1
|
Roddy DW, Roman E, Nasa A, Gazzaz A, Zainy A, Burke T, Staines L, Kelleher I, O'Neill A, Clarke M, O'Hanlon E, Cannon M. Microstructural changes along the cingulum in young adolescents with psychotic experiences: An along-tract analysis. Eur J Neurosci 2022; 56:5116-5131. [PMID: 36004608 PMCID: PMC9825926 DOI: 10.1111/ejn.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Psychotic experiences (PEs) such as hallucinations and delusions are common among young people without psychiatric diagnoses and are associated with connectivity and white matter abnormalities, particularly in the limbic system. Using diffusion magnetic resonance imaging (MRI) in adolescents with reported PEs and matched controls, we examined the cingulum white matter tract along its length rather than as the usually reported single indivisible structure. Complex regional differences in diffusion metrics were found along the bundle at key loci following Bonferroni significance adjustment (p < .00013) with moderate to large effect sizes (.11-.76) throughout all significant subsegments. In this prospective community-based cohort of school-age children, these findings suggest that white matter alterations in the limbic system may be more common in the general non-clinical adolescent population than previously thought. Such white matter alternations may only be uncovered using a similar more granular along-tract analysis of white matter tracts.
Collapse
Affiliation(s)
- Darren William Roddy
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland,Trinity College Institute of Neuroscience, Lloyd BuildingTrinity College DublinDublinIreland
| | - Elena Roman
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Anurag Nasa
- Trinity College Institute of Neuroscience, Lloyd BuildingTrinity College DublinDublinIreland
| | - Areej Gazzaz
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Ahmed Zainy
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Tom Burke
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Lorna Staines
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Ian Kelleher
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Aisling O'Neill
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Mary Clarke
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Erik O'Hanlon
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland,Trinity College Institute of Neuroscience, Lloyd BuildingTrinity College DublinDublinIreland
| | - Mary Cannon
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
2
|
Silva AI, Ehrhart F, Ulfarsson MO, Stefansson H, Stefansson K, Wilkinson LS, Hall J, Linden DEJ. Neuroimaging Findings in Neurodevelopmental Copy Number Variants: Identifying Molecular Pathways to Convergent Phenotypes. Biol Psychiatry 2022; 92:341-361. [PMID: 35659384 DOI: 10.1016/j.biopsych.2022.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Genomic copy number variants (CNVs) are associated with a high risk of neurodevelopmental disorders. A growing body of genetic studies suggests that these high-risk genetic variants converge in common molecular pathways and that common pathways also exist across clinically distinct disorders, such as schizophrenia and autism spectrum disorder. A key question is how common molecular mechanisms converge into similar clinical outcomes. We review emerging evidence for convergent cognitive and brain phenotypes across distinct CNVs. Multiple CNVs were shown to have similar effects on core sensory, cognitive, and motor traits. Emerging data from multisite neuroimaging studies have provided valuable information on how these CNVs affect brain structure and function. However, most of these studies examined one CNV at a time, making it difficult to fully understand the proportion of shared brain effects. Recent studies have started to combine neuroimaging data from multiple CNV carriers and identified similar brain effects across CNVs. Some early findings also support convergence in CNV animal models. Systems biology, through integration of multilevel data, provides new insights into convergent molecular mechanisms across genetic risk variants (e.g., altered synaptic activity). However, the link between such key molecular mechanisms and convergent psychiatric phenotypes is still unknown. To better understand this link, we need new approaches that integrate human molecular data with neuroimaging, cognitive, and animal model data, while taking into account critical developmental time points. Identifying risk mechanisms across genetic loci can elucidate the pathophysiology of neurodevelopmental disorders and identify new therapeutic targets for cross-disorder applications.
Collapse
Affiliation(s)
- Ana I Silva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom.
| | - Friederike Ehrhart
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Magnus O Ulfarsson
- deCODE genetics, Amgen, Reykjavik, Iceland; Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | | | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
3
|
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK, Zhang F, Billah T, Bouix S, Kubicki M, Bearden CE, Pasternak O. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry 2021; 11:580. [PMID: 34759270 PMCID: PMC8581007 DOI: 10.1038/s41398-021-01703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Monica Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Julio E Villalon-Reina
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
4
|
Brain microstructural abnormalities in 22q11.2 deletion syndrome: A systematic review of diffusion tensor imaging studies. Eur Neuropsychopharmacol 2021; 52:96-135. [PMID: 34358796 DOI: 10.1016/j.euroneuro.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
22q11.2 deletion syndrome (22q11DS) is a severe genetic syndrome characterized by cognitive deficits and neuropsychiatric disorders, particularly schizophrenia. Neuroimaging alterations have been extensively reported in 22q11DS, both in gray and white matter structures. However, a considerable variability among the results affects the generalizability of the findings to date. Herein, we reviewed diffusion tensor imaging (DTI) findings in 22q11DS, their association with psychosis and cognition, and the implications of DTI studies on neurodevelopment in 22q11DS. We also investigated differences between 22q11DS and schizophrenic patients without 22q11DS. Using an online search of PubMed and Embase, we identified studies investigating DTI findings in 22q11DS. After selecting eligible studies in accordance with the preferred reporting items for systematic reviews and meta-analyses guideline, we included thirty-one studies. Overall, 22q11DS patients show altered structural connectivity and disrupted microstructural organization of most cortical and subcortical structures and white matter tracts. Moreover, despite a significant heterogeneity in the results, reduced diffusivity measures and elevated fractional anisotropy were observed. However controversial, compared to typically developing children, 22q11DS patients reached the peak of fractional anisotropy (FA) and the trough of radial diffusivity (RD) at an older age, which shows neurodevelopmental delay. DTI measures were also associated with psychotic symptoms and cognitive deficits. In conclusion, this study provides a comprehensive review of microstructural alterations in 22q11DS. Future larger investigations on this syndrome could potentially lead to the detection of early diagnostic imaging markers for genetically induced schizophrenia, thus improving the treatment and, ultimately, the outcome.
Collapse
|
5
|
Nakamura M, Ye K, E Silva MB, Yamauchi T, Hoeppner DJ, Fayyazuddin A, Kang G, Yuda EA, Nagashima M, Enomoto S, Hiramoto T, Sharp R, Kaneko I, Tajinda K, Adachi M, Mihara T, Tokuno S, Geyer MA, Broin PÓ, Matsumoto M, Hiroi N. Computational identification of variables in neonatal vocalizations predictive for postpubertal social behaviors in a mouse model of 16p11.2 deletion. Mol Psychiatry 2021; 26:6578-6588. [PMID: 33859357 PMCID: PMC8517042 DOI: 10.1038/s41380-021-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.
Collapse
Affiliation(s)
- Mitsuteru Nakamura
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenny Ye
- Department of Epidemiology and Health Science, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariel Barbachan E Silva
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel J Hoeppner
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Amir Fayyazuddin
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Emi A Yuda
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masako Nagashima
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shingo Enomoto
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Sharp
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Itaru Kaneko
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsunori Tajinda
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Megumi Adachi
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Shinichi Tokuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki-shi, Kanagawa, Japan
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Mitsuyuki Matsumoto
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cell Systems Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Seitz-Holland J, Cetin-Karayumak S, Wojcik JD, Lyall A, Levitt J, Shenton ME, Pasternak O, Westin CF, Baxi M, Kelly S, Mesholam-Gately R, Vangel M, Pearlson G, Tamminga CA, Sweeney JA, Clementz BA, Schretlen D, Viher PV, Stegmayer K, Walther S, Lee J, Crow T, James A, Voineskos A, Buchanan RW, Szeszko PR, Malhotra AK, Rathi Y, Keshavan M, Kubicki M. Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia-a multicenter harmonized diffusion tensor imaging study. Mol Psychiatry 2021; 26:5357-5370. [PMID: 33483689 PMCID: PMC8329919 DOI: 10.1038/s41380-021-01018-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joanne D Wojcik
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Amanda Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Levitt
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program of Neuroscience, Boston University, Boston, MA, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petra Verena Viher
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Tim Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Anthony James
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York, NY, USA
| | - Anil K Malhotra
- The Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Villalón-Reina JE, Martínez K, Qu X, Ching CRK, Nir TM, Kothapalli D, Corbin C, Sun D, Lin A, Forsyth JK, Kushan L, Vajdi A, Jalbrzikowski M, Hansen L, Jonas RK, van Amelsvoort T, Bakker G, Kates WR, Antshel KM, Fremont W, Campbell LE, McCabe KL, Daly E, Gudbrandsen M, Murphy CM, Murphy D, Craig M, Emanuel B, McDonald-McGinn DM, Vorstman JA, Fiksinski AM, Koops S, Ruparel K, Roalf D, Gur RE, Eric Schmitt J, Simon TJ, Goodrich-Hunsaker NJ, Durdle CA, Doherty JL, Cunningham AC, van den Bree M, Linden DEJ, Owen M, Moss H, Kelly S, Donohoe G, Murphy KC, Arango C, Jahanshad N, Thompson PM, Bearden CE. Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study. Mol Psychiatry 2020; 25:2818-2831. [PMID: 31358905 PMCID: PMC6986984 DOI: 10.1038/s41380-019-0450-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/09/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.
Collapse
Affiliation(s)
- Julio E. Villalón-Reina
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Kenia Martínez
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Universidad Complutense, School of Medicine, IiSGM, Madrid, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.119375.80000000121738416Universidad Europea de Madrid, Madrid, Spain
| | - Xiaoping Qu
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Christopher R. K. Ching
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Talia M. Nir
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Deydeep Kothapalli
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Conor Corbin
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Daqiang Sun
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA ,grid.417119.b0000 0001 0384 5381Department of Mental Health, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA USA
| | - Amy Lin
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Jennifer K. Forsyth
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Leila Kushan
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Ariana Vajdi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Maria Jalbrzikowski
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Laura Hansen
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Rachel K. Jonas
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Therese van Amelsvoort
- grid.5012.60000 0001 0481 6099Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Geor Bakker
- grid.5012.60000 0001 0481 6099Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Wendy R. Kates
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY USA
| | - Kevin M. Antshel
- grid.264484.80000 0001 2189 1568Department of Psychology, Syracuse University, Syracuse, NY USA
| | - Wanda Fremont
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY USA
| | - Linda E. Campbell
- grid.266842.c0000 0000 8831 109XPriority Research Centre GrowUpWell, University of Newcastle, Newcastle, Australia ,grid.266842.c0000 0000 8831 109XSchool of Psychology, University of Newcastle, Newcastle, Australia
| | - Kathryn L. McCabe
- grid.266842.c0000 0000 8831 109XSchool of Psychology, University of Newcastle, Newcastle, Australia ,grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA
| | - Eileen Daly
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Maria Gudbrandsen
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Clodagh M. Murphy
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK ,grid.451052.70000 0004 0581 2008Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Declan Murphy
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Michael Craig
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK ,grid.415717.10000 0001 2324 5535National Autism Unit, Bethlem Royal Hospital, Bethlem, UK
| | - Beverly Emanuel
- grid.25879.310000 0004 1936 8972Division of Human Genetics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Donna M. McDonald-McGinn
- grid.25879.310000 0004 1936 8972Division of Human Genetics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jacob A.S. Vorstman
- grid.7692.a0000000090126352Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.42327.300000 0004 0473 9646Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Ania M. Fiksinski
- grid.7692.a0000000090126352Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.155956.b0000 0000 8793 5925Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428The Dalglish Family 22q Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, ON Canada
| | - Sanne Koops
- grid.7692.a0000000090126352Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kosha Ruparel
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - David Roalf
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Raquel E. Gur
- grid.239552.a0000 0001 0680 8770Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - J. Eric Schmitt
- grid.25879.310000 0004 1936 8972Departments of Radiology and Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Tony J. Simon
- grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA
| | - Naomi J. Goodrich-Hunsaker
- grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA ,grid.253294.b0000 0004 1936 9115Brigham Young University, Provo, UT USA ,grid.223827.e0000 0001 2193 0096Department of Neurology, University of Utah, Salt Lake City, UT USA
| | - Courtney A. Durdle
- grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA
| | - Joanne L. Doherty
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK ,grid.5600.30000 0001 0807 5670The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales UK
| | - Adam C. Cunningham
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - Marianne van den Bree
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - David E. J. Linden
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK ,grid.5600.30000 0001 0807 5670The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales UK
| | - Michael Owen
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - Hayley Moss
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - Sinead Kelly
- grid.38142.3c000000041936754XDepartment of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Gary Donohoe
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Kieran C. Murphy
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Universidad Complutense, School of Medicine, IiSGM, Madrid, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.119375.80000000121738416Universidad Europea de Madrid, Madrid, Spain
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA.
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA ,grid.42505.360000 0001 2156 6853Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics and Ophthalmology, University of Southern California, Los Angeles, CA USA
| | - Carrie E. Bearden
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| |
Collapse
|
8
|
Heller C, Steinmann S, Levitt JJ, Makris N, Antshel KM, Fremont W, Coman IL, Schweinberger SR, Weiß T, Bouix S, Kubicki MR, Kates WR, Kikinis Z. Abnormalities in white matter tracts in the fronto-striatal-thalamic circuit are associated with verbal performance in 22q11.2DS. Schizophr Res 2020; 224:141-150. [PMID: 33268158 PMCID: PMC7727455 DOI: 10.1016/j.schres.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Abnormalities in fronto-striatal-thalamic (FST) sub-circuits are present in schizophrenia and are associated with cognitive impairments. However, it remains unknown whether abnormalities in FST sub-circuits are present before psychosis onset. This may be elucidated by investigating 22q11.2 deletion syndrome (22q11DS), a genetic syndrome associated with a 30% risk for developing schizophrenia in adulthood and a decline in Verbal IQ (VIQ) preceding psychosis onset. Here, we examined white matter (WM) tracts in FST sub-circuits, especially those in the dorsolateral (DLPFC) and ventrolateral prefrontal cortex (VLPFC) sub-circuits, and their associations with VIQ in young adults with 22q11DS. METHODS Diffusion MRI scans were acquired from 21 individuals with 22q11DS with prodromal symptoms of schizophrenia, 30 individuals with 22q11DS without prodromal symptoms, and 30 healthy controls (mean age: 21 ± 2 years). WM tracts were reconstructed between striatum and thalamus with rostral middle frontal gyrus (rMFG) and inferior frontal gyrus (IFG), representing DLPFC and VLPFC respectively. Fractional anisotropy (FA) and radial diffusivity (RD) were used for group comparisons. VIQ was assessed and associations with the diffusion measures were evaluated. RESULTS FA was significantly increased and RD decreased in most tracts of the DLPFC and VLPFC sub-circuits in 22q11DS. Verbal IQ scores correlated negatively with FA and, at trend level, positively with RD in the right thalamus-IFG tract in 22q11DS with prodromal symptoms. CONCLUSIONS While abnormalities in FST sub-circuits are associated with schizophrenia, we observed that these abnormalities are also present in 22q11DS individuals with prodromal symptoms and are associated with verbal performance in the right thalamus-IFG tract.
Collapse
Affiliation(s)
- Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; Department of Clinical Psychology, Friedrich-Schiller-University Jena, Germany.
| | - Saskia Steinmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James J. Levitt
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin M. Antshel
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA,Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ioana L. Coman
- Department of Computer Science, SUNY Oswego, Oswego, NY, USA
| | | | - Thomas Weiß
- Department of Clinical Psychology, Friedrich Schiller University Jena, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek R. Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Jalbrzikowski M. Neuroimaging Phenotypes Associated With Risk and Resilience for Psychosis and Autism Spectrum Disorders in 22q11.2 Microdeletion Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:211-224. [PMID: 33218931 DOI: 10.1016/j.bpsc.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023]
Abstract
Identification of biological risk factors that contribute to the development of complex neuropsychiatric disorders such as psychosis and autism spectrum disorder (ASD) is key for early intervention and detection. Furthermore, parsing the biological heterogeneity associated with these neuropsychiatric syndromes will help us understand the neural mechanisms underlying psychiatric symptom development. The 22q11.2 microdeletion syndrome (22q11DS) is caused by a recurrent genetic mutation that carries significantly increased risk for developing psychosis and/or ASD. In this review, I provide an brief introduction to 22q11DS and discuss common phenotyping strategies that are used to assess psychosis and ASD in this population. I then summarize neuroimaging phenotypes associated with psychosis and ASD in 22q11.DS. Next, I discuss challenges within the field and provide practical suggestions to overcome these obstacles. Finally, I discuss future directions for moving 22q11DS risk and resilience research forward.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Mullier E, Roine T, Griffa A, Xin L, Baumann PS, Klauser P, Cleusix M, Jenni R, Alemàn-Gómez Y, Gruetter R, Conus P, Do KQ, Hagmann P. N-Acetyl-Cysteine Supplementation Improves Functional Connectivity Within the Cingulate Cortex in Early Psychosis: A Pilot Study. Int J Neuropsychopharmacol 2019; 22:478-487. [PMID: 31283822 PMCID: PMC6672595 DOI: 10.1093/ijnp/pyz022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed. METHODS We investigated the effect of N-acetyl-cysteine supplementation on the functional connectivity between regions of the cingulate cortex, which have been linked to positive symptoms and processing speed decline. In this pilot study, we compared structural connectivity and resting-state functional connectivity between early psychosis patients treated with 6-month N-acetyl-cysteine (n = 9) or placebo (n = 11) supplementation with sex- and age-matched healthy control subjects (n = 74). RESULTS We observed that 6-month N-acetyl-cysteine supplementation increases functional connectivity along the cingulum and more precisely between the caudal anterior part and the isthmus of the cingulate cortex. These functional changes can be partially explained by an increase of centrality of these regions in the functional brain network. CONCLUSIONS N-acetyl-cysteine supplementation has a positive effect on functional connectivity within the cingulate cortex in early psychosis patients. To our knowledge, this is the first study suggesting that increased brain glutathione levels via N-acetyl-cysteine supplementation may improve brain functional connectivity.
Collapse
Affiliation(s)
- Emeline Mullier
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Correspondence: Emeline Mullier, Centre de recherche en Radiologie RC7, CHUV, Rue du Bugnon 46, 1011 Lausanne, Suisse ()
| | - Timo Roine
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Turku Brain and Mind Center, University of Turku, Turku, Finland,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alessandra Griffa
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU Amsterdam, Amsterdam, The Netherlands
| | - Lijing Xin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yasser Alemàn-Gómez
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Treatment and Early Intervention in Psychosis Program (TIPP), Service of General Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Treatment and Early Intervention in Psychosis Program (TIPP), Service of General Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
11
|
Drakesmith M, Parker GD, Smith J, Linden SC, Rees E, Williams N, Owen MJ, van den Bree M, Hall J, Jones DK, Linden DEJ. Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Transl Psychiatry 2019; 9:102. [PMID: 30804328 PMCID: PMC6389944 DOI: 10.1038/s41398-019-0440-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022] Open
Abstract
Genomic copy number variants (CNVs) are amongst the most highly penetrant genetic risk factors for neuropsychiatric disorders. The scarcity of carriers of individual CNVs and their phenotypical heterogeneity limits investigations of the associated neural mechanisms and endophenotypes. We applied a novel design based on CNV penetrance for schizophrenia (Sz) and developmental delay (DD) that allows us to identify structural sequelae that are most relevant to neuropsychiatric disorders. Our focus on brain structural abnormalities was based on the hypothesis that convergent mechanisms contributing to neurodevelopmental disorders would likely manifest in the macro- and microstructure of white matter and cortical and subcortical grey matter. Twenty one adult participants carrying neuropsychiatric risk CNVs (including those located at 22q11.2, 15q11.2, 1q21.1, 16p11.2 and 17q12) and 15 age- and gender-matched controls underwent T1-weighted structural, diffusion and relaxometry MRI. The macro- and microstructural properties of the cingulum bundles were associated with penetrance for both developmental delay and schizophrenia, in particular curvature along the anterior-posterior axis (Sz: pcorr = 0.026; DD: pcorr = 0.035) and intracellular volume fraction (Sz: pcorr = 0.019; DD: pcorr = 0.064). Further principal component analysis showed alterations in the interrelationships between the volumes of several midline white-matter structures (Sz: pcorr = 0.055; DD: pcorr = 0.027). In particular, the ratio of volumes in the splenium and body of the corpus callosum was significantly associated with both penetrance scores (Sz: p = 0.037; DD; p = 0.006). Our results are consistent with the notion that a significant alteration in developmental trajectories of midline white-matter structures constitutes a common neurodevelopmental aberration contributing to risk for schizophrenia and intellectual disability.
Collapse
Affiliation(s)
- Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Greg D Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Experimental MRI Centre (EMRIC), School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, CF10 3AX, Cardiff, United Kingdom
| | - Jacqueline Smith
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Stefanie C Linden
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Elliott Rees
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Nigel Williams
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Marianne van den Bree
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, 3065, Australia
| | - David E J Linden
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Kikinis Z, Makris N, Sydnor VJ, Bouix S, Pasternak O, Coman IL, Antshel KM, Fremont W, Kubicki MR, Shenton ME, Kates WR, Rathi Y. Abnormalities in gray matter microstructure in young adults with 22q11.2 deletion syndrome. NEUROIMAGE-CLINICAL 2018; 21:101611. [PMID: 30522971 PMCID: PMC6411601 DOI: 10.1016/j.nicl.2018.101611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND 22q11.2 Deletion Syndrome (22q11DS) is a genetic, neurodevelopmental disorder characterized by a chromosomal deletion and a distinct cognitive profile. Although abnormalities in the macrostructure of the cortex have been identified in individuals with 22q11DS, it is not known if there are additional microstructural changes in gray matter regions in this syndrome, and/or if such microstructural changes are associated with cognitive functioning. METHODS This study employed a novel diffusion MRI measure, the Heterogeneity of Fractional Anisotropy (HFA), to examine variability in the microstructural organization of the cortex in healthy young adults (N = 30) and those with 22q11DS (N = 56). Diffusion MRI, structural MRI, clinical and cognitive data were acquired. RESULTS Compared to controls, individuals with 22q11DS evinced increased HFA in cortical association (p = .003, d = 0.86) and paralimbic (p < .0001, d = 1.2) brain areas, whereas no significant differences were found between the two groups in primary cortical brain areas. Additionally, increased HFA of the right paralimbic area was associated with poorer performance on tests of response inhibition, i.e., the Stroop Test (rho = -0.37 p = .005) and the Gordon Diagnostic System Vigilance Commission (rho = -0.41 p = .002) in the 22q11DS group. No significant correlations were found between HFA and cognitive abilities in the healthy control group. CONCLUSIONS These findings suggest that cortical microstructural disorganization may be a neural correlate of response inhibition in individuals with 22q11DS. Given that the migration pattern of neural crest cells is disrupted at the time of early brain development in 22q11DS, we hypothesize that these neural alterations may be neurodevelopmental in origin, and reflect cortical dysfunction associated with cognitive deficits.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA.
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ioana L Coman
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Computer Science, SUNY Oswego, Oswego, NY, USA
| | - Kevin M Antshel
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Wanda Fremont
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marek R Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton, MA, USA
| | - Wendy R Kates
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Nuninga JO, Bohlken MM, Koops S, Fiksinski AM, Mandl RCW, Breetvelt EJ, Duijff SN, Kahn RS, Sommer IEC, Vorstman JAS. White matter abnormalities in 22q11.2 deletion syndrome patients showing cognitive decline. Psychol Med 2018; 48:1655-1663. [PMID: 29143717 DOI: 10.1017/s0033291717003142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decline in cognitive functioning precedes the first psychotic episode in the course of schizophrenia and is considered a hallmark symptom of the disorder. Given the low incidence of schizophrenia, it remains a challenge to investigate whether cognitive decline coincides with disease-related changes in brain structure, such as white matter abnormalities. The 22q11.2 deletion syndrome (22q11DS) is an appealing model in this context, as 25% of patients develop psychosis. Furthermore, we recently showed that cognitive decline also precedes the onset of psychosis in individuals with 22q11DS. Here, we investigate whether the early cognitive decline in patients with 22q11DS is associated with alterations in white matter microstructure. METHODS We compared the fractional anisotropy (FA) of white matter in 22q11DS patients with cognitive decline [n = 16; -18.34 (15.8) VIQ percentile points over 6.80 (2.39) years] to 22q11DS patients without cognitive decline [n = 18; 17.71 (20.17) VIQ percentile points over 5.27 (2.03) years] by applying an atlas-based approach to diffusion-weighted imaging data. RESULTS FA was significantly increased (p < 0.05, FDR) in 22q11DS patients with a cognitive decline in the bilateral superior longitudinal fasciculus, the bilateral cingulum bundle, all subcomponents of the left internal capsule and the left superior frontal-occipital fasciculus as compared with 22q11DS patients without cognitive decline. CONCLUSIONS Within 22q11DS, the early cognitive decline is associated with microstructural differences in white matter. At the mean age of 17.8 years, these changes are reflected in increased FA in several tracts. We hypothesize that similar brain alterations associated with cognitive decline take place early in the trajectory of schizophrenia.
Collapse
Affiliation(s)
- Jasper Olivier Nuninga
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Marc Marijn Bohlken
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Sanne Koops
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Ania M Fiksinski
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - René C W Mandl
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Elemi J Breetvelt
- Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network,Toronto, Ontario,Canada
| | - Sasja N Duijff
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - René S Kahn
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Iris E C Sommer
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Jacob A S Vorstman
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| |
Collapse
|
14
|
Kikinis Z, Cho KIK, Coman IL, Radoeva PD, Bouix S, Tang Y, Eckbo R, Makris N, Kwon JS, Kubicki M, Antshel KM, Fremont W, Shenton ME, Kates WR. Abnormalities in brain white matter in adolescents with 22q11.2 deletion syndrome and psychotic symptoms. Brain Imaging Behav 2018; 11:1353-1364. [PMID: 27730479 DOI: 10.1007/s11682-016-9602-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND 22q11.2 Deletion Syndrome (22q11DS) is considered to be a promising cohort to explore biomarkers of schizophrenia risk based on a 30 % probability of developing schizophrenia in adulthood. In this study, we investigated abnormalities in the microstructure of white matter in adolescents with 22q11DS and their specificity to prodromal symptoms of schizophrenia. METHODS Diffusion Magnetic Resonance Imaging (dMRI) data were acquired from 50 subjects with 22q11DS (9 with and 41 without prodromal psychotic symptoms), and 47 matched healthy controls (mean age 18 +/-2 years). DMRI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and compared between groups using the Tract Based Spatial Statistics (TBSS) method. Additionally, correlations between dMRI measures and scores on positive symptoms were performed. RESULTS Reductions in MD, AD and RD (but not FA) were found in the corpus callosum (CC), left and right superior longitudinal fasciculus (SLF), and left and right corona radiata in the entire 22q11DS group. In addition, the 22q11DS subgroup with prodromal symptoms showed reductions in AD and MD, but no changes in RD when compared to the non-prodromal subgroup, in CC, right SLF, right corona radiata and right internal capsule. Finally, AD values in these tracts correlated with the scores on the psychosis subscale. CONCLUSION Microstructural abnormalities in brain white matter are present in adolescent subjects with prodromal psychotic symptoms.
Collapse
Affiliation(s)
- Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.
| | - Kang Ik K Cho
- Brain and Cognitive Sciences, Department of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Petya D Radoeva
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA
| | - Yingying Tang
- Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ryan Eckbo
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.,Psychiatry and Neurology Departments, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Soo Kwon
- Brain and Cognitive Sciences, Department of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin M Antshel
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
15
|
Hiroi N. Critical reappraisal of mechanistic links of copy number variants to dimensional constructs of neuropsychiatric disorders in mouse models. Psychiatry Clin Neurosci 2018; 72:301-321. [PMID: 29369447 PMCID: PMC5935536 DOI: 10.1111/pcn.12641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
Copy number variants are deletions and duplications of a few thousand to million base pairs and are associated with extraordinarily high levels of autism spectrum disorder, schizophrenia, intellectual disability, or attention-deficit hyperactivity disorder. The unprecedented levels of robust and reproducible penetrance of copy number variants make them one of the most promising and reliable entry points to delve into the mechanistic bases of many mental disorders. However, the precise mechanistic bases of these associations still remain elusive in humans due to the many genes encoded in each copy number variant and the diverse associated phenotypic features. Genetically engineered mice have provided a technical means to ascertain precise genetic mechanisms of association between copy number variants and dimensional aspects of mental illnesses. Molecular, cellular, and neuronal phenotypes can be detected as potential mechanistic substrates for various behavioral constructs of mental illnesses. However, mouse models come with many technical pitfalls. Genetic background is not well controlled in many mouse models, leading to rather obvious interpretative issues. Dose alterations of many copy number variants and single genes within copy number variants result in some molecular, cellular, and neuronal phenotypes without a behavioral phenotype or with a behavioral phenotype opposite to what is seen in humans. In this review, I discuss technical and interpretative pitfalls of mouse models of copy number variants and highlight well-controlled studies to suggest potential neuronal mechanisms of dimensional aspects of mental illnesses. Mouse models of copy number variants represent toeholds to achieve a better understanding of the mechanistic bases of dimensions of neuropsychiatric disorders and thus for development of mechanism-based therapeutic options in humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
16
|
Psychotic symptoms influence the development of anterior cingulate BOLD variability in 22q11.2 deletion syndrome. Schizophr Res 2018; 193:319-328. [PMID: 28803847 DOI: 10.1016/j.schres.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder associated with a broad phenotype of clinical, cognitive and psychiatric features. Due to the very high prevalence of schizophrenia (30-40%), the investigation of psychotic symptoms in the syndrome is promising to reveal biomarkers for the development of psychosis, also in the general population. Since schizophrenia is seen as a disorder of the dynamic interactions between brain networks, we here investigated brain dynamics, assessed by the variability of blood oxygenation level dependent (BOLD) signals, in patients with psychotic symptoms. We included 28 patients with 22q11DS presenting higher positive psychotic symptoms, 29 patients with lower positive psychotic symptoms and 69 healthy controls between 10 and 30years old. To overcome limitations of mass-univariate approaches, we employed multivariate analysis, namely partial least squares correlation, combined with proper statistical testing, to analyze resting-state BOLD signal variability and its age-relationship in patients with positive psychotic symptoms. Our results revealed a missing positive age-relationship in the dorsal anterior cingulate cortex (dACC) in patients with higher positive psychotic symptoms, leading to globally lower variability in the dACC in those patients. Patients without positive psychotic symptoms and healthy controls had the same developmental trajectory in this region. Alterations of brain structure and function in the ACC have been previously reported in 22q11DS and linked to psychotic symptoms. The present results support the implication of this region in the development of psychotic symptoms and suggest aberrant BOLD signal variability development as a potential biomarker for psychosis.
Collapse
|
17
|
Weinberger R, Weisman O, Guri Y, Harel T, Weizman A, Gothelf D. The interaction between neurocognitive functioning, subthreshold psychotic symptoms and pharmacotherapy in 22q11.2 deletion syndrome: A longitudinal comparative study. Eur Psychiatry 2018; 48:20-26. [PMID: 29331595 DOI: 10.1016/j.eurpsy.2017.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11DS) is the most common genetic syndrome associated with schizophrenia. The goal of this study was to evaluate longitudinally the interaction between neurocognitive functioning, the presence of subthreshold psychotic symptoms (SPS) and conversion to psychosis in individuals with 22q11DS. In addition, we attempted to identify the specific neurocognitive domains that predict the longitudinal evolution of positive and negative SPS, as well as the effect of psychiatric medications on 22q11DS psychiatric and cognitive developmental trajectories. METHODS Forty-four participants with 22q11DS, 19 with Williams syndrome (WS) and 30 typically developing (TD) controls, age range 12-35years, were assessed at two time points (15.2±2.1months apart). Evaluation included the Structured Interview for Prodromal Symptoms (SIPS), structured psychiatric evaluation and the Penn Computerized Neurocognitive Battery (CNB). RESULTS 22q11DS individuals with SPS had a yearly conversion rate to psychotic disorders of 8.8%, compared to none in both WS and TD controls. Baseline levels of negative SPS were associated with global neurocognitive performance (GNP), executive function and social cognition deficits, in individuals with 22q11DS, but not in WS. Deficits in GNP predicted negative SPS in 22q11DS and the emergence or persistence of negative SPS. 22q11DS individuals treated with psychiatric medications showed significant improvement in GNP score between baseline and follow-up assessments, an improvement that was not seen in untreated 22q11DS. CONCLUSIONS Our results highlight the time-dependent interplay among positive and negative SPS symptoms, neurocognition and pharmacotherapy in the prediction of the evolution of psychosis in 22q11DS.
Collapse
Affiliation(s)
- R Weinberger
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - O Weisman
- Sackler Faculty of Medicine, Tel Aviv University, Israel; The Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Y Guri
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - T Harel
- The Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - A Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel; Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| | - D Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Israel; The Sagol School of Neuroscience, Tel Aviv University, Israel; The Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
18
|
Abstract
Recent large-scale genomic studies have confirmed that schizophrenia is a polygenic syndrome and have implicated a number of biological pathways in its aetiology. Both common variants individually of small effect and rarer but more penetrant genetic variants have been shown to play a role in the pathogenesis of the disorder. No simple Mendelian forms of the condition have been identified, but progress has been made in stratifying risk on the basis of the polygenic burden of common variants individually of small effect, and the contribution of rarer variants of larger effect such as Copy Number Variants (CNVs). Pathway analysis of risk-associated variants has begun to identify specific biological processes implicated in risk for the disorder, including elements of the glutamatergic NMDA receptor complex and post synaptic density, voltage-gated calcium channels, targets of the Fragile X Mental Retardation Protein (FMRP targets) and immune pathways. Genetic studies have also been used to drive genomic imaging approaches to the investigation of brain markers associated with risk for the disorder. Genomic imaging approaches have been applied both to investigate the effect of polygenic risk and to study the impact of individual higher-penetrance variants such as CNVs. Both genomic and genomic imaging approaches offer potential for the stratification of patients and at-risk groups and the development of better biomarkers of risk and treatment response; however, further research is needed to integrate this work and realise the full potential of these approaches.
Collapse
|
19
|
Zhan L, Jenkins LM, Zhang A, Conte G, Forbes A, Harvey D, Angkustsiri K, Goodrich‐Hunsaker NJ, Durdle C, Lee A, Schumann C, Carmichael O, Kalish K, Leow AD, Simon TJ. Baseline connectome modular abnormalities in the childhood phase of a longitudinal study on individuals with chromosome 22q11.2 deletion syndrome. Hum Brain Mapp 2018; 39:232-248. [PMID: 28990258 PMCID: PMC5757536 DOI: 10.1002/hbm.23838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
Occurring in at least 1 in 3,000 live births, chromosome 22q11.2 deletion syndrome (22q11DS) produces a complex phenotype that includes a constellation of medical complications such as congenital cardiac defects, immune deficiency, velopharyngeal dysfunction, and characteristic facial dysmorphic features. There is also an increased incidence of psychiatric diagnosis, especially intellectual disability and ADHD in childhood, lifelong anxiety, and a strikingly high rate of schizophrenia spectrum disorders, which occur in around 30% of adults with 22q11DS. Using innovative computational connectomics, we studied how 22q11DS affects high-level network signatures of hierarchical modularity and its intrinsic geometry in 55 children with confirmed 22q11DS and 27 Typically Developing (TD) children. Results identified 3 subgroups within our 22q11DS sample using a K-means clustering approach based on several midline structural measures-of-interests. Each subgroup exhibited distinct patterns of connectome abnormalities. Subtype 1, containing individuals with generally healthy-looking brains, exhibited no significant differences in either modularity or intrinsic geometry when compared with TD. By contrast, the more anomalous 22q11DS Subtypes 2 and 3 brains revealed significant modular differences in the right hemisphere, while Subtype 3 (the most anomalous anatomy) further exhibited significantly abnormal connectome intrinsic geometry in the form of left-right temporal disintegration. Taken together, our findings supported an overall picture of (a) anterior-posteriorly differential interlobar frontotemporal/frontoparietal dysconnectivity in Subtypes 2 and 3 and (b) differential intralobar dysconnectivity in Subtype 3. Our ongoing studies are focusing on whether these subtypes and their connnectome signatures might be valid biomarkers for predicting the degree of psychosis-proneness risk found in 22q11DS. Hum Brain Mapp 39:232-248, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liang Zhan
- Computer Engineering ProgramUniversity of Wisconsin‐StoutWisconsin
| | | | - Aifeng Zhang
- Department of PsychiatryUniversity of IllinoisChicagoIllinois
| | - Giorgio Conte
- Department of Computer ScienceUniversity of IllinoisChicagoIllinois
| | - Angus Forbes
- Department of Computer ScienceUniversity of IllinoisChicagoIllinois
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, School of MedicineUniversity of CaliforniaDavisCalifornia
| | | | - Naomi J. Goodrich‐Hunsaker
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCalifornia
- Department of PsychologyBrigham Young UniversityProvoUtah
| | - Courtney Durdle
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCalifornia
| | - Aaron Lee
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCalifornia
| | - Cyndi Schumann
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCalifornia
| | - Owen Carmichael
- Pennington Biomedical Research Center, Louisiana State UniversityBaton RougeLouisiana
| | | | - Alex D. Leow
- Department of PsychiatryUniversity of IllinoisChicagoIllinois
- Department of BioengineeringUniversity of IllinoisChicagoIllinois
| | - Tony J. Simon
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCalifornia
| |
Collapse
|
20
|
Roalf DR, Eric Schmitt J, Vandekar SN, Satterthwaite TD, Shinohara RT, Ruparel K, Elliott MA, Prabhakaran K, McDonald-McGinn DM, Zackai EH, Gur RC, Emanuel BS, Gur RE. White matter microstructural deficits in 22q11.2 deletion syndrome. Psychiatry Res 2017; 268:35-44. [PMID: 28865345 PMCID: PMC5814141 DOI: 10.1016/j.pscychresns.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023]
Abstract
Diffusion tensor imaging (DTI) studies in 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition associated with psychosis, report brain white matter (WM) microstructure aberrations. Several studies report that WM disruptions in 22q11DS are similar to deficits in idiopathic schizophrenia. Yet, DTI results in 22q11DS are inconsistent. We used DTI to compare WM structure in 22q11DS individuals to healthy controls (HC) and explored WM differences in 22q11DS with (+) and without (-) psychosis spectrum symptoms. We examined 39 22q11DS individuals and 39 age, sex and race equivalent HC. DTI was performed at 3T using a 64-direction protocol. Fractional anisotropy (FA) was lower, while radial diffusivity was higher in 22q11DS within the cingulum bundle. Mean diffusivity was lower in the inferior longitudinal fasciculus, while axial diffusivity (AD) was lower in the cingulum bundle, forceps major, and several posterior to anterior fasciculi. 22q11DS+ had lower FA in the cingulum bundle and lower AD in the uncinate fasciculus compared to 22q11DS-. Overall, we found aberrant WM microstructure in individuals with 22q11DS compared to age and sex matched HC and exploratory analysis indicated subtle WM deficits associated with psychosis. The findings highlight the dysfunction of WM microstructure in 22q11DS and its potential importance in elucidating WM abnormalities in psychosis.
Collapse
Affiliation(s)
- David R Roalf
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - J Eric Schmitt
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon N Vandekar
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthik Prabhakaran
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) at the University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) at the University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Padula MC, Scariati E, Schaer M, Sandini C, Ottet MC, Schneider M, Van De Ville D, Eliez S. Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome. NEUROIMAGE-CLINICAL 2017; 16:142-150. [PMID: 28794975 PMCID: PMC5540832 DOI: 10.1016/j.nicl.2017.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022]
Abstract
22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS. However, the relationships between connectivity changes in patients with different symptomatic profiles are still largely unknown and warrant further investigations. In this study, we used structural connectivity to discriminate patients with 22q11DS with (N = 31) and without (N = 31) attenuated positive psychotic symptoms. Different structural connectivity measures were used, including the number of streamlines connecting pairs of brain regions, graph theoretical measures, and diffusion measures. We used univariate group comparisons as well as predictive multivariate approaches. The univariate comparison of connectivity measures between patients with or without attenuated positive psychotic symptoms did not give significant results. However, the multivariate prediction revealed that altered structural network architecture discriminates patient subtypes (accuracy = 67.7%). Among the regions contributing to the classification we found the anterior cingulate cortex, which is known to be associated to the presence of psychotic symptoms in patients with 22q11DS. Furthermore, a significant discrimination (accuracy = 64%) was obtained with fractional anisotropy and radial diffusivity in the left inferior longitudinal fasciculus and the right cingulate gyrus. Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies. Altered network architecture discriminates psychotic patients with 22q11DS; Altered diffusivity measures are evident in psychotic patients with 22q11DS; White matter alterations associated to psychosis are located in limbic regions.
Collapse
Affiliation(s)
- Maria C Padula
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland
| | - Elisa Scariati
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland
| | - Marie Christine Ottet
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of medicine, Geneva, Switzerland
| |
Collapse
|
22
|
Dubourg L, Schneider M, Padula MC, Chambaz L, Schaer M, Eliez S. Implication of reward alterations in the expression of negative symptoms in 22q11.2 deletion syndrome: a behavioural and DTI study. Psychol Med 2017; 47:1442-1453. [PMID: 28112057 DOI: 10.1017/s0033291716003482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alterations of the reward system have been proposed as one of the core mechanisms underlying the expression of negative symptoms in schizophrenia. Specifically, deficits in specific reward components and white matter (WM) integrity of the reward system have been highlighted. The putative link between negative symptoms and the hedonic experience, or structural connectivity of the reward system has never been examined in the 22q11.2 deletion syndrome (22q11DS), a condition with increased risk for psychosis. METHOD Anticipatory and consummatory dimensions of pleasure were assessed in participants with 22q11DS (N = 54) and healthy controls (N = 55). In patients with 22q11DS, the association between pleasure scores and positive or negative symptoms was investigated. Furthermore, WM integrity of the accumbofrontal tract was quantified using diffusion tensor imaging (DTI). Associations between DTI measures, pleasure dimensions and negative symptoms were examined. RESULTS Patients with 22q11DS showed reduced anticipatory and consummatory pleasure compared to controls. Furthermore, anticipatory pleasure scores were negatively correlated to negative and positive symptoms in 22q11DS. WM microstructural changes of the accumbofrontal tract in terms of increased fractional anisotropy and reduced radial anisotropy were also identified in patients. However, no significant correlation between the DTI measures and pleasure dimensions or psychotic symptoms was observed. CONCLUSIONS This study revealed that participants with 22q11DS differed in their experience of pleasure compared to controls. The anticipatory pleasure component appears to be related to negative and positive symptom severity in patients. Alterations of WM integrity of the accumbofrontal tract seem to be related to myelination abnormalities in 22q11DS patients.
Collapse
Affiliation(s)
- L Dubourg
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M Schneider
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M C Padula
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - L Chambaz
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M Schaer
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - S Eliez
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| |
Collapse
|
23
|
Tylee DS, Kikinis Z, Quinn TP, Antshel KM, Fremont W, Tahir MA, Zhu A, Gong X, Glatt SJ, Coman IL, Shenton ME, Kates WR, Makris N. Machine-learning classification of 22q11.2 deletion syndrome: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2017; 15:832-842. [PMID: 28761808 PMCID: PMC5522376 DOI: 10.1016/j.nicl.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a genetic neurodevelopmental syndrome that has been studied intensively in order to understand relationships between the genetic microdeletion, brain development, cognitive function, and the emergence of psychiatric symptoms. White matter microstructural abnormalities identified using diffusion tensor imaging methods have been reported to affect a variety of neuroanatomical tracts in 22q11.2DS. In the present study, we sought to combine two discovery-based approaches: (1) white matter query language was used to parcellate the brain's white matter into tracts connecting pairs of 34, bilateral cortical regions and (2) the diffusion imaging characteristics of the resulting tracts were analyzed using a machine-learning method called support vector machine in order to optimize the selection of a set of imaging features that maximally discriminated 22q11.2DS and comparison subjects. With this unique approach, we both confirmed previously-recognized 22q11.2DS-related abnormalities in the inferior longitudinal fasciculus (ILF), and identified, for the first time, 22q11.2DS-related anomalies in the middle longitudinal fascicle and the extreme capsule, which may have been overlooked in previous, hypothesis-guided studies. We further observed that, in participants with 22q11.2DS, ILF metrics were significantly associated with positive prodromal symptoms of psychosis.
Collapse
Key Words
- (-fp), fronto-parietal aspect
- (-to), temporo-occipital aspect
- (-tp), temporo-parietal aspect
- (22q11.2DS), 22q11.2 deletion syndrome
- (AD), axial diffusivity
- (DTI), diffusion tensor imaging
- (DWI), diffusion weighted image
- (EmC), extreme capsule
- (FA), fractional anisotropy
- (FOV), field of view
- (GDS), Gordon Diagnostic Systems
- (ILF), inferior longitudinal fasciculus
- (MdLF), middle longitudinal fascicle
- (RD), radial diffusivity
- (ROI), region of interest
- (SIPS), Structured Interview for Prodromal Syndromes
- (SRS), Social Responsiveness Scale
- (STG), superior temporal gyrus
- (SVM), support vector machine
- (UKF), Unscented Kalman Filter
- (WAIS-III), Wechsler Adult Intelligence Scale – 3rd edition
- (WMQL), white matter query language
- (dTP), dorsal temporal pole
- 22q11.2 deletion syndrome
- Callosal asymmetry
- Diffusion tensor imaging
- Extreme capsule
- Inferior longitudinal fasciculus
- Machine-learning
- Middle longitudinal fascicle
- Support vector machine
- Velocardiofacial syndrome
- White matter query language
Collapse
Affiliation(s)
- Daniel S Tylee
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, Victoria, Australia
| | | | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Muhammad A Tahir
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anni Zhu
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA.
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Nikos Makris
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Olszewski AK, Kikinis Z, Gonzalez CS, Coman IL, Makris N, Gong X, Rathi Y, Zhu A, Antshel KM, Fremont W, Kubicki MR, Bouix S, Shenton ME, Kates WR. The social brain network in 22q11.2 deletion syndrome: a diffusion tensor imaging study. Behav Brain Funct 2017; 13:4. [PMID: 28209179 PMCID: PMC5314621 DOI: 10.1186/s12993-017-0122-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurogenetic disorder that is associated with a 25-fold increase in schizophrenia. Both individuals with 22q11.2DS and those with schizophrenia present with social cognitive deficits, which are putatively subserved by a network of brain regions that are involved in the processing of social cognitive information. This study used two-tensor tractography to examine the white matter tracts believed to underlie the social brain network in a group of 57 young adults with 22q11.2DS compared to 30 unaffected controls. RESULTS Results indicated that relative to controls, participants with 22q11.2DS showed significant differences in several DTI metrics within the inferior fronto-occipital fasciculus, cingulum bundle, thalamo-frontal tract, and inferior longitudinal fasciculus. In addition, participants with 22q11.2DS showed significant differences in scores on measures of social cognition, including the Social Responsiveness Scale and Trait Emotional Intelligence Questionnaire. Further analyses among individuals with 22q11.2DS demonstrated an association between DTI metrics and positive and negative symptoms of psychosis, as well as differentiation between individuals with 22q11.2DS and overt psychosis, relative to those with positive prodromal symptoms or no psychosis. CONCLUSIONS Findings suggest that white matter disruption, specifically disrupted axonal coherence in the right inferior fronto-occipital fasciculus, may be a biomarker for social cognitive difficulties and psychosis in individuals with 22q11.2DS.
Collapse
Affiliation(s)
- Amy K Olszewski
- Department of Psychiatry, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ioana L Coman
- Department of Psychiatry, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Nikolaos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anni Zhu
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Wanda Fremont
- Department of Psychiatry, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Marek R Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| | - Wendy R Kates
- Department of Psychiatry, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
25
|
|
26
|
Hu M, Zong X, Zheng J, Mann JJ, Li Z, Pantazatos SP, Li Y, Liao Y, He Y, Zhou J, Sang D, Zhao H, Tang J, Chen H, Lv L, Chen X. Risperidone-induced topological alterations of anatomical brain network in first-episode drug-naive schizophrenia patients: a longitudinal diffusion tensor imaging study. Psychol Med 2016; 46:2549-2560. [PMID: 27338296 PMCID: PMC5242555 DOI: 10.1017/s0033291716001380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND It remains unclear whether the topological deficits of the white matter network documented in cross-sectional studies of chronic schizophrenia patients are due to chronic illness or to other factors such as antipsychotic treatment effects. To answer this question, we evaluated the white matter network in medication-naive first-episode schizophrenia patients (FESP) before and after a course of treatment. METHOD We performed a longitudinal diffusion tensor imaging study in 42 drug-naive FESP at baseline and then after 8 weeks of risperidone monotherapy, and compared them with 38 healthy volunteers. Graph theory was utilized to calculate the topological characteristics of brain anatomical network. Patients' clinical state was evaluated using the Positive and Negative Syndrome Scale (PANSS) before and after treatment. RESULTS Pretreatment, patients had relatively intact overall topological organizations, and deficient nodal topological properties primarily in prefrontal gyrus and limbic system components such as the bilateral anterior and posterior cingulate. Treatment with risperidone normalized topological parameters in the limbic system, and the enhancement positively correlated with the reduction in PANSS-positive symptoms. Prefrontal topological impairments persisted following treatment and negative symptoms did not improve. CONCLUSIONS During the early phase of antipsychotic medication treatment there are region-specific alterations in white matter topological measures. Limbic white matter topological dysfunction improves with positive symptom reduction. Prefrontal deficits and negative symptoms are unresponsive to medication intervention, and prefrontal deficits are potential trait biomarkers and targets for negative symptom treatment development.
Collapse
Affiliation(s)
- M. Hu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Departments of Psychiatry and Radiology, Columbia University, 1051 Riverside Drive, Box 42, New York, NY 10032, USA
| | - X. Zong
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - J. Zheng
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - J. J. Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Departments of Psychiatry and Radiology, Columbia University, 1051 Riverside Drive, Box 42, New York, NY 10032, USA
| | - Z. Li
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - S. P. Pantazatos
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Departments of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Y. Li
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Y. Liao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA 90024, USA
| | - Y. He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - J. Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - D. Sang
- Department of Radiology, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
| | - H. Zhao
- Department of Radiology, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
| | - J. Tang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA 90024, USA
| | - H. Chen
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - L. Lv
- Department of Psychiatry, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
| | - X. Chen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- The China National Clinical Research Center for Mental Health Disorders, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- National Technology Institute of Psychiatry, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| |
Collapse
|
27
|
Bakker G, Caan MWA, Schluter RS, Bloemen OJN, da Silva-Alves F, de Koning MB, Boot E, Vingerhoets WAM, Nieman DH, de Haan L, Booij J, van Amelsvoort TAMJ. Distinct white-matter aberrations in 22q11.2 deletion syndrome and patients at ultra-high risk for psychosis. Psychol Med 2016; 46:2299-2311. [PMID: 27193339 DOI: 10.1017/s0033291716000970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Patients with a deletion at chromosome 22q11.2 (22q11DS) have 30% lifetime risk of developing a psychosis. People fulfilling clinical criteria for ultra-high risk (UHR) for psychosis have 30% risk of developing a psychosis within 2 years. Both high-risk groups show white-matter (WM) abnormalities in microstructure and volume compared to healthy controls (HC), which have been related to psychotic symptoms. Comparisons of WM pathology between these two groups may specify WM markers related to genetic and clinical risk factors. METHOD Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) were assessed using diffusion tensor magnetic resonance imaging (MRI), and WM volume with structural MRI, in 23 UHR patients, 21 22q11DS patients, and 33 HC. RESULTS Compared to UHR patients 22q11DS patients had (1) lower AD and RD in corpus callosum (CC), cortical fasciculi, and anterior thalamic radiation (ATR), (2) higher FA in CC and ATR, and (3) lower occipital and superior temporal gyrus WM volume. Compared to HC, 22q11DS patients had (1) lower AD and RD throughout cortical fasciculi and (2) higher FA in ATR, CC and inferior fronto-occipital fasciculus. Compared to HC, UHR patients had (1) higher mean MD, RD, and AD in CC, ATR and cortical fasciculi, (2) no differences in FA. CONCLUSIONS UHR and 22q11DS patients share a susceptibility for developing psychosis yet were characterized by distinct patterns of WM alterations relative to HC. While UHR patients were typified by signs suggestive of aberrant myelination, 22q11DS subjects showed signs suggestive of lower axonal integrity.
Collapse
Affiliation(s)
- G Bakker
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - M W A Caan
- Department of Radiology,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - R S Schluter
- Department of Radiology,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - O J N Bloemen
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - F da Silva-Alves
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - M B de Koning
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - E Boot
- Department of Nuclear Medicine,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - W A M Vingerhoets
- Department of Psychiatry & Psychology,University of Maastricht,The Netherlands
| | - D H Nieman
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - L de Haan
- Department of Psychiatry,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | - J Booij
- Department of Nuclear Medicine,Academic Medical Center, University of Amsterdam,Amsterdam,The Netherlands
| | | |
Collapse
|
28
|
Scariati E, Padula MC, Schaer M, Eliez S. Long-range dysconnectivity in frontal and midline structures is associated to psychosis in 22q11.2 deletion syndrome. J Neural Transm (Vienna) 2016; 123:823-39. [PMID: 27094177 DOI: 10.1007/s00702-016-1548-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022]
Abstract
Patients affected by 22q11.2 deletion syndrome (22q11DS) present a characteristic cognitive and psychiatric profile and have a genetic predisposition to develop schizophrenia. Although brain morphological alterations have been shown in the syndrome, they do not entirely account for the complex clinical picture of the patients with 22q11DS and for their high risk of psychotic symptoms. Since Friston proposed the "disconnection hypothesis" in 1998, schizophrenia is commonly considered as a disorder of brain connectivity. In this study, we review existing evidence pointing to altered brain structural and functional connectivity in 22q11DS, with a specific focus on the role of dysconnectivity in the emergence of psychotic symptoms. We show that widespread alterations of structural and functional connectivity have been described in association with 22q11DS. Moreover, alterations involving long-range association tracts as well as midline structures, such as the corpus callosum and the cingulate gyrus, have been associated with psychotic symptoms in this population. These results suggest common mechanisms for schizophrenia in syndromic and non-syndromic populations. Future directions for investigations are also discussed.
Collapse
Affiliation(s)
- E Scariati
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.
| | - M C Padula
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.
| | - M Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.,Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University, Stanford, CA, USA
| | - S Eliez
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.,Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Mattiaccio LM, Coman IL, Schreiner MJ, Antshel KM, Fremont WP, Bearden CE, Kates WR. Atypical functional connectivity in resting-state networks of individuals with 22q11.2 deletion syndrome: associations with neurocognitive and psychiatric functioning. J Neurodev Disord 2016; 8:2. [PMID: 26855683 PMCID: PMC4743418 DOI: 10.1186/s11689-016-9135-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is a neurogenetic condition associated with deficits in neuropsychological functioning and psychiatric disorders. This deletion confers a high risk for the development of psychosis, as approximately 30-45 % of individuals develop psychosis in adulthood. Previous reports of resting-state functional magnetic resonance imaging (rs-fMRI) functional connectivity patterns in 22q11DS have demonstrated that atypical connectivity is associated with both the emergence and severity of psychotic symptoms. However, due to sample overlap and large age ranges of samples spanning multiple critical periods of brain maturation, more independent studies with samples within the window of time when psychotic symptoms have been shown to emerge (ages 17-26) are needed. Resting-state networks (RSNs) in 22q11DS during this stage of brain development may thus provide insight into the dynamic changes in functional integration that influence the incidence of prodromal symptoms and neurocognitive deficits characteristic of this syndrome. METHODS Independent component analysis (ICA) was performed to identify RSNs in a combined sample of 55 individuals with 22q11DS (27 males; age range 17-26) and 29 controls (17 males; age range 17-23, consisting of 8 siblings without the deletion and 21 typically developed individuals) from two research sites. We conducted a full factorial analysis to determine group differences between 22q11DS and controls. A Poisson regression analysis was conducted in the 22q11DS group to determine relationships of rs-fMRI network connectivity with psychiatric symptoms based on factors of the 18-item Brief Psychiatric Rating Scale. Nonparametric Spearman correlations were performed to test associations between within-network functional connectivity (FC) and performance on measures of verbal memory (California Verbal Learning Test) and executive function (Behavior Rating Inventory of Executive Function Adult version) in 22q11DS. RESULTS Between-group network connectivity analyses revealed significant differences in 9 RSNs. Decreased network FC in 22q11DS was observed in the following networks: high-level visual processing network (HLVPN), low-level visual processing network (LLVPN), visual/precuneus network, left frontal-parietal network (LFPN), right frontal-parietal network (RFPN), and self-referential network (SRN). In contrast, greater network FC in 22q11DS was observed in subclusters of the LLVPN, visual/precuneus network, limbic network (LN), default mode network (DMN), and visuospatial processing network (VSPN). Increased functional connectivity of the right cuneus (visual/precuneus network) and right superior parietal lobule (DMN) in 22q11DS was positively associated with both thought disturbance and disorganization factors of the Brief Psychiatric Rating Scale (BPRS). Decreased functional connectivity in the left posterior cingulate (LLVPN) was associated with higher thought disturbance scores in 22q11DS. No associations with our neurocognitive measures passed correction for multiple comparisons (Bonferroni-corrected p ≤ 0.0014). CONCLUSIONS Our findings suggest that atypical network connectivity within RSNs may be indicative of increased risk for developing psychosis and supports the utility of RSNs as biomarkers of prodromal symptoms in 22q11DS.
Collapse
Affiliation(s)
- Leah M Mattiaccio
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, 13210 NY USA
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, 13210 NY USA
| | - Matthew J Schreiner
- Department of Psychiatry and Biobehavioral Sciences and Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, 90095 CA USA
| | - Kevin M Antshel
- Department of Psychology, Syracuse University, Syracuse, 13244 NY USA
| | - Wanda P Fremont
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, 13210 NY USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences and Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, 90095 CA USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, 13210 NY USA
| |
Collapse
|
30
|
Padula MC, Schaer M, Scariati E, Schneider M, Van De Ville D, Debbané M, Eliez S. Structural and functional connectivity in the default mode network in 22q11.2 deletion syndrome. J Neurodev Disord 2015; 7:23. [PMID: 26236404 PMCID: PMC4522079 DOI: 10.1186/s11689-015-9120-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neural endophenotype associated with 22q11.2 deletion syndrome (22q11DS) includes deviant cortical development and alterations in brain connectivity. Resting-state functional magnetic resonance imaging (fMRI) findings also reported disconnectivity within the default mode network (DMN). In this study, we explored the relationship between functional and structural DMN connectivity and their changes with age in patients with 22q11DS in comparison to control participants. Given previous evidence of an association between DMN disconnectivity and the manifestation of psychotic symptoms, we further investigated this relationship in our group of patients with 22q11DS. METHODS T1-weighted, diffusion, and resting-state fMRI scans were acquired from 41 patients with 22q11DS and 43 control participants aged 6 to 28 years. A data-driven approach based on independent component analysis (ICA) was used to identify the DMN and to define regions of interest for the structural and functional connectivity analysis. Prodromal psychotic symptoms were assessed in adolescents and adults using the positive symptom scores of the Structured Interview of Prodromal Syndromes (SIPS). Connectivity measures were compared between groups and correlated with age. Repeating the between-group analysis in three different age bins further assessed the presence of age-related alterations in DMN connectivity. Structural and functional connectivity measures were then correlated with the SIPS scores. RESULTS A simultaneous reduction of functional and structural connectivity between core medial nodes of the DMN was observed. Furthermore, structural connectivity measures significantly increased with age in the control group but not in patients with 22q11DS, suggesting the presence of an age-related alteration of the DMN structural connections. No correlations were found between the DMN disconnectivity and expression of prodromal symptoms in 22q11DS. CONCLUSIONS These findings indicate the presence of functional and structural DMN disconnectivity in 22q11DS and that patients with 22q11DS fail to develop normal structural connections between medial DMN nodes. This suggests the presence of altered neurodevelopmental trajectories in 22q11DS.
Collapse
Affiliation(s)
- Maria Carmela Padula
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland ; Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University, Stanford, CA USA
| | - Elisa Scariati
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland
| | - Maude Schneider
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland ; Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Debbané
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland ; Adolescence Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, Geneva, Switzerland ; Research Department of Clinical, Educational and Health Psychology, University College London, London, U K
| | - Stephan Eliez
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 2015; 86:680-95. [PMID: 25913858 DOI: 10.1016/j.neuron.2015.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/24/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022]
Abstract
22q11.2 deletion carriers show specific cognitive deficits, and ∼30% of them develop schizophrenia. One of the disrupted genes is ZDHHC8, which encodes for a palmitoyltransferase. We show that Zdhhc8-deficient mice have reduced palmitoylation of proteins that regulate axonal growth and branching. Analysis of axonal projections of pyramidal neurons from both Zdhhc8-deficient and Df(16)A(+/-) mice, which model the 22q11.2 deletion, revealed deficits in axonal growth and terminal arborization, which can be prevented by reintroduction of active ZDHHC8 protein. Impaired terminal arborization is accompanied by a reduction in the strength of synaptic connections and altered functional connectivity and working memory. The effect of ZDHHC8 is mediated in part via Cdc42-dependent modulation of Akt/Gsk3β signaling at the tip of the axon and can be reversed by pharmacologically decreasing Gsk3β activity during postnatal brain development. Our findings provide valuable mechanistic insights into the cognitive and psychiatric symptoms associated with a schizophrenia-predisposing mutation.
Collapse
|
32
|
Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130:1-28. [PMID: 25866365 DOI: 10.1016/j.pneurobio.2015.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
Collapse
Affiliation(s)
- Daniel W Meechan
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Thomas M Maynard
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Eric S Tucker
- Department of Neurobiology and Anatomy, Neuroscience Graduate Program, and Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alejandra Fernandez
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Beverly A Karpinski
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Lawrence A Rothblat
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Psychology, The George Washington University, Washington, DC, United States
| | - Anthony-S LaMantia
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
33
|
Jalbrzikowski M, Villalon-Reina JE, Karlsgodt KH, Senturk D, Chow C, Thompson PM, Bearden CE. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome. Front Behav Neurosci 2014; 8:393. [PMID: 25426042 PMCID: PMC4227518 DOI: 10.3389/fnbeh.2014.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022] Open
Abstract
22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Katherine H Karlsgodt
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research Manhasset, NY, USA ; Division of Psychiatric Research, Zucker Hillside Hospital Glen Oaks, NY, USA ; Psychiatry, Hofstra Northshore-LIJ School of Medicine Hempstead, NY, USA
| | - Damla Senturk
- Department of Biostatistics, School of Public Health, University of California at Los Angeles Los Angeles, CA, USA
| | - Carolyn Chow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA ; Department of Psychology, University of California at Los Angeles Los Angeles, CA, USA
| |
Collapse
|