1
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Wang Z, Yuan X, Zhu Z, Pang L, Ding S, Li X, Kang Y, Hei G, Zhang L, Zhang X, Wang S, Jian X, Li Z, Zheng C, Fan X, Hu S, Shi Y, Song X. Multiomics Analyses Reveal Microbiome-Gut-Brain Crosstalk Centered on Aberrant Gamma-Aminobutyric Acid and Tryptophan Metabolism in Drug-Naïve Patients with First-Episode Schizophrenia. Schizophr Bull 2024; 50:187-198. [PMID: 37119525 PMCID: PMC10754168 DOI: 10.1093/schbul/sbad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SCZ) is associated with complex crosstalk between the gut microbiota and host metabolism, but the underlying mechanism remains elusive. Investigating the aberrant neurotransmitter processes reflected by alterations identified using multiomics analysis is valuable to fully explain the pathogenesis of SCZ. STUDY DESIGN We conducted an integrative analysis of multiomics data, including the serum metabolome, fecal metagenome, single nucleotide polymorphism data, and neuroimaging data obtained from a cohort of 127 drug-naïve, first-episode SCZ patients and 92 healthy controls to characterize the microbiome-gut-brain axis in SCZ patients. We used pathway-based polygenic risk score (PRS) analyses to determine the biological pathways contributing to genetic risk and mediation effect analyses to determine the important neuroimaging features. Additionally, a random forest model was generated for effective SCZ diagnosis. STUDY RESULTS We found that the altered metabolome and dysregulated microbiome were associated with neuroactive metabolites, including gamma-aminobutyric acid (GABA), tryptophan, and short-chain fatty acids. Further structural and functional magnetic resonance imaging analyses highlighted that gray matter volume and functional connectivity disturbances mediate the relationships between Ruminococcus_torgues and Collinsella_aerofaciens and symptom severity and the relationships between species Lactobacillus_ruminis and differential metabolites l-2,4-diaminobutyric acid and N-acetylserotonin and cognitive function. Moreover, analyses of the Polygenic Risk Score (PRS) support that alterations in GABA and tryptophan neurotransmitter pathways are associated with SCZ risk, and GABA might be a more dominant contributor. CONCLUSIONS This study provides new insights into systematic relationships among genes, metabolism, and the gut microbiota that affect brain functional connectivity, thereby affecting SCZ pathogenesis.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Zijia Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Shizhi Ding
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Gangrui Hei
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Liyuan Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University and the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, China
| | - Chenxiang Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongyong Shi
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University and the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Blain SD, Taylor SF, Lasagna CA, Angstadt M, Rutherford SE, Peltier S, Diwadkar VA, Tso IF. Aberrant Effective Connectivity During Eye Gaze Processing Is Linked to Social Functioning and Symptoms in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1228-1239. [PMID: 37648206 PMCID: PMC10840731 DOI: 10.1016/j.bpsc.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Patients with schizophrenia show abnormal gaze processing, which is associated with social dysfunction. These abnormalities are related to aberrant connectivity among brain regions that are associated with visual processing, social cognition, and cognitive control. In this study, we investigated 1) how effective connectivity during gaze processing is disrupted in schizophrenia and 2) how this may contribute to social dysfunction and clinical symptoms. METHODS Thirty-nine patients with schizophrenia/schizoaffective disorder (SZ) and 33 healthy control participants completed an eye gaze processing task during functional magnetic resonance imaging. Participants viewed faces with different gaze angles and performed explicit and implicit gaze processing. Four brain regions-the secondary visual cortex, posterior superior temporal sulcus, inferior parietal lobule, and posterior medial frontal cortex-were identified as nodes for dynamic causal modeling analysis. RESULTS Both the SZ and healthy control groups showed similar model structures for general gaze processing. Explicit gaze discrimination led to changes in effective connectivity, including stronger excitatory, bottom-up connections from the secondary visual cortex to the posterior superior temporal sulcus and inferior parietal lobule and inhibitory, top-down connections from the posterior medial frontal cortex to the secondary visual cortex. Group differences in top-down modulation from the posterior medial frontal cortex to the posterior superior temporal sulcus and inferior parietal lobule were noted, such that these inhibitory connections were attenuated in the healthy control group but further strengthened in the SZ group. Connectivity was associated with social dysfunction and symptom severity. CONCLUSIONS The SZ group showed notably stronger top-down inhibition during explicit gaze discrimination, which was associated with more social dysfunction but less severe symptoms among patients. These findings help pinpoint neural mechanisms of aberrant gaze processing and may serve as future targets for interventions that combine neuromodulation with social cognitive training.
Collapse
Affiliation(s)
- Scott D Blain
- Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, Ohio; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Carly A Lasagna
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Saige E Rutherford
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Predictive Clinical Neuroscience Lab, Donders Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Scott Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Vaibhav A Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Ivy F Tso
- Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, Ohio; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Simmonite M, Yao B, Welsh RC, Taylor SF. Increased rostral medial frontal GABA+ in early psychosis is obscured by levels of negative affect. Schizophr Res 2023; 252:46-47. [PMID: 36623434 PMCID: PMC10184492 DOI: 10.1016/j.schres.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/19/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Molly Simmonite
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Beier Yao
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Robert C Welsh
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Tso IF, Angstadt M, Rutherford S, Peltier S, Diwadkar VA, Taylor SF. Dynamic causal modeling of eye gaze processing in schizophrenia. Schizophr Res 2021; 229:112-121. [PMID: 33229223 PMCID: PMC8324063 DOI: 10.1016/j.schres.2020.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormal eye gaze perception is related to symptoms and social functioning in schizophrenia. However, little is known about the brain network mechanisms underlying these abnormalities. Here, we employed dynamic causal modeling (DCM) of fMRI data to discover aberrant effective connectivity within networks associated with eye gaze processing in schizophrenia. METHODS Twenty-seven patients (schizophrenia/schizoaffective disorder, SZ) and 22 healthy controls (HC) completed an eye gaze processing task during fMRI. Participants viewed faces with different gaze angles and performed explicit gaze discrimination (Gaze: "Looking at you?" yes/no) or implicit gaze processing (Gender: "male or female?"). Four brain regions, the secondary visual cortex (Vis), posterior superior temporal sulcus (pSTS), inferior parietal lobule (IPL), and posterior medial frontal cortex (pMFC) were identified as nodes for subsequent DCM analysis. RESULTS SZ and HC showed similar generative model structure, but SZ showed altered connectivity for specific self-connections, inter-regional connections during all gaze processing (reduced excitatory bottom-up and enhanced inhibitory top-down connections), and modulation by explicit gaze discrimination (increased frontal inhibition of visual cortex). Altered effective connectivity was significantly associated with poorer social cognition and functioning. CONCLUSIONS General gaze processing in SZ is associated with distributed cortical dysfunctions and bidirectional connectivity between regions, while explicit gaze discrimination involves predominantly top-down abnormalities in the visual system. These results suggest plausible neural mechanisms underpinning gaze processing deficits and may serve as bio-markers for intervention.
Collapse
Affiliation(s)
- Ivy F. Tso
- Department of Psychiatry, University of Michigan, Ann Arbor,Address correspondence to Ivy Tso, Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, U.S.A.
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor
| | | | - Scott Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor
| | | | | |
Collapse
|
7
|
Marshall BL, Liu Y, Farrington MJ, Mao J, Helferich WG, Schenk AK, Bivens NJ, Sarma SJ, Lei Z, Sumner LW, Joshi T, Rosenfeld CS. Early genistein exposure of California mice and effects on the gut microbiota-brain axis. J Endocrinol 2019; 242:139-157. [PMID: 31189133 PMCID: PMC6885123 DOI: 10.1530/joe-19-0214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Yang Liu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Michelle J Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri, USA
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA
- Genetics Area Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Gagnon H, Simmonite M, Cassady K, Chamberlain J, Freiburger E, Lalwani P, Kelley S, Foerster B, Park DC, Petrou M, Seidler RD, Taylor SF, Weissman DH, Polk TA. Michigan Neural Distinctiveness (MiND) study protocol: investigating the scope, causes, and consequences of age-related neural dedifferentiation. BMC Neurol 2019; 19:61. [PMID: 30979359 PMCID: PMC6460537 DOI: 10.1186/s12883-019-1294-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Aging is often associated with behavioral impairments, but some people age more gracefully than others. Why? One factor that may play a role is individual differences in the distinctiveness of neural representations. Previous research has found that neural activation patterns in visual cortex in response to different visual stimuli are often more similar (i.e., less distinctive) in older vs. young participants, a phenomenon referred to as age-related neural dedifferentiation. Furthermore, older people whose neural representations are less distinctive tend to perform worse on a wide range of behavioral tasks. The Michigan Neural Distinctiveness (MiND) project aims to investigate the scope of neural dedifferentiation (e.g., does it also occur in auditory, motor, and somatosensory cortex?), one potential cause (age-related reductions in the inhibitory neurotransmitter gamma-aminobutyric acid (GABA)), and the behavioral consequences of neural dedifferentiation. This protocol paper describes the study rationale and methods being used in complete detail, but not the results (data collection is currently underway). Methods The MiND project consists of two studies: the main study and a drug study. In the main study, we are recruiting 60 young and 100 older adults to perform behavioral tasks that measure sensory and cognitive function. They also participate in functional MRI (fMRI), MR spectroscopy, and diffusion weighted imaging sessions, providing data on neural distinctiveness and GABA concentrations. In the drug study, we are recruiting 25 young and 25 older adults to compare neural distinctiveness, measured with fMRI, after participants take a placebo or a benzodiazepine (lorazepam) that should increase GABA activity. Discussion By collecting multimodal imaging measures along with extensive behavioral measures from the same subjects, we are linking individual differences in neurochemistry, neural representation, and behavioral performance, rather than focusing solely on group differences between young and old participants. Our findings have the potential to inform new interventions for age-related declines. Trial registration This study was retrospectively registered with the ISRCTN registry on March 4, 2019. The registration number is ISRCTN17266136.
Collapse
Affiliation(s)
- Holly Gagnon
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.,Department of Psychology, University of Utah, 380 S 1530 E, Salt Lake City, UT, 84112, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Kaitlin Cassady
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Jordan Chamberlain
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.,Department of Psychology, Penn State University, 441 Moore Building, University Park, PA, 16801, USA
| | - Erin Freiburger
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Poortata Lalwani
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Shannon Kelley
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Bradley Foerster
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Denise C Park
- Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Drive, Suite 800, Dallas, TX, 75235, USA
| | - Myria Petrou
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, PO Box 118205, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.,Michigan Medicine Ambulatory Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Daniel H Weissman
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules 2018; 23:molecules23082087. [PMID: 30127324 PMCID: PMC6222385 DOI: 10.3390/molecules23082087] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a debilitating mental illness which involves three groups of symptoms, i.e., positive, negative and cognitive, and has major public health implications. According to various sources, it affects up to 1% of the population. The pathomechanism of schizophrenia is not fully understood and current antipsychotics are characterized by severe limitations. Firstly, these treatments are efficient for about half of patients only. Secondly, they ameliorate mainly positive symptoms (e.g., hallucinations and thought disorders which are the core of the disease) but negative (e.g., flat affect and social withdrawal) and cognitive (e.g., learning and attention disorders) symptoms remain untreated. Thirdly, they involve severe neurological and metabolic side effects and may lead to sexual dysfunction or agranulocytosis (clozapine). It is generally agreed that the interactions of antipsychotics with various neurotransmitter receptors are responsible for their effects to treat schizophrenia symptoms. In particular, several G protein-coupled receptors (GPCRs), mainly dopamine, serotonin and adrenaline receptors, are traditional molecular targets for antipsychotics. Comprehensive research on GPCRs resulted in the exploration of novel important signaling mechanisms of GPCRs which are crucial for drug discovery: intentionally non-selective multi-target compounds, allosteric modulators, functionally selective compounds and receptor oligomerization. In this review, we cover current hypotheses of schizophrenia, involving different neurotransmitter systems, discuss available treatments and present novel concepts in schizophrenia and its treatment, involving mainly novel mechanisms of GPCRs signaling.
Collapse
Affiliation(s)
- Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
10
|
Grove TB, Yao B, Mueller SA, McLaughlin M, Ellingrod VL, McInnis MG, Taylor SF, Deldin PJ, Tso IF. A Bayesian model comparison approach to test the specificity of visual integration impairment in schizophrenia or psychosis. Psychiatry Res 2018; 265:271-278. [PMID: 29768190 PMCID: PMC6448399 DOI: 10.1016/j.psychres.2018.04.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 02/23/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
Impaired visual integration is well documented in schizophrenia and related to functional outcomes. However, it is unclear if this deficit is specific to schizophrenia, or characteristic of psychosis more broadly. To address this question, this study used a Bayesian model comparison approach to examine the evidence of three grouping models of visual integration performance in 116 individuals with schizophrenia (SZ), schizoaffective disorder (SA), bipolar disorder (BD) with or without a history of prominent psychosis (BDP+ and BDP-, respectively), or no psychiatric diagnosis (healthy controls; HC). We compared: (1) Psychosis Model (psychosis, non-psychosis), where the psychosis group included SZ, SA, and BDP+, and the non-psychosis group included BDP- and HC; (2) Schizophrenia Model (SZ, non-SZ); and (3) DSM Model (SZ, SA, BD, HC). The relationship between visual integration and general cognition was also explored. The Psychosis Model showed the strongest evidence, and visual integration was associated with general cognition in participants with psychosis. The results were consistent with the Research Domain Criteria (RDoC) framework, indicating that visual integration impairment is characteristic of psychosis and not specific to SZ or DSM categories, and may share similar disease pathways with observed neurocognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Tyler B. Grove
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA,Correspondence concerning this article should be addressed to Tyler Grove, Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109, USA. . Tel: 1-(734)-647-3872
| | - Beier Yao
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Savanna A. Mueller
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Vicki L. Ellingrod
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA,College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephan F. Taylor
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patricia J. Deldin
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivy F. Tso
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, Krystal JH, Murray JD, Anticevic A. Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders. Biol Psychiatry 2017; 81:848-861. [PMID: 28434615 PMCID: PMC5436134 DOI: 10.1016/j.biopsych.2017.03.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023]
Abstract
Recent theoretical accounts have proposed excitation and inhibition (E/I) imbalance as a possible mechanistic, network-level hypothesis underlying neural and behavioral dysfunction across neurodevelopmental disorders, particularly autism spectrum disorder (ASD) and schizophrenia (SCZ). These two disorders share some overlap in their clinical presentation as well as convergence in their underlying genes and neurobiology. However, there are also clear points of dissociation in terms of phenotypes and putatively affected neural circuitry. We highlight emerging work from the clinical neuroscience literature examining neural correlates of E/I imbalance across children and adults with ASD and adults with both chronic and early-course SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted with electroencephalography, magnetoencephalography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging, including effects observed both during task and at rest. Throughout this review, we discuss points of convergence and divergence in the ASD and SCZ literature, with a focus on disruptions in neural E/I balance. We also consider these findings in relation to predictions generated by theoretical neuroscience, particularly computational models predicting E/I imbalance across disorders. Finally, we discuss how human noninvasive neuroimaging can benefit from pharmacological challenge studies to reveal mechanisms in ASD and SCZ. Collectively, we attempt to shed light on shared and divergent neuroimaging effects across disorders with the goal of informing future research examining the mechanisms underlying the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such translational efforts are vital to facilitate development of neurobiologically informed treatment strategies across neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Brendan D Adkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - James C McPartland
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Wu ZM, Ding Y, Jia HX, Li L. Different effects of isolation-rearing and neonatal MK-801 treatment on attentional modulations of prepulse inhibition of startle in rats. Psychopharmacology (Berl) 2016; 233:3089-102. [PMID: 27370017 DOI: 10.1007/s00213-016-4351-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
Abstract
RATIONAL Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI). OBJECTIVES As a neurodevelopmental model of schizophrenia, isolation rearing impairs both baseline PPI and attentional modulations of PPI in rats. This study examined in Sprague-Dawley male rats whether neonatally blocking N-methyl-D-aspartate (NMDA) receptors specifically affects attentional modulations of PPI during adulthood. RESULTS Both socially reared rats with neonatal exposure to the NMDA receptor antagonist MK-801 and isolation-reared rats exhibited augmented startle responses, but only isolation rearing impaired baseline PPI. Fear conditioning of the prepulse enhanced PPI in socially reared rats, but MK-801-treated rats lost the prepulse feature specificity. Perceptually spatial separation between the conditioned prepulse and a noise masker further enhanced PPI only in normally reared rats. Clozapine administration during adulthood generally weakened startle, enhanced baseline PPI in neonatally interrupted rats, and restored the fear conditioning-induced PPI enhancement in isolation-reared rats with a loss of the prepulse feature specificity. Clozapine administration also abolished both the perceptual separation-induced PPI enhancement in normally reared rats and the fear conditioning-induced PPI enhancement in MK-801-treated rats. CONCLUSIONS Isolation rearing impairs both baseline PPI and attentional modulations of PPI, but neonatally disrupting NMDA receptor-mediated transmissions specifically impair attentional modulations of PPI. Clozapine has limited alleviating effects.
Collapse
Affiliation(s)
- Zhe-Meng Wu
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Yu Ding
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Hong-Xiao Jia
- Beijing Key Laboratory for Mental Disorders, Center of Schizophrenia,Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| | - Liang Li
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
13
|
Umeda K, Iritani S, Fujishiro H, Sekiguchi H, Torii Y, Habuchi C, Kuroda K, Kaibuchi K, Ozaki N. Immunohistochemical evaluation of the GABAergic neuronal system in the prefrontal cortex of a DISC1 knockout mouse model of schizophrenia. Synapse 2016; 70:508-518. [PMID: 27421906 DOI: 10.1002/syn.21924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023]
Abstract
The etiology of schizophrenia remains unknown. However, using molecular biological techniques, some candidate genes have been identified that might be associated with the disease. One of these candidate genes, disrupted-in-schizophrenia 1 (DISC1), was found in a large Scottish family with multiple mental illnesses. The function of DISC1 is considered to be associated with axon elongation and neuron migration in the central nervous system, but the functional consequences of defects in this gene have not been fully clarified in brain neuronal systems. Dysfunction of the gamma-aminobutyric acid (GABA)ergic neuronal system is also considered to contribute to the pathogenesis of schizophrenia. Thus, to clarify the neuropathological changes associated with DISC1 dysfunction, we investigated the number and distribution of GABAergic neurons in the prefrontal cortex of DISC1 knockout mice. We immunohistochemically quantified the laminar density of GABAergic neurons using anti-parvalbumin and anti-calbindin D28k antibodies (markers of GABAergic neuronal subpopulations). We found that the densities of both parvalbumin- and calbindin-immunoreactive neurons in the anterior cingulate, medial prefrontal, and orbitofrontal cortices were markedly lower in DISC1 knockout mice than in wild-type mice. In addition, reductions in cell density were observed in layers II and III and the deep layers of the cortex. This reduction in GABAergic neuronal density was not associated with alterations in neuronal size. These findings suggest that disrupted GABAergic neuronal network formation due to a DISC1 deficit might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Kentaro Umeda
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shuji Iritani
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hiroshige Fujishiro
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Youta Torii
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Chikako Habuchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|