinnings to the response to cocaine in male and female mice. Adolescent-onset social isolation did not alter the ability of mice to learn an operant response for food, nor influence food self-administration or motivation for food on a progressive ratio schedule. However, male and female social isolation mice exhibited an increase in motivation for cocaine and cocaine seeking during a cue-induced reinstatement session. Additionally, we demonstrated that adolescent-onset social isolation increased cocaine-induced neuronal activation, as assessed by c-Fos expression, within the nucleus accumbens core and shell, ventral pallidum, dorsal bed nucleus of the stria terminalis, lateral septum and basolateral amygdala. Taken together, the present studies demonstrate that social isolation stress during adolescence augments the behavioral responses to cocaine during adulthood and alters the responsiveness of reward-related brain circuitry.
Collapse
Affiliation(s)
| | | | | | | | - Lisa A Briand
- Department of Psychology, United States; Neuroscience Program, Temple University, United States.
| |
Collapse
|
10
|
Peres FF, Diana MC, Levin R, Suiama MA, Almeida V, Vendramini AM, Santos CM, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC. Cannabidiol Administered During Peri-Adolescence Prevents Behavioral Abnormalities in an Animal Model of Schizophrenia. Front Pharmacol 2018; 9:901. [PMID: 30186164 PMCID: PMC6113576 DOI: 10.3389/fphar.2018.00901] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is considered a debilitating neurodevelopmental psychiatric disorder and its pharmacotherapy remains problematic without recent major advances. The development of interventions able to prevent the emergence of schizophrenia would therefore represent an enormous progress. Here, we investigated whether treatment with cannabidiol (CBD - a compound of Cannabis sativa that presents an antipsychotic profile in animals and humans) during peri-adolescence would prevent schizophrenia-like behavioral abnormalities in an animal model of schizophrenia: the spontaneously hypertensive rat (SHR) strain. Wistar rats and SHRs were treated with vehicle or CBD from 30 to 60 post-natal days. In experiment 1, schizophrenia-like behaviors (locomotor activity, social interaction, prepulse inhibition of startle and contextual fear conditioning) were assessed on post-natal day 90. Side effects commonly associated with antipsychotic treatment were also evaluated: body weight gain and catalepsy throughout the treatment, and oral dyskinesia 48 h after treatment interruption and on post-natal day 90. In experiment 2, serum levels of triglycerides and glycemia were assessed on post-natal day 61. In experiment 3, levels of BDNF, monoamines, and their metabolites were evaluated on post-natal days 61 and 90 in the prefrontal cortex and striatum. Treatment with CBD prevented the emergence of SHRs' hyperlocomotor activity (a model for the positive symptoms of schizophrenia) and deficits in prepulse inhibition of startle and contextual fear conditioning (cognitive impairments). CBD did not induce any of the potential motor or metabolic side effects evaluated. Treatment with CBD increased the prefrontal cortex 5-HIAA/serotonin ratio and the levels of 5-HIAA on post-natal days 61 and 90, respectively. Our data provide pre-clinical evidence for a safe and beneficial effect of peripubertal and treatment with CBD on preventing positive and cognitive symptoms of schizophrenia, and suggest the involvement of the serotoninergic system on this effect.
Collapse
Affiliation(s)
- Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana C Diana
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M Vendramini
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Camila M Santos
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Antônio W Zuardi
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Mocelin R, Marcon M, D’ambros S, Mattos J, Sachett A, Siebel AM, Herrmann AP, Piato A. N-Acetylcysteine Reverses Anxiety and Oxidative Damage Induced by Unpredictable Chronic Stress in Zebrafish. Mol Neurobiol 2018; 56:1188-1195. [PMID: 29876880 DOI: 10.1007/s12035-018-1165-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
|
12
|
Herrmann AP, Andrejew R, Benvenutti R, Gama CS, Elisabetsky E. Effects of N-acetylcysteine on amphetamine-induced sensitization in mice. ACTA ACUST UNITED AC 2017; 40:169-173. [PMID: 29236922 PMCID: PMC6900759 DOI: 10.1590/1516-4446-2017-2337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022]
Abstract
Objective: N-acetylcysteine (NAC) is beneficial in psychiatric conditions, including schizophrenia. Patients with schizophrenia exhibit mesolimbic dopamine hyperfunction consequent to an endogenous sensitization process. This sensitization can be modeled in rodents by repeated exposure to psychostimulants, provoking an enduring amplified response at subsequent exposure. The aim of this study was to investigate the effects of NAC on amphetamine sensitization in mice. Methods: D-amphetamine was administered to C57BL/6 mice three times a week for 3 weeks; the dose was increased weekly from 1 to 3 mg/kg. NAC (60 mg/kg) or saline was administered intraperitoneally before saline or amphetamine during the second and third weeks. After a 4-week washout period, latent inhibition (LI) and the locomotor response to amphetamine 2 mg/kg were assessed. Results: Sensitization disrupted LI and amplified the locomotor response; NAC disrupted LI in control mice. In sensitized animals, NAC attenuated the enhanced locomotion but failed to prevent LI disruption. Conclusion: NAC warrants consideration as a candidate for early intervention in ultra-high risk subjects due to its safety profile and the relevance of its mechanism of action. Supplementing this proposition, we report that NAC attenuates sensitization-induced locomotor enhancement in mice. The finding that NAC disrupted LI incites a cautionary note and requires clarification.
Collapse
Affiliation(s)
- Ana P Herrmann
- Grupo de Estudos Biológicos e Clínicos em Patologias Humanas, Universidade Federal da Fronteira Sul (UFFS), Chapecó, SC, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Roberta Andrejew
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Clarissa S Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Aguiar GPS, Marcon M, Mocelin R, Herrmann AP, Chaves LM, Piato AL, Lanza M, Oliveira J. Micronization of N -acetylcysteine by supercritical fluid: Evaluation of in vitro and in vivo biological activity. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lampert C, Arcego DM, de Sá Couto-Pereira N, Dos Santos Vieira A, Toniazzo AP, Krolow R, Garcia E, Vendite DA, Calcagnotto ME, Dalmaz C. Short post-weaning social isolation induces long-term changes in the dopaminergic system and increases susceptibility to psychostimulants in female rats. Int J Dev Neurosci 2017; 61:21-30. [PMID: 28559209 DOI: 10.1016/j.ijdevneu.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 05/24/2017] [Indexed: 12/09/2022] Open
Abstract
Childhood and adolescence are sensitive periods of development, marked by high brain maturation and plasticity. Exposure to early life stress, such as social isolation, is able to prompt changes in sensitive brain circuitries, essentially in the mesolimbic dopaminergic system and increase the risk for addictive behaviors later in life. Post-weaning social isolation can stimulate the consumption of rewarding substances, like drugs of abuse and palatable foods. However, most studies analyze long periods of social isolation and very little is known about the effects of a brief social isolation in a sensitive period of development and its association with palatable food on the reward system sensitization. Furthermore, females are more susceptible to the reinforcing effect of drugs than males. Therefore, the aim of this study was to analyze the effects of a short post-weaning social isolation combined with a free access to a chronic high sugar diet (HSD) on the dopaminergic system, oxidative status and behavioral response to an amphetamine-like drug in adulthood. We used female Wistar rats that were socially isolated from post-natal days (PD) 21 to 35 and received free access to a HSD until PD 60. On PD 65, animals were submitted to a challenge with diethylpropion (DEP), an amphetamine-like drug and different responses were analyzed: locomotor activity, immmunocontent of dopamine related proteins, and the oxidative status in the striatum, before and after the DEP challenge. We showed that a short post-weaning social isolation (SI) increased the locomotor response to DEP, when compared with previous saline administration. Social isolation also increased dopamine transporter, tyrosine hydroxylase, and decreased dopamine D2 receptor immunocontent. Additionally, SI increased the overall oxidative status parameters after the challenge with DEP. Interestingly, the exposure to a HSD prevented the SI effects on locomotor response, but did not interfere in the dopaminergic parameters evaluated, despite having modified some oxidative parameters. This study showed for the first time that a short post-weaning social isolation was able to induce long-term changes in the striatal dopaminergic system and increased the response to psychostimulants. These results emphasize the importance of stressful experiences during a short period of development on programming susceptibility to psychostimulants later in life.
Collapse
Affiliation(s)
- Carine Lampert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Danusa Mar Arcego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aline Dos Santos Vieira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Toniazzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Emily Garcia
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Deusa Aparecida Vendite
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Hashimoto K. Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets 2014; 18:1049-63. [PMID: 24965576 DOI: 10.1517/14728222.2014.934225] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|