1
|
Wang L, Liu R, Liao J, Xiong X, Xia L, Wang W, Liu J, Zhao F, Zhuo L, Li H. Meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia. Front Psychiatry 2024; 15:1465758. [PMID: 39247615 PMCID: PMC11377232 DOI: 10.3389/fpsyt.2024.1465758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Previous studies based on resting-state functional magnetic resonance imaging(rs-fMRI) and voxel-based morphometry (VBM) have demonstrated significant abnormalities in brain structure and resting-state functional brain activity in patients with early-onset schizophrenia (EOS), compared with healthy controls (HCs), and these alterations were closely related to the pathogenesis of EOS. However, previous studies suffer from the limitations of small sample sizes and high heterogeneity of results. Therefore, the present study aimed to effectively integrate previous studies to identify common and specific brain functional and structural abnormalities in patients with EOS. Methods The PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), and WanFang databases were systematically searched to identify publications on abnormalities in resting-state regional functional brain activity and gray matter volume (GMV) in patients with EOS. Then, we utilized the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software to conduct a whole-brain voxel meta-analysis of VBM and rs-fMRI studies, respectively, and followed by multimodal overlapping on this basis to comprehensively identify brain structural and functional abnormalities in patients with EOS. Results A total of 27 original studies (28 datasets) were included in the present meta-analysis, including 12 studies (13 datasets) related to resting-state functional brain activity (496 EOS patients, 395 HCs) and 15 studies (15 datasets) related to GMV (458 EOS patients, 531 HCs). Overall, in the functional meta-analysis, patients with EOS showed significantly increased resting-state functional brain activity in the left middle frontal gyrus (extending to the triangular part of the left inferior frontal gyrus) and the right caudate nucleus. On the other hand, in the structural meta-analysis, patients with EOS showed significantly decreased GMV in the right superior temporal gyrus (extending to the right rolandic operculum), the right middle temporal gyrus, and the temporal pole (superior temporal gyrus). Conclusion This meta-analysis revealed that some regions in the EOS exhibited significant structural or functional abnormalities, such as the temporal gyri, prefrontal cortex, and striatum. These findings may help deepen our understanding of the underlying pathophysiological mechanisms of EOS and provide potential biomarkers for the diagnosis or treatment of EOS.
Collapse
Affiliation(s)
- Lu Wang
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Juan Liao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xin Xiong
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Linfeng Xia
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Weiwei Wang
- Department of Psychiatry, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junqi Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Fulin Zhao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
| | - Lihua Zhuo
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
2
|
Hoptman MJ, Evans KT, Parincu Z, Sparpana AM, Sullivan EF, Ahmed AO, Iosifescu DV. Emotion-related impulsivity and suicidal ideation and behavior in schizophrenia spectrum disorder: a pilot fMRI study. Front Psychiatry 2024; 15:1408083. [PMID: 38988737 PMCID: PMC11234166 DOI: 10.3389/fpsyt.2024.1408083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Suicidal ideation and behavior (SIB) are serious problems in people with schizophrenia spectrum disorders (SSD). Nevertheless, relatively little is known about the circuitry underlying SIB in SSD. Recently, we showed that elevated emotional impulsivity (urgency) was associated with SIB in SSD. Here we examined brain activity in people with SSD and elevated SIB. Methods We tested 16 people with SSD who had low SIB and 14 people with high SIB on a task in which emotion regulation in response to affective pictures was implicitly manipulated using spoken sentences. Thus, there were neutral pictures preceded by neutral statements (NeutNeut condition), as well as negative pictures preceded by either negative (NegNeg) or neutral (NeutNeg) statements. After each picture, participants rated how unpleasant each picture was for them. The latter two conditions were compared to the NeutNeut condition. We compared the emotion-regulated condition (NeutNeg) to the unregulated condition (NeutNeut). Statistics were threshold using threshold free cluster enhancement (TFCE). Results People in the low SIB group showed higher activation in this contrast in medial frontal gyrus, right rostral anterior cingulate, bilateral superior frontal gyrus/DLPFC, and right middle cingulate gyrus, as well as right superior temporal gyrus. Discussion This study provides clues to the neural basis of SIB in SSD as well as underlying mechanisms.
Collapse
Affiliation(s)
- Matthew J Hoptman
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Kathryn T Evans
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Zamfira Parincu
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Allison M Sparpana
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Elizabeth F Sullivan
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, NY, United States
| | - Dan V Iosifescu
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Cheng X, Chen J, Zhang X, Wang T, Sun J, Zhou Y, Yang R, Xiao Y, Chen A, Song Z, Chen P, Yang C, QiuxiaWu, Lin T, Chen Y, Cao L, Wei X. Characterizing the temporal dynamics of intrinsic brain activities in depressed adolescents with prior suicide attempts. Eur Child Adolesc Psychiatry 2024; 33:1179-1191. [PMID: 37284850 PMCID: PMC11032277 DOI: 10.1007/s00787-023-02242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Converging evidence has revealed disturbances in the corticostriatolimic system are associated with suicidal behaviors in adults with major depressive disorder. However, the neurobiological mechanism that confers suicidal vulnerability in depressed adolescents is largely unknown. A total of 86 depressed adolescents with and without prior suicide attempts (SA) and 47 healthy controls underwent resting-state functional imaging (R-fMRI) scans. The dynamic amplitude of low-frequency fluctuations (dALFF) was measured using sliding window approach. We identified SA-related alterations in dALFF variability primarily in the left middle temporal gyrus, inferior frontal gyrus, middle frontal gyrus (MFG), superior frontal gyrus (SFG), right SFG, supplementary motor area (SMA) and insula in depressed adolescents. Notably, dALFF variability in the left MFG and SMA was higher in depressed adolescents with recurrent suicide attempts than in those with a single suicide attempt. Moreover, dALFF variability was capable of generating better diagnostic and prediction models for suicidality than static ALFF. Our findings suggest that alterations in brain dynamics in regions involved in emotional processing, decision-making and response inhibition are associated with an increased risk of suicidal behaviors in depressed adolescents. Furthermore, dALFF variability could serve as a sensitive biomarker for revealing the neurobiological mechanisms underlying suicidal vulnerability.
Collapse
Affiliation(s)
- Xiaofang Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ting Wang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ruilan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yeyu Xiao
- Guangzhou Integrated Traditional Chinese and Western Medicine, Guangzhou, 510800, Guangdong, People's Republic of China
| | - Amei Chen
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Ziyi Song
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Pinrui Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Chanjuan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - QiuxiaWu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Taifeng Lin
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yingmei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China.
| | - Xinhua Wei
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Meda N, Miola A, Cattarinussi G, Sambataro F. Whole-brain structural and functional neuroimaging of individuals who attempted suicide and people who did not: A systematic review and exploratory coordinate-based meta-analysis. Eur Neuropsychopharmacol 2024; 79:66-77. [PMID: 38237538 DOI: 10.1016/j.euroneuro.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 02/06/2024]
Abstract
Suicide is the cause of death of approximately 800,000 people a year. Despite the relevance of this behaviour, risk assessment tools rely on clinician experience and subjective ratings. Given that previous suicide attempts are the single strongest predictors of future attempts, we designed a systematic review and coordinate-based meta-analysis to demonstrate whether neuroimaging features can help distinguish individuals who attempted suicide from subjects who did not. Out of 5,659 publications from PubMed, Scopus, and Web of Science, we summarised 102 experiments and meta-analysed 23 of them. A cluster in the right superior temporal gyrus, a region implicated in emotional processing, might be functionally hyperactive in individuals who attempted suicide. No statistically significant differences in brain morphometry were evidenced. Furthermore, we used JuSpace to show that this cluster is enriched in 5-HT1A heteroreceptors in the general population. This exploratory meta-analysis provides a putative neural substrate linked to previous suicide attempts. Heterogeneity in the analytical techniques and weak or absent power analysis of the studies included in this review currently limit the applicability of the findings, the replication of which should be prioritised.
Collapse
Affiliation(s)
- Nicola Meda
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova University Hospital, Padua, Italy
| | - Alessandro Miola
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy; Casa di Cura Parco dei Tigli, Padova, Italy
| | - Giulia Cattarinussi
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova University Hospital, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
5
|
Yin Y, Tong J, Huang J, Tian B, Chen S, Tan S, Wang Z, Yang F, Tong Y, Fan F, Kochunov P, Tan Y, Hong LE. Auditory Hallucinations, Depressive Symptoms, and Current Suicidal Ideation or Behavior Among Patients with Acute-episode Schizophrenia. Arch Suicide Res 2023; 27:323-338. [PMID: 34689715 PMCID: PMC9682271 DOI: 10.1080/13811118.2021.1993399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Suicide risk and auditory hallucinations are common in schizophrenia, but less is known about its associations. This cross-sectional study aimed to determine whether the presence and severity of auditory hallucinations were associated with current suicidal ideation or behavior (CSIB) among patients with schizophrenia. We interviewed 299 individuals with schizophrenia and acute symptoms and reviewed their medical records. Measurement included the Psychotic Symptom Rating Scale (PSYRATS-AH), the Calgary Depression Scale for Schizophrenia (CDSS), and the Positive and Negative Syndrome Scale. Logistic regression and path analysis were used. The CSIB prevalence was higher among patients with current auditory hallucination than those without (19.5% vs. 8.6%, crude odds ratio = 2.58, p = .009). Lifetime auditory hallucination experience (adjusted odds ratio [AOR] = 3.81; 95% CI: 1.45-10.05) or current auditory hallucination experience (AOR = 3.22; 95% CI: 1.25-8.28) can elevate the likelihood of CSIB while controlling for depressive symptoms and lifetime suicide-attempt history. Among those with auditory hallucinations, the emotional score of the PSYRATS-AH was positively associated with the CDSS score and there was a small indirect effect of the CDSS score on the association between the emotional domain score and CSIB (bias-corrected 95% CI, 0.02-0.20). In conclusion, the presence of auditory hallucinations was strongly associated with CSIB, independent of depressive symptoms and lifetime suicide attempts. Suicide risk assessment should consider auditory hallucination experience and patients' appraisal of its emotional characteristics. Future cohort studies are necessary to provide more conclusive evidence for the mediating pathways between auditory hallucinations and CSIB.HIGHLIGHTSThe presence of auditory hallucinations was associated with current suicidality.Auditory hallucinations' emotional severity was related to depressive symptoms.The severity of auditory hallucination was not directly associated with suicidality.
Collapse
Affiliation(s)
- Yi Yin
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Yongsheng Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
- Beijing Suicide Research and Prevention Center, WHO Collaborating Center for Research and Training in Suicide Prevention, Beijing, P. R. China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
6
|
Controlling the Impact of Helicobacter pylori-Related Hyperhomocysteinemia on Neurodegeneration. Medicina (B Aires) 2023; 59:medicina59030504. [PMID: 36984505 PMCID: PMC10056452 DOI: 10.3390/medicina59030504] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Helicobacter pylori infection consists a high global burden affecting more than 50% of the world’s population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and/or glaucoma, termed as “ocular Alzheimer’s disease”. According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer’s disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.
Collapse
|
7
|
History of suicide attempt associated with amygdala and hippocampus changes among individuals with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023:10.1007/s00406-023-01554-5. [PMID: 36788147 DOI: 10.1007/s00406-023-01554-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Abnormalities in subcortical brain structures may reflect higher suicide risk in mood disorders, but less is known about its associations for schizophrenia. This cross-sectional imaging study aimed to explore whether the history of suicide attempts was associated with subcortical changes among individuals with schizophrenia. We recruited 44 individuals with schizophrenia and a history of suicide attempts (SZ-SA) and 44 individuals with schizophrenia but without a history of suicide attempts (SZ-NSA) and 44 healthy controls. Linear regression showed that SZ-SA had smaller volumes of the hippocampus (Cohen's d = -0.72), the amygdala (Cohen's d = -0.69), and some nuclei of the amygdala (Cohen's d, -0.57 to -0.72) than SZ-NSA after adjusting for age, sex, illness phase, and intracranial volume. There was no difference in the volume of the subfields of the hippocampus. It suggests the history of suicide attempts is associated with subcortical volume alterations in schizophrenia.
Collapse
|
8
|
Zhong S, Chen P, Lai S, Chen G, Zhang Y, Lv S, He J, Tang G, Pan Y, Wang Y, Jia Y. Aberrant dynamic functional connectivity in corticostriatal circuitry in depressed bipolar II disorder with recent suicide attempt. J Affect Disord 2022; 319:538-548. [PMID: 36155235 DOI: 10.1016/j.jad.2022.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The underlying neurobiological mechanisms on suicidal behavior in bipolar disorder remain unclear. We aim to explore the mechanisms of suicide by detecting dynamic functional connectivity (dFC) of corticostriatal circuitry and cognition in depressed bipolar II disorder (BD II) with recent suicide attempt (SA). METHODS We analyzed resting-state functional magnetic resonance imaging (fMRI) data from 68 depressed patients with BD-II (30 with SA and 38 without SA) and 35 healthy controls (HCs). The whole-brain dFC variability of corticostriatal circuitry was calculated using a sliding-window analysis. Their correlations with cognitive dysfunction were further detected. Support vector machine (SVM) classification tested the potential of dFC to differentiate BD-II with SA from HCs. RESULTS Increased dFC variability between the right vCa and the right insula was found in SA compared to non-SA and HCs, and negatively correlated with speed of processing. Decreased dFC variability between the left dlPu and the right postcentral gyrus was found in non-SA compared to SA and HCs, and positively correlated with reasoning problem-solving. Both SA and non-SA exhibited decreased dFC variability between the right dCa and the left MTG, and between the right dlPu and the right calcarine when compared to HCs. SVM classification achieved an accuracy of 75.24 % and AUC of 0.835 to differentiate SA from non-SA, while combining the abnormal dFC features between SA and non-SA. CONCLUSIONS Aberrant dFC variability of corticostriatal circuitry may serve as potential neuromarker for SA in BD-II, which might help to discriminate suicidal BD-II patients from non-suicidal patients and HCs.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Youling Pan
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Yin Y, Tong J, Huang J, Tian B, Chen S, Tan S, Wang Z, Yang F, Tong Y, Fan F, Kochunov P, Jahanshad N, Li CSR, Hong LE, Tan Y. History of suicide attempts associated with the thinning right superior temporal gyrus among individuals with schizophrenia. Brain Imaging Behav 2022; 16:1893-1901. [PMID: 35545740 PMCID: PMC10025969 DOI: 10.1007/s11682-021-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
Abstract
Individuals with schizophrenia have higher rates of suicide attempts than the general population. Specific cortical abnormalities (e.g., the cortical surface area and thickness) may be associated with a history of suicide attempts. We recruited 74 individuals with schizophrenia (37 suicide attempters were individually matched with 37 non-attempters on age, sex, phase of illness, and study center) and 37 healthy volunteers. The cortical surface area and thickness data were extracted from structural MRI and compared between the groups. Suicide attempters showed significantly smaller surface areas in the whole brain (p = .028, Cohen's d = -0.54) than non-attempters. No association was found between the cortical surface area of individual brain regions and a history of suicide attempts. The mean cortical thickness did not differ significantly between the groups; however, suicide attempters demonstrated a thinner cortex in the right superior temporal gyrus (p < .001, q = 0.037, Cohen's d = -0.88). These findings indicate that a history of suicide attempts among individuals with schizophrenia is associated with a reduction in the global cortical surface area and specific cortical thinning of the right superior temporal gyrus. The morphometric alteration of the right superior temporal gyrus may represent a biomarker of suicidal behavior in individuals with schizophrenia.
Collapse
Affiliation(s)
- Yi Yin
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Yongsheng Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
- Beijing Suicide Research and Prevention Center, WHO Collaborating Center for Research and Training in Suicide Prevention, Beijing, China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Neda Jahanshad
- Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Overs BJ, Roberts G, Ridgway K, Toma C, Hadzi-Pavlovic D, Wilcox HC, Hulvershorn LA, Nurnberger JI, Schofield PR, Mitchell PB, Fullerton JM. Effects of polygenic risk for suicide attempt and risky behavior on brain structure in young people with familial risk of bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2021; 186:485-507. [PMID: 34726322 DOI: 10.1002/ajmg.b.32879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023]
Abstract
Bipolar disorder (BD) is associated with a 20-30-fold increased suicide risk compared to the general population. First-degree relatives of BD patients show inflated rates of psychopathology including suicidal behaviors. As reliable biomarkers of suicide attempts (SA) are lacking, we examined associations between suicide-related polygenic risk scores (PRSs)-a quantitative index of genomic risk-and variability in brain structures implicated in SA. Participants (n = 206; aged 12-30 years) were unrelated individuals of European ancestry and comprised three groups: 41 BD cases, 96 BD relatives ("high risk"), and 69 controls. Genotyping employed PsychArray, followed by imputation. Three PRSs were computed using genome-wide association data for SA in BD (SA-in-BD), SA in major depressive disorder (SA-in-MDD) (Mullins et al., 2019, The American Journal of Psychiatry, 176(8), 651-660), and risky behavior (Karlsson Linnér et al., 2019, Nature Genetics, 51(2), 245-257). Structural magnetic resonance imaging processing employed FreeSurfer v5.3.0. General linear models were constructed using 32 regions-of-interest identified from suicide neuroimaging literature, with false-discovery-rate correction. SA-in-MDD and SA-in-BD PRSs negatively predicted parahippocampal thickness, with the latter association modified by group membership. SA-in-BD and Risky Behavior PRSs inversely predicted rostral and caudal anterior cingulate structure, respectively, with the latter effect driven by the "high risk" group. SA-in-MDD and SA-in-BD PRSs positively predicted cuneus structure, irrespective of group. This study demonstrated associations between PRSs for suicide-related phenotypes and structural variability in brain regions implicated in SA. Future exploration of extended PRSs, in conjunction with a range of biological, phenotypic, environmental, and experiential data in high risk populations, may inform predictive models for suicidal behaviors.
Collapse
Affiliation(s)
- Bronwyn J Overs
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Kate Ridgway
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Claudio Toma
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - Dusan Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Holly C Wilcox
- Child Psychiatry and Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leslie A Hulvershorn
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John I Nurnberger
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
11
|
Bohaterewicz B, Sobczak AM, Krześniak A, Mętel D, Adamczyk P. On the relation of gyrification and cortical thickness alterations to the suicidal risk and mental pain in chronic schizophrenia outpatients. Psychiatry Res Neuroimaging 2021; 316:111343. [PMID: 34399285 DOI: 10.1016/j.pscychresns.2021.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland; Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland.
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Alicja Krześniak
- Institute of Psychology, Jagiellonian University, Krakow, Poland; Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dagmara Mętel
- Department of Community Psychiatry, Chair of Psychiatry, Medical College, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
12
|
Campos AI, Thompson PM, Veltman DJ, Pozzi E, van Veltzen LS, Jahanshad N, Adams MJ, Baune BT, Berger K, Brosch K, Bülow R, Connolly CG, Dannlowski U, Davey CG, de Zubicaray GI, Dima D, Erwin-Grabner T, Evans JW, Fu CHY, Gotlib IH, Goya-Maldonado R, Grabe HJ, Grotegerd D, Harris MA, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Ho TC, Kircher T, Krug A, Lagopoulos J, Lemke H, McMahon K, MacMaster FP, Martin NG, McIntosh AM, Medland SE, Meinert S, Meller T, Nenadic I, Opel N, Redlich R, Reneman L, Repple J, Sacchet MD, Schmitt S, Schrantee A, Sim K, Singh A, Stein F, Strike LT, van der Wee NJA, van der Werff SJA, Völzke H, Waltemate L, Whalley HC, Wittfeld K, Wright MJ, Yang TT, Zarate CA, Schmaal L, Rentería ME. Brain Correlates of Suicide Attempt in 18,925 Participants Across 18 International Cohorts. Biol Psychiatry 2021; 90:243-252. [PMID: 34172278 PMCID: PMC8324512 DOI: 10.1016/j.biopsych.2021.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroimaging studies of suicidal behavior have so far been conducted in small samples, prone to biases and false-positive associations, yielding inconsistent results. The ENIGMA-MDD Working Group aims to address the issues of poor replicability and comparability by coordinating harmonized analyses across neuroimaging studies of major depressive disorder and related phenotypes, including suicidal behavior. METHODS Here, we pooled data from 18 international cohorts with neuroimaging and clinical measurements in 18,925 participants (12,477 healthy control subjects and 6448 people with depression, of whom 694 had attempted suicide). We compared regional cortical thickness and surface area and measures of subcortical, lateral ventricular, and intracranial volumes between suicide attempters, clinical control subjects (nonattempters with depression), and healthy control subjects. RESULTS We identified 25 regions of interest with statistically significant (false discovery rate < .05) differences between groups. Post hoc examinations identified neuroimaging markers associated with suicide attempt including smaller volumes of the left and right thalamus and the right pallidum and lower surface area of the left inferior parietal lobe. CONCLUSIONS This study addresses the lack of replicability and consistency in several previously published neuroimaging studies of suicide attempt and further demonstrates the need for well-powered samples and collaborative efforts. Our results highlight the potential involvement of the thalamus, a structure viewed historically as a passive gateway in the brain, and the pallidum, a region linked to reward response and positive affect. Future functional and connectivity studies of suicidal behaviors may focus on understanding how these regions relate to the neurobiological mechanisms of suicide attempt risk.
Collapse
Affiliation(s)
- Adrian I Campos
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, California
| | - Dick J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elena Pozzi
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Laura S van Veltzen
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, California
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernhard T Baune
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Katharina Brosch
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Greig I de Zubicaray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Lower Saxony, Germany
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cynthia H Y Fu
- Centre for Affective Disorders, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom; School of Psychology, University of East London, London, United Kingdom
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Lower Saxony, Germany
| | - Hans J Grabe
- German Center for Neurodegenerative Disease, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Dominik Grotegerd
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Matthew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Sean N Hatton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tiffany C Ho
- Department of Psychiatry & Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Tilo Kircher
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, North Rhine-Westphalia, Germany; Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia; Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Katie McMahon
- Herston Imaging Research Facility & School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Frank P MacMaster
- Department of Pediatrics and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services, Calgary, Alberta, Canada
| | - Nicholas G Martin
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E Medland
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Psychiatric Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Austalia; School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Tina Meller
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Igor Nenadic
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Simon Schmitt
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Kang Sim
- West Region, Institute of Mental Health, Buangkok View, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Lower Saxony, Germany
| | - Frederike Stein
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharina Wittfeld
- German Center for Neurodegenerative Disease, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony T Yang
- Department of Psychiatry & Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia.
| | - Miguel E Rentería
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Functional alterations of the suicidal brain: a coordinate-based meta-analysis of functional imaging studies. Brain Imaging Behav 2021; 16:291-304. [PMID: 34351557 DOI: 10.1007/s11682-021-00503-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/22/2023]
Abstract
Altered brain activities in suicidal subjects have been reported in a number of neuroimaging studies. However, the activity aberrances were inconsistent in previous investigations. Thus, we aimed to address activity abnormalities in suicidal individuals. Databases were searched to perform a meta-analysis of whole-brain functional MRI studies of suicidal individuals through January 14, 2020. Meta-analyses were conducted using Seed-based d Mapping software. Based on a meta-analysis of 17 studies comprising 381 suicidal individuals and 642 controls, we mainly found that increased activity in the bilateral superior temporal gyrus, left middle temporal gyrus, and bilateral middle occipital gyrus, along with decreased activity in the right putamen and left insula, were detected in suicidal individuals compared with nonsuicidal subjects. To reduce methodological heterogeneity between the included studies, subanalyses of behavioral domains were conducted, and the right superior temporal gyrus was found to increase in all subanalyses of domains. In subanalyses of suicidal attempters and ideators, suicide attempters displayed hyperactivation in the bilateral superior temporal gyrus and left middle temporal gyrus and blunted responses in the left insula relative to controls. Suicidal ideators demonstrated elevated activation in the right middle occipital gyrus and reduced activity in the right putamen relative to controls. The bilateral superior temporal gyrus was the most robust finding, replicable in all data sets in the jackknife sensitive analysis. Moreover, increased activity in the right superior temporal gyrus, left middle temporal gyrus, and right middle occipital gyrus was found to be involved with higher suicide ideation scores. This study revealed several brain regions associated with suicidality. These findings may contribute to our understanding of the pathophysiology of suicide and have important implications for suicide prevention and interventions.
Collapse
|
14
|
Cheng X, Chen J, Zhang X, Zhang Y, Wu Q, Ma Q, Sun J, Zou W, Lin T, Zhong L, Deng W, Sun X, Cui L, Cheng X, Chen Y, Cai Y, Zheng C, Cheng D, Yang C, Ye B, Zhang X, Wei X, Cao L. Alterations in resting-state global brain connectivity in bipolar I disorder patients with prior suicide attempt. Bipolar Disord 2021; 23:474-486. [PMID: 32981096 DOI: 10.1111/bdi.13012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar I disorder (BD-I) is associated with a high risk of suicide attempt; however, the neural circuit dysfunction that confers suicidal vulnerability in individuals with this disorder remains largely unknown. Resting-state functional magnetic resonance imaging (rs-fMRI) allows non-invasive mapping of brain functional connectivity. The current study used an unbiased voxel-based graph theory analysis of rs-fMRI to investigate the intrinsic brain networks of BD-I patients with and without suicide attempt. METHODS A total of 30 BD-I patients with suicide attempt (attempter group), 82 patients without suicide attempt (non-attempter group), and 67 healthy controls underwent rs-fMRI scan, and then global brain connectivity (GBC) was computed as the sum of connections of each voxel with all other gray matter voxels in the brain. RESULTS Compared with the non-attempter group, we found regional differences in GBC values in emotion-encoding circuits, including the left superior temporal gyrus, bilateral insula/rolandic operculum, and right precuneus (PCu)/cuneus in the bipolar disorder (BD) attempter group, and these disrupted hub-like regions displayed fair to good power in distinguishing attempters from non-attempters among BD-I patients. GBC values of the right PCu/cuneus were positively correlated with illness duration and education in the attempter group. CONCLUSIONS Our results indicate that abnormal connectivity patterns in emotion-encoding circuits are associated with the increasing risk of vulnerability to suicide attempt in BD patients, and global dysconnectivity across these emotion-encoding circuits might serve as potential biomarkers for classification of suicide attempt in BD patients.
Collapse
Affiliation(s)
- Xiaofang Cheng
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China.,The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Yihe Zhang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, PR China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Qiuxia Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Qing Ma
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, PR China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Wenjin Zou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Taifeng Lin
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Liangda Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Wenhao Deng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Xiaoyi Sun
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, PR China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Liqian Cui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | - Yingmei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Yinglian Cai
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Chaodun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Daomeng Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Chanjuan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Biyu Ye
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Xiangyang Zhang
- Department of Radiology, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Xinhua Wei
- Jinan University, Guangzhou, Guangdong, PR China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| |
Collapse
|
15
|
Girgis RR, Basavaraju R, France J, Wall MM, Brucato G, Lieberman JA, Provenzano FA. An exploratory magnetic resonance imaging study of suicidal ideation in individuals at clinical high-risk for psychosis. Psychiatry Res Neuroimaging 2021; 312:111287. [PMID: 33848727 PMCID: PMC8137659 DOI: 10.1016/j.pscychresns.2021.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/18/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022]
Abstract
Suicide is a major cause of death in psychosis and associated with significant morbidity. Suicidal ideation (SI) is very common in those at clinical high-risk for psychosis (CHR) and predicts later suicide. Despite substantial work on the pathobiology of suicide in schizophrenia, little is known of its neurobiological underpinnings in the CHR or putatively prodromal state. Therefore, in this pilot study, we examined the neurobiology of SI in CHR individuals using structural MRI. Subjects were aged 14-30 and met criteria for the Attenuated Positive Symptom Psychosis-Risk Syndrome (APSS) delineated in the Structured Interview for Psychosis-Risk Syndromes (SIPS). Suicidality was assessed using the Columbia Suicide Severity Rating Scale (C-SSRS). Volumetric MRI scans were obtained on a 3T Phillips scanner. MRI data were available for 69 individuals (19 CHR without SI, 31 CHR with SI and 19 healthy control subjects). CHR individuals with SI had thicker middle temporal and right insular cortices than CHR individuals without SI and healthy control subjects. The location of these findings is consistent with neurobiological findings regarding suicide in syndromal psychosis. These findings underscore the potential for the use of brain imaging biomarkers of suicide risk in CHR individuals.
Collapse
Affiliation(s)
- Ragy R Girgis
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A.
| | - Rakshathi Basavaraju
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A
| | - Jeanelle France
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A
| | - Melanie M Wall
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A
| | - Gary Brucato
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A
| | - Jeffrey A Lieberman
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A
| | - Frank A Provenzano
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, N.Y., U.S.A
| |
Collapse
|
16
|
Athanassiou M, Dumais A, Iammatteo V, De Benedictis L, Dubreucq JL, Potvin S. The processing of angry faces in schizophrenia patients with a history of suicide: An fMRI study examining brain activity and connectivity. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110253. [PMID: 33485961 DOI: 10.1016/j.pnpbp.2021.110253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The high rate of suicidal behaviours (SBs) in psychiatric populations remain an important preoccupation to address. The literature reveals emotional instability as an important risk factor for SBs. However, the neural mechanisms underpinning this risk factor have never been investigated in schizophrenia patients with SBs. The following study implemented a task-based emotional processing functional magnetic resonance imaging (fMRI) paradigm to evaluate the activation and connectivity differences exhibited by schizophrenia patients with a history of suicide attempt (SA). METHOD A sample of 62 schizophrenia patients with and without SA and 22 controls completed an fMRI emotional processing task, which included the visualization of dynamic angry facial expressions. Task-based connectivity was assessed using generalized psychophysical interaction analyses. RESULTS During the processing of angry faces, suicidal schizophrenia patients displayed increased activation of the left median cingulate gyrus, left middle frontal gyrus, and left precuneus when compared to nonsuicidal schizophrenia patients and healthy controls. Whole-brain connectivity analyses yielded an increased coupling of the right amygdala and right superior frontal gyrus, as well as between the left precuneus and median cingulate gyrus, in suicidal schizophrenia patients. Schizophrenia patients' hostility scores on the Positive and Negative Symptom Scale (PANSS) were significantly and positively correlated with the activity of the left median cingulate gyrus. CONCLUSION When exposed to angry faces, suicidal schizophrenia patients demonstrate elevated activation of brain regions associated to executive functioning and self-processing, as well as aberrant fronto-limbic connectivity involved in emotion regulation. Our results highlight the neglected role of anger when investigating the neural alterations underpinning SBs in schizophrenia.
Collapse
Affiliation(s)
- Maria Athanassiou
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Alexandre Dumais
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada; Philippe-Pinel National Institute of Legal Psychiatry, Montreal, Canada
| | - Veronica Iammatteo
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Luigi De Benedictis
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jean-Luc Dubreucq
- Philippe-Pinel National Institute of Legal Psychiatry, Montreal, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
17
|
Vidal-Ribas P, Janiri D, Doucet GE, Pornpattananangkul N, Nielson DM, Frangou S, Stringaris A. Multimodal Neuroimaging of Suicidal Thoughts and Behaviors in a U.S. Population-Based Sample of School-Age Children. Am J Psychiatry 2021; 178:321-332. [PMID: 33472387 PMCID: PMC8016742 DOI: 10.1176/appi.ajp.2020.20020120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Suicide deaths and suicidal thoughts and behaviors are considered a public health emergency, yet their underpinnings in the brain remain elusive. The authors examined the classification accuracy of individual, environmental, and clinical characteristics, as well as multimodal brain imaging correlates, of suicidal thoughts and behaviors in a U.S. population-based sample of school-age children. METHODS Children ages 9-10 years (N=7,994) from a population-based sample from the Adolescent Brain Cognitive Development study were assessed for lifetime suicidal thoughts and behaviors. After quality control procedures, structural MRI (N=6,238), resting-state functional MRI (N=4,134), and task-based functional MRI (range, N=4,075-4,608) were examined. Differences with Welch's t test and equivalence tests, with observed effect sizes (Cohen's d) and their 90% confidence intervals <|0.15|, were examined. Classification accuracy was examined with area under precision-recall curves (AUPRCs). RESULTS Among the 7,994 unrelated children (females, N=3,757, 47.0%), those with lifetime suicidal thoughts and behaviors based on child (N=684, 8.6%), caregiver (N=654, 8.2%), and concordant (N=198, 2.5%) reports had higher levels of social adversity and psychopathology, among themselves and their caregivers, compared with never-suicidal children (N=6,854, 85.7%). Only one imaging test survived statistical correction: caregiver-reported suicidal thoughts and behaviors were associated with a thinner left bank of the superior temporal sulcus. On the basis of the prespecified bounds of |0.15|, approximately 48% of the group mean differences for child-reported suicidal thoughts and behaviors comparisons and approximately 22% for caregiver-reported suicidal thoughts and behaviors comparisons were considered equivalent. All observed effect sizes were relatively small (d≤|0.30|), and both non-imaging and imaging correlates had low classification accuracy (AUPRC ≤0.10). CONCLUSIONS Commonly applied neuroimaging measures did not reveal a discrete brain signature related to suicidal thoughts and behaviors in youths. Improved approaches to the neurobiology of suicide are critically needed.
Collapse
Affiliation(s)
- Pablo Vidal-Ribas
- Social and Behavioral Science Branch, National Institute of Child Health and Human Development, Bethesda, USA,Mood Brain and Development Unit, National Institute of Mental Health, Bethesda, USA
| | - Delfina Janiri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Gaelle E Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA,Boys Town National Research Hospital, Omaha, USA
| | - Narun Pornpattananangkul
- Mood Brain and Development Unit, National Institute of Mental Health, Bethesda, USA,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Dylan M Nielson
- Mood Brain and Development Unit, National Institute of Mental Health, Bethesda, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA,Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Argyris Stringaris
- Mood Brain and Development Unit, National Institute of Mental Health, Bethesda, USA
| |
Collapse
|
18
|
Bohaterewicz B, Sobczak AM, Podolak I, Wójcik B, Mȩtel D, Chrobak AA, Fa̧frowicz M, Siwek M, Dudek D, Marek T. Machine Learning-Based Identification of Suicidal Risk in Patients With Schizophrenia Using Multi-Level Resting-State fMRI Features. Front Neurosci 2021; 14:605697. [PMID: 33505239 PMCID: PMC7829970 DOI: 10.3389/fnins.2020.605697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Some studies suggest that as much as 40% of all causes of death in a group of patients with schizophrenia can be attributed to suicides and compared with the general population, patients with schizophrenia have an 8.5-fold greater suicide risk (SR). There is a vital need for accurate and reliable methods to predict the SR among patients with schizophrenia based on biological measures. However, it is unknown whether the suicidal risk in schizophrenia can be related to alterations in spontaneous brain activity, or if the resting-state functional magnetic resonance imaging (rsfMRI) measures can be used alongside machine learning (ML) algorithms in order to identify patients with SR. METHODS Fifty-nine participants including patients with schizophrenia with and without SR as well as age and gender-matched healthy underwent 13 min resting-state functional magnetic resonance imaging. Both static and dynamic indexes of the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity as well as functional connectivity (FC) were calculated and used as an input for five machine learning algorithms: Gradient boosting (GB), LASSO, Logistic Regression (LR), Random Forest and Support Vector Machine. RESULTS All groups revealed different intra-network functional connectivity in ventral DMN and anterior SN. The best performance was reached for the LASSO applied to FC with an accuracy of 70% and AUROC of 0.76 (p < 0.05). Significant classification ability was also reached for GB and LR using fALFF and ALFF measures. CONCLUSION Our findings suggest that SR in schizophrenia can be seen on the level of DMN and SN functional connectivity alterations. ML algorithms were able to significantly differentiate SR patients. Our results could be useful in developing neuromarkers of SR in schizophrenia based on non-invasive rsfMRI.
Collapse
Affiliation(s)
- Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Anna M. Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Igor Podolak
- Institute of Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | - Bartosz Wójcik
- Institute of Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | - Dagmara Mȩtel
- Department of Community Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Adrian A. Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Fa̧frowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kraków, Poland
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
19
|
Prefrontal dysfunction associated with a history of suicide attempts among patients with recent onset schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:29. [PMID: 33127917 PMCID: PMC7599216 DOI: 10.1038/s41537-020-00118-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/04/2020] [Indexed: 11/08/2022]
Abstract
Suicide is a major cause of death in patients with schizophrenia, particularly among those with recent disease onset. Although brain imaging studies have identified the neuroanatomical correlates of suicidal behavior, functional brain activity correlates particularly in patients with recent-onset schizophrenia (ROSZ) remain unknown. Using near-infrared spectroscopy (NIRS) recording with a high-density coverage of the prefrontal area, we investigated whether prefrontal activity is altered in patients with ROSZ having a history of suicide attempts. A 52-channel NIRS system was used to examine hemodynamic changes in patients with ROSZ that had a history of suicide attempts (n = 24) or that lacked such a history (n = 62), and age- and sex-matched healthy controls (n = 119), during a block-design letter fluency task (LFT). Patients with a history of suicide attempts exhibited decreased activation in the right dorsolateral prefrontal cortex compared with those without such a history. Our findings indicate that specific regions of the prefrontal cortex may be associated with suicidal attempts, which may have implications for early intervention for psychosis.
Collapse
|
20
|
Brain grey matter abnormalities in first episode non-affective psychosis patients with suicidal behaviours: The role of neurocognitive functioning. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109948. [PMID: 32305356 DOI: 10.1016/j.pnpbp.2020.109948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Suicide is one of the leading causes of premature death in first-episode psychosis (FEP) patients. The understanding of suicidal behaviour (SB) is limited, and new and integrative approaches focusing on the likely relationship of the biological and cognitive features of SB in the early phases of psychosis are warranted. We aimed to study the relationship of brain grey matter anomalies and cognitive functioning with SB or suicidal risk in a large sample of non-affective FEP patients. METHODS We used a voxel-based morphometry analysis in 145 FEP patients to investigate the pattern of structural brain abnormalities related to SB. In addition, bivariate and multivariate analyses were performed to explore the relationship between cognitive functioning and SB. RESULTS A reduction in grey matter volume in the frontal area, temporal gyrus, precuneus, uncus, amygdala, left cuneus and subcallosal gyrus as well as a marked regional volume reduction in the right hemisphere was linked with the presence of SB. Additionally, worse global cognitive functioning and living in urban areas were identified as suicide risk factors. CONCLUSIONS This study provides some insights about the brain abnormalities associated with SB in FEP patients. Specifically, the areas reported are involved in important functions related to SB, such as impulsivity, problem solving or responses to pain. Thus, the results confirm the relevant role of cognitive functioning on SB.
Collapse
|
21
|
Abstract
The lifetime risk of dying by suicide in schizophrenia and related psychoses has been estimated to be approximately between 5% and 7%, though some have estimated that the number is closer to 10%. The highest risk for suicide occurs within the first year after presentation, when patients have a 12 times greater risk of dying by suicide than the general population, or a 60% higher risk compared with patients in other phases of psychosis, although the risk continues for many years. Some 31% of all deaths in first and early episode samples are due to suicide. Studies in individuals at clinical high-risk for psychosis (CHR) or with attenuated positive symptoms also demonstrate that suicidality is common and problematic in these individuals. Therefore, suicide in psychosis is a particularly severe problem. In order to develop interventions aimed at reducing the risk of suicide in psychotic individuals, it will be critical to understand the neurobiology of suicide in psychosis. In this paper, I report on the results of a systematic review of the work done to date on the neurobiology of suicide in psychosis and on suicidality in the CHR period. I will also identify gaps in knowledge and discuss future strategies for studying the neurobiology of suicidality in psychosis that may help to disentangle the links between suicide and psychosis and, by doing so, allow us to gain a greater understanding of the relationship between suicide and psychosis, which is critical for developing interventions aimed at reducing the risk of suicide in psychotic individuals.
Collapse
Affiliation(s)
- Ragy R Girgis
- The New York State Psychiatric Institute/Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Gilbert JR, Ballard ED, Galiano CS, Nugent AC, Zarate CA. Magnetoencephalographic Correlates of Suicidal Ideation in Major Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:354-363. [PMID: 31928949 PMCID: PMC7064429 DOI: 10.1016/j.bpsc.2019.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Defining the neurobiological underpinnings of suicidal ideation (SI) is crucial to improving our understanding of suicide. This study used magnetoencephalographic gamma power as a surrogate marker for population-level excitation-inhibition balance to explore the underlying neurobiology of SI and depression. In addition, effects of pharmacological intervention with ketamine, which has been shown to rapidly reduce SI and depression, were assessed. METHODS Data were obtained from 29 drug-free patients with major depressive disorder who participated in an experiment comparing subanesthetic ketamine (0.5 mg/kg) with a placebo saline infusion. Magnetoencephalographic recordings were collected at baseline and after ketamine and placebo infusions. During scanning, patients rested with their eyes closed. SI and depression were assessed, and a linear mixed-effects model was used to identify brain regions where gamma power and both SI and depression were associated. Two regions of the salience network (anterior insula, anterior cingulate) were then probed using dynamic causal modeling to test for ketamine effects. RESULTS Clinically, patients showed significantly reduced SI and depression after ketamine administration. In addition, distinct regions in the anterior insula were found to be associated with SI compared with depression. In modeling of insula-anterior cingulate connectivity, ketamine lowered the membrane capacitance for superficial pyramidal cells. Finally, connectivity between the insula and anterior cingulate was associated with improvements in depression symptoms. CONCLUSIONS These findings suggest that the anterior insula plays a key role in SI, perhaps via its role in salience detection. In addition, transient changes in superficial pyramidal cell membrane capacitance and subsequent increases in cortical excitability might be a mechanism through which ketamine improves SI.
Collapse
Affiliation(s)
- Jessica R Gilbert
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| | - Elizabeth D Ballard
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Christina S Galiano
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Allison C Nugent
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Madeira N, Duarte JV, Martins R, Costa GN, Macedo A, Castelo-Branco M. Morphometry and gyrification in bipolar disorder and schizophrenia: A comparative MRI study. NEUROIMAGE-CLINICAL 2020; 26:102220. [PMID: 32146321 PMCID: PMC7063231 DOI: 10.1016/j.nicl.2020.102220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Increased right globus pallidus is a consistent marker in schizophrenia (SCZ). Left supramarginal gyrification increases in bipolar disorder (BPD) in contrast with SCZ. Gyrification analysis may help distinguish early phases of BPD and SCZ.
Schizophrenia is believed to be a neurodevelopmental disease with high heritability. Differential diagnosis is often challenging, especially in early phases, namely with other psychotic disorders or even mood disorders. such as bipolar disorder with psychotic symptoms. Key pathophysiological changes separating these two classical psychoses remain poorly understood, and current evidence favors a more dimensional than categorical differentiation between schizophrenia and bipolar disorder. While established biomarkers like cortical thickness and grey matter volume are heavily influenced by post-onset changes and thus provide limited possibility of accessing early pathologies, gyrification is assumed to be more specifically determined by genetic and early developmental factors. The aim of our study was to compare both classical and novel morphometric features in these two archetypal psychiatric disorders. We included 20 schizophrenia patients, 20 bipolar disorder patients and 20 age- and gender-matched healthy controls. Data analyses were performed with CAT12/SPM12 applying general linear models for four morphometric measures: gyrification and cortical thickness (surface-based morphometry), and whole-brain grey matter/grey matter volume (voxel-based morphometry - VBM). Group effects were tested using age and gender as covariates (and total intracranial volume for VBM). Voxel-based morphometry analysis revealed a schizophrenia vs. control group effect on regional grey matter volume (p < 0.05, familywise error correction) in the right globus pallidus. There was no group effect on white matter volume when correcting for multiple comparisons neither on cortical thickness. Gyrification changes in clinical samples were found in the left supramarginal gyrus (BA40) – increased and reduced gyrification, respectively, in BPD and SCZ patients - and in the right inferior frontal gyrus (BA47), with a reduction in gyrification of the SCZ group when compared with controls. The joint analysis of different morphometric features, namely measures such as gyrification, provides a promising strategy for the elucidation of distinct phenotypes in psychiatric disorders. Different morphological change patterns, highlighting specific disease trajectories, could potentially generate neuroimaging-derived biomarkers, helping to discriminate schizophrenia from bipolar disorder in early phases, such as first-episode psychosis patients.
Collapse
Affiliation(s)
- Nuno Madeira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Gabriel Nascimento Costa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Portugal; Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
24
|
Schmaal L, van Harmelen AL, Chatzi V, Lippard ETC, Toenders YJ, Averill LA, Mazure CM, Blumberg HP. Imaging suicidal thoughts and behaviors: a comprehensive review of 2 decades of neuroimaging studies. Mol Psychiatry 2020; 25:408-427. [PMID: 31787757 PMCID: PMC6974434 DOI: 10.1038/s41380-019-0587-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023]
Abstract
Identifying brain alterations that contribute to suicidal thoughts and behaviors (STBs) are important to develop more targeted and effective strategies to prevent suicide. In the last decade, and especially in the last 5 years, there has been exponential growth in the number of neuroimaging studies reporting structural and functional brain circuitry correlates of STBs. Within this narrative review, we conducted a comprehensive review of neuroimaging studies of STBs published to date and summarize the progress achieved on elucidating neurobiological substrates of STBs, with a focus on converging findings across studies. We review neuroimaging evidence across differing mental disorders for structural, functional, and molecular alterations in association with STBs, which converges particularly in regions of brain systems that subserve emotion and impulse regulation including the ventral prefrontal cortex (VPFC) and dorsal PFC (DPFC), insula and their mesial temporal, striatal and posterior connection sites, as well as in the connections between these brain areas. The reviewed literature suggests that impairments in medial and lateral VPFC regions and their connections may be important in the excessive negative and blunted positive internal states that can stimulate suicidal ideation, and that impairments in a DPFC and inferior frontal gyrus (IFG) system may be important in suicide attempt behaviors. A combination of VPFC and DPFC system disturbances may lead to very high risk circumstances in which suicidal ideation is converted to lethal actions via decreased top-down inhibition of behavior and/or maladaptive, inflexible decision-making and planning. The dorsal anterior cingulate cortex and insula may play important roles in switching between these VPFC and DPFC systems, which may contribute to the transition from suicide thoughts to behaviors. Future neuroimaging research of larger sample sizes, including global efforts, longitudinal designs, and careful consideration of developmental stages, and sex and gender, will facilitate more effectively targeted preventions and interventions to reduce loss of life to suicide.
Collapse
Affiliation(s)
- Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Vasiliki Chatzi
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Yara J Toenders
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Lynnette A Averill
- Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Veterans Affairs National Center for PTSD, Clinical Neurosciences Division, West Haven, CT, USA
| | - Carolyn M Mazure
- Psychiatry and Women's Health Research at Yale, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P Blumberg
- Psychiatry, Radiology and Biomedical Imaging, Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Spalthoff R, Gaser C, Nenadić I. Altered gyrification in schizophrenia and its relation to other morphometric markers. Schizophr Res 2018; 202:195-202. [PMID: 30049600 DOI: 10.1016/j.schres.2018.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/10/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2023]
Abstract
Schizophrenia is modelled as a neurodevelopmental disease with high heritability. However, established markers like cortical thickness and grey matter volume are heavily influenced by post-onset changes and thus provide limited possibility of accessing early pathologies. Gyrification on the other side is assumed to be more specifically determined by genetic and early developmental factors. Here, we compare T1 weighted 3 Tesla MRI scans of 51 schizophrenia patients and 102 healthy controls (matched for age and gender) using a unified processing pipeline with the CAT12 toolbox. Our study provides a direct comparison between 3D gyrification, cortical thickness, and grey matter volume. We demonstrate that significant (p < 0.05, FWE corrected) results only partially overlap between modalities. Gyrification is altered in bilateral insula, temporal pole and left orbitofrontal cortex, while cortical thickness is additionally reduced in the prefrontal cortex, precuneus, and occipital cortex. Grey matter volume (VBM) was reduced in bilateral medial temporal lobes including the amygdala as well as medial and dorsolateral prefrontal cortices and cerebellum. Our results lend further support for altered gyrification as a marker of early neurodevelopmental disturbance in schizophrenia and show its relation to other morphological markers.
Collapse
Affiliation(s)
- Robert Spalthoff
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Phillips University Marburg/Marburg University Hospital UKGM, Marburg, Germany.
| |
Collapse
|
26
|
Domínguez-Baleón C, Gutiérrez-Mondragón LF, Campos-González AI, Rentería ME. Neuroimaging Studies of Suicidal Behavior and Non-suicidal Self-Injury in Psychiatric Patients: A Systematic Review. Front Psychiatry 2018; 9:500. [PMID: 30386264 PMCID: PMC6198177 DOI: 10.3389/fpsyt.2018.00500] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023] Open
Abstract
Background: With around 800,000 people taking their own lives every year, suicide is a growing health concern. Understanding the factors that underlie suicidality and identifying specific variables associated with increased risk is paramount for increasing our understanding of suicide etiology. Neuroimaging methods that enable the investigation of structural and functional brain markers in vivo are a promising tool in suicide research. Although a number of studies in clinical samples have been published to date, evidence about neuroimaging correlates for suicidality remains controversial. Objective: Patients with mental disorders have an increased risk for both suicidal behavior and non-suicidal self-injury. This manuscript aims to present an up-to-date overview of the literature on potential neuroimaging markers associated with SB and NSSI in clinical samples. We sought to identify consistently reported structural changes associated with suicidal symptoms within and across psychiatric disorders. Methods: A systematic literature search across four databases was performed to identify all English-language neuroimaging articles involving patients with at least one psychiatric diagnosis and at least one variable assessing SB or NSSI. We evaluated and screened evidence in these articles against a set of inclusion/exclusion criteria and categorized them by disease, adhering to the PRISMA guidelines. Results: Thirty-three original scientific articles investigating neuroimaging correlates of SB in psychiatric samples were found, but no single article focusing on NSSI alone. Associations between suicidality and regions in frontal and temporal cortex were reported by 15 and 9 studies across four disorders, respectively. Furthermore, differences in hippocampus were reported by four studies across three disorders. However, we found a significant lack of replicability (consistency in size and direction) of results across studies. Conclusions: Our systematic review revealed a lack of neuroimaging studies focusing on NSSI in clinical samples. We highlight several potential sources of bias in published studies, and conclude that future studies should implement more rigorous study designs to minimize bias risk. Despite several studies reporting associations between SB and anatomical differences in the frontal cortex, there was a lack of consistency across them. We conclude that better-powered samples, standardized neuroimaging and analytical protocols are needed to continue advancing knowledge in this field.
Collapse
Affiliation(s)
- Carmen Domínguez-Baleón
- Licenciatura en Ciencias Genómicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis F. Gutiérrez-Mondragón
- Licenciatura en Ciencias Genómicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Adrián I. Campos-González
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Miguel E. Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
27
|
Bani-Fatemi A, Tasmim S, Graff-Guerrero A, Gerretsen P, Strauss J, Kolla N, Spalletta G, De Luca V. Structural and functional alterations of the suicidal brain: An updated review of neuroimaging studies. Psychiatry Res Neuroimaging 2018; 278:77-91. [PMID: 29929763 DOI: 10.1016/j.pscychresns.2018.05.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Brain imaging is a non-invasive and in vivo direct estimation of detailed brain structure, regional brain functioning and estimation of molecular processes in the brain. The main objective of this review was to analyze functional and structural neuroimaging studies of individuals at risk for suicide. We reviewed articles published between 2005 and 2018, indexed in PubMed and Medline, assessing structural and functional alterations of the brain of individuals at high risk for suicide and at low risk for suicide. We reviewed functional and structural neuroimaging studies which included individuals with a history of suicidal ideation or attempt in major depressive disorder (MDD), bipolar disorder (BD), psychosis, and borderline personality disorder (BPD). We selected 45 papers that focused on suicidality in MDD, 17 papers on BD, 11 papers on psychosis, and 5 papers on BPD. The suicidal brain across psychiatric diagnoses seems to heavily involve dysfunction of the fronto-temporal network, primarily involving reductions of gray and white matter volumes in the pre-frontal cortex (PFC), anterior cingulate, and superior temporal gyrus. Nonetheless, there are several ways to define suicidal behaviour and ideation. Therefore, it still remains difficult to combine the evidence from imaging studies that used different definitions of suicidality.
Collapse
Affiliation(s)
- Ali Bani-Fatemi
- Group for Suicide Studies, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Samia Tasmim
- Group for Suicide Studies, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute; Multimodal Imaging Group at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute; Multimodal Imaging Group at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - John Strauss
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Medical Informatics; Child, Youth and Family Program at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nathan Kolla
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, 250 College St, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
28
|
Godwin D, Alpert KI, Wang L, Mamah D. Regional cortical thinning in young adults with schizophrenia but not psychotic or non-psychotic bipolar I disorder. Int J Bipolar Disord 2018; 6:16. [PMID: 29992455 PMCID: PMC6161965 DOI: 10.1186/s40345-018-0124-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Schizophrenia shares some genetic risk and clinical symptoms with bipolar disorder. Clinical heterogeneity across subjects is thought to contribute to variable structural imaging findings across studies. The current study investigates cortical thickness in young adults diagnosed with schizophrenia or bipolar I disorder with a history of hyperthymic mania. We hypothesize that cortical thickness will be most similar between SCZ and the psychotic bipolar 1 disorder subtype. METHODS Patients with schizophrenia (n = 52), psychotic bipolar I disorder (PBD; n = 49) and non-psychotic bipolar I disorder (NPBD; n = 24) and healthy controls (n = 40) were scanned in a 3T Trio MRI. The thickness of 34 cortical regions was estimated with FreeSurfer, and analyzed using univariate analyses of variance. Relationships to psychotic (SAPS) and negative (SANS) symptoms were investigated using linear regression. RESULTS Cortical thickness showed significant group effects, after covarying for sex, age, and intracranial volume (p = 0.001). SCZ subjects had thinner paracentral, inferior parietal, supramarginal and fusiform cortices compared to CON. Caudal anterior cingulate cortical thickness was increased in SCZ, PBD and NPBD. Cortical thickness in PBD and NPBD were not significantly different from controls. Significant partial correlations were observed for SAPS severity with middle temporal (r = - 0.26; p = 0.001) and fusiform (- 0.26; p = 0.001) cortical thickness. CONCLUSIONS Individuals with SCZ displayed significantly reduced cortical thickness in several cortical regions compared to both CON and bipolar. We found that SCZ participants had significant cortical thinning relative to CON and bipolar disorder most significantly in the frontal (i.e. paracentral), parietal (i.e. inferior parietal, supramarginal), and temporal (i.e. middle temporal, fusiform) cortices.
Collapse
Affiliation(s)
- Douglass Godwin
- Department of Psychiatry, Washington University Medical School, St. Louis, USA
| | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, USA
| |
Collapse
|
29
|
Balcioglu YH, Kose S. Neural substrates of suicide and suicidal behaviour: from a neuroimaging perspective. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2017.1420378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yasin Hasan Balcioglu
- Neurology, and Neurosurgery, Forensic Psychiatry Unit, Bakirkoy Prof. Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Samet Kose
- Department of Psychology, Hasan Kalyoncu University, Gaziantep, Turkey
- Department of Psychiatry, University of Texas Medical School of Houston, Houston, TX, USA
- eCenter for Neurobehavioral Research on Addictions, Houston, TX, USA
| |
Collapse
|
30
|
Long Y, Ouyang X, Liu Z, Chen X, Hu X, Lee E, Chen EYH, Pu W, Shan B, Rohrbaugh RM. Associations Among Suicidal Ideation, White Matter Integrity and Cognitive Deficit in First-Episode Schizophrenia. Front Psychiatry 2018; 9:391. [PMID: 30210372 PMCID: PMC6121174 DOI: 10.3389/fpsyt.2018.00391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/03/2018] [Indexed: 11/26/2022] Open
Abstract
Objective: The study was aimed to investigate the possible associations among suicidal ideation, brain white matter (WM) integrity and cognitive deficit in first-episode schizophrenia (FES) using diffusion tensor imaging. Methods: The sample contained 18 FES patients with suicidal ideation (SI+), 45 FES patients without suicidal ideation (SI-) and 44 healthy controls. The Calgary Depression Scale for Schizophrenia was used to measure the suicidal ideation and depression symptoms. The whole brain WM integrity and three domains of cognitive function: working memory, verbal comprehension as well as processing speed were compared between the three groups. Results: Compared with SI-, SI+ showed preserved WM integrity as indicated by significantly higher factional anisotropy (FA) or lower mean diffusivity (MD) in multiple WM tracts, and higher FA coupled with lower MD in bilateral posterior corona radiata. Compared with SI-, SI+ were more depressed and had less cognitive deficit in working memory and verbal comprehension. The fiber tracts in bilateral posterior corona radiata connect to the precuneus as shown by probabilistic tractography, and their WM integrity disruptions were found to be positively associated with the cognitive deficits in the FES patients. Discussion: Preserved WM integrity may be a risk factor for suicidal ideation in FES patients. One possible explanation is that it contributes to preserved cognitive function, especially in working memory and verbal comprehension, which may be associated with greater insight and could lead to increased depression and suicidal ideation. The posterior corona radiata and the precuneus may be linked to the related biological processes.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Ouyang
- Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Chinese National Clinical Research Center on Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Chinese National Clinical Research Center on Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Xudong Chen
- Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinran Hu
- Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, China
| | - Edwin Lee
- Department of Psychiatry, University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Y H Chen
- Department of Psychiatry, University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Weidan Pu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Baoci Shan
- Key Laboratory of Nuclear Analysis, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Robert M Rohrbaugh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Duarte DGG, Neves MDCL, Albuquerque MR, Turecki G, Ding Y, de Souza-Duran FL, Busatto G, Correa H. Structural brain abnormalities in patients with type I bipolar disorder and suicidal behavior. Psychiatry Res Neuroimaging 2017; 265:9-17. [PMID: 28494347 DOI: 10.1016/j.pscychresns.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Some studies have identified brain morphological changes in the frontolimbic network (FLN) in bipolar subjects who attempt suicide (SA). The present study investigated neuroanatomical abnormalities in the FLN to find a possible neural signature for suicidal behavior in patients with bipolar disorder type I (BD-I). We used voxel-based morphometry to compare euthymic patients with BD-I who had attempted suicide (n=20), who had not attempted suicide (n=19) and healthy controls (HCs) (n=20). We also assessed the highest medical lethality of their previous SA. Compared to the participants who had not attempted suicide, the patients with BD-I who had attempted suicide exhibited significantly increased gray matter volume (GMV) in the right rostral anterior cingulate cortex (ACC), which was more pronounced and extended further to the left ACC in the high-lethality subgroup (p<0.05, with family-wise error (FWE) correction for multiple comparisons using small-volume correction). GMV in the insula and orbitofrontal cortex was also related to suicide lethality (p<0.05, FWE-corrected). The current findings suggest that morphological changes in the FLN could be a signature of previous etiopathogenic processes affecting regions related to suicidality and its severity in BD-I patients.
Collapse
Affiliation(s)
- Dante G G Duarte
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Maila de Castro L Neves
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | | | - Gustavo Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Montreal, Canada.
| | - Yang Ding
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Montreal, Canada.
| | - Fabio Luis de Souza-Duran
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Research in Applied Neuroscience, Support Care of the University of São Paulo (NAPNA-USP), São Paulo, Brazil.
| | - Geraldo Busatto
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Research in Applied Neuroscience, Support Care of the University of São Paulo (NAPNA-USP), São Paulo, Brazil.
| | - Humberto Correa
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The rising suicide rate in the USA will not be reversed without improved risk assessment and prevention practices. To date, the best method for clinicians to assess a patient's risk for suicide is screening for past suicide attempts in the patient and their family. However, neuroimaging, genomic, and biochemical studies have generated a body of findings that allow description of an initial heuristic biological model for suicidal behavior that may have predictive value. RECENT FINDINGS We review studies from the past 3 years examining potential biological predictors of suicide attempt behavior. We divide findings into two major categories: (1) structural and functional brain imaging findings and (2) biochemical and genomic findings encompassing several systems, including major neurotransmitters (serotonin, catecholamines, GABA, and glutamate), the hypothalamic pituitary adrenal (HPA) axis, the inflammasome, lipids, and neuroplasticity. The biomarkers that appear promising for assessing suicide risk in clinical settings include indices of serotonergic function, inflammation, neuronal plasticity, and lipids.
Collapse
|