1
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
2
|
Corrone M, Ratnayake R, de Oliveira N, Jaehne EJ, van den Buuse M. Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: interaction with brain-derived neurotrophic factor Val66Met genotype. Behav Pharmacol 2023; 34:20-36. [PMID: 36373697 DOI: 10.1097/fbp.0000000000000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic methamphetamine (Meth) abuse may induce psychosis similar to that observed in schizophrenia. Brain-derived neurotrophic factor (BDNF) has been implicated in the development of psychosis. We have previously shown long-term protein expression changes in mice treated chronically with Meth depending on BDNF Val66Met genotype. The aim of this study was to investigate if these protein expression changes were associated with differential changes in a range of behavioural paradigms for cognition, anxiety, social and other behaviours. Male and female Val/Val, Val/Met and Met/Met mice were treated with an escalating Meth dose protocol from 6 to 9 weeks of age, with controls receiving saline injections. Several overlapping cohorts were tested in the Y-maze for short-term spatial memory, novel-object recognition test, context and cued fear conditioning, sociability and social preference, elevated plus maze for anxiety-like behaviour and prepulse inhibition (PPI) of acoustic startle. Finally, the animals were assessed for spontaneous exploratory locomotor activity and acute Meth-induced locomotor hyperactivity. Acute Meth caused significantly greater locomotor hyperactivity in mice previously treated with the drug than in saline-pretreated controls. Meth-pretreated female mice showed a mild increase in spontaneous locomotor activity. There were no Meth-induced deficits in any of the other behavioural tests. Val/Met mice showed higher overall social investigation time and lower PPI compared with the Val/Val genotype independent of pretreatment. These results show limited long-term effects of chronic Meth on a range of cognitive, affective and social behaviours despite marked drug-induced locomotor sensitization in mice. There was no interaction with BDNF Val66Met genotype.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
3
|
Schonfeld L, Jaehne EJ, Ogden AR, Spiers JG, Hogarth S, van den Buuse M. Differential effects of chronic adolescent glucocorticoid or methamphetamine on drug-induced locomotor hyperactivity and disruption of prepulse inhibition in adulthood in mice. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110552. [PMID: 35337859 DOI: 10.1016/j.pnpbp.2022.110552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Sensitization of dopaminergic activity has been suggested as an underlying mechanism in the psychotic symptoms of schizophrenia. Adolescent stress and chronic abuse of methamphetamine (Meth) are well-known risk factors for psychosis and schizophrenia; however it remains unknown how these factors compare in terms of dopaminergic behavioural sensitization in adulthood. In addition, while Brain-Derived Neurotrophic Factor (BDNF) has been implicated in dopaminergic activity and schizophrenia, its role in behavioural sensitization remains unclear. In this study we therefore compared the effect of chronic adolescent treatment with the stress hormone, corticosterone (Cort), or with Meth, on drug-induced locomotor hyperactivity and disruption of prepulse inhibition in adulthood in BDNF heterozygous mice and their wild-type controls, as well as on dopamine receptor gene expression. Between 6 and 9 weeks of age, the animals either received Cort in the drinking water or were treated with an escalating Meth dose protocol. In adulthood, Cort-pretreated mice showed significantly reduced Meth-induced locomotor hyperactivity compared to vehicle-pretreated mice. In contrast, Meth hyperlocomotion was significantly enhanced in animals pretreated with the drug in adolescence. There were no effects of either pretreatment on prepulse inhibition. BDNF Het mice showed greater Meth-induced hyperlocomotion and lower prepulse inhibition than WT mice. There were no effects of either pretreatment on D1 or D2 gene expression in either the dorsal or ventral striatum, while D3 mRNA was shown to be reduced in male mice only irrespective of genotype. These results suggest that in adolescence, chronically elevated glucocorticoid levels, a component of chronic stress, do not cause dopaminergic sensitization adulthood, in contrast to the effect of chronic Meth treatment in the same age period. BDNF does not appear to be involved in the effects of chronic Cort or chronic Meth.
Collapse
Affiliation(s)
- Lina Schonfeld
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Alexandra R Ogden
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Samuel Hogarth
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia.
| |
Collapse
|
4
|
Greening DW, Notaras M, Chen M, Xu R, Smith JD, Cheng L, Simpson RJ, Hill AF, van den Buuse M. Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol Psychiatry 2021; 26:4431-4447. [PMID: 31822818 DOI: 10.1038/s41380-019-0617-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine (Meth) abuse has reached epidemic proportions in many countries and can induce psychotic episodes mimicking the clinical profile of schizophrenia. Brain-derived neurotrophic factor (BDNF) is implicated in both Meth effects and schizophrenia. We therefore studied the long-term effects of chronic Meth exposure in transgenic mice engineered to harbor the human BDNFVal66Met polymorphism expressed via endogenous mouse promoters. These mice were chronically treated with an escalating Meth regime during late adolescence. At least 4 weeks later, all hBDNFVal66Met Meth-treated mice exhibited sensitization confirming persistent behavioral effects of Meth. We used high-resolution quantitative mass spectrometry-based proteomics to biochemically map the long-term effects of Meth within the brain, resulting in the unbiased detection of 4808 proteins across the mesocorticolimbic circuitry. Meth differentially altered dopamine signaling markers (e.g., Dat, Comt, and Th) between hBDNFVal/Val and hBDNFMet/Met mice, implicating involvement of BDNF in Meth-induced reprogramming of the mesolimbic proteome. Targeted analysis of 336 schizophrenia-risk genes, as well as 82 growth factor cascade markers, similarly revealed that hBDNFVal66Met genotype gated the recruitment of these factors by Meth in a region-specific manner. Cumulatively, these data represent the first comprehensive analysis of the long-term effects of chronic Meth exposure within the mesocorticolimbic circuitry. In addition, these data reveal that long-term Meth-induced brain changes are strongly dependent upon BDNF genetic variation, illustrating how drug-induced psychosis may be modulated at the molecular level by a single genetic locus.
Collapse
Affiliation(s)
- David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michael Notaras
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Maoshan Chen
- Australian Centre for Blood Diseases (ACBD), Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joel D Smith
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, VIC, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
5
|
Lima-Ojeda JM, Mallien AS, Brandwein C, Lang UE, Hefter D, Inta D. Altered prepulse inhibition of the acoustic startle response in BDNF-deficient mice in a model of early postnatal hypoxia: implications for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:439-447. [PMID: 29453493 DOI: 10.1007/s00406-018-0882-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a major proliferative agent in the nervous system. Both BDNF-deficiency and perinatal hypoxia represent genetic/environmental risk factors for schizophrenia. Moreover, a decreased BDNF response to birth hypoxia was associated with the disease. BDNF expression is influenced by neuronal activity and environmental conditions such as hypoxia. Thus, it may partake in neuroprotective and reparative mechanisms in acute or chronic neuronal insults. However, the interaction of hypoxia and BDNF is insufficiently understood and the behavioral outcome unknown. Therefore, we conducted a battery of behavioral tests in a classical model of chronic early postnatal mild hypoxia (10% O2), known to significantly impair brain development, in BDNF-deficient mice. We found selective deficits in measures associated with sensorimotor gating, namely enhanced acoustic startle response (ASR) and reduced prepulse inhibition (PPI) of ASR in BDNF-deficient mice. Unexpectedly, the alterations of sensorimotor gating were caused only by BDNF-deficiency alone, whereas hypoxia failed to evoke severe deficits and even leads to a milder phenotype in BDNF-deficient mice. As deficits in sensorimotor gating are present in schizophrenia and animal models of the disease, our results are of relevance regarding the involvement of BDNF in its pathogenesis. On the other hand, they suggest that the effect of perinatal hypoxia on long-term brain abnormalities is complex, ranging from protective to deleterious actions, and may critically depend on the degree of hypoxia. Therefore, future studies may refine existing hypoxia protocols to better understand neurodevelopmental consequences associated with schizophrenia.
Collapse
Affiliation(s)
- Juan M Lima-Ojeda
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Anne S Mallien
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christiane Brandwein
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4012, Basel, Switzerland
| | - Dimitri Hefter
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dragos Inta
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany. .,Department of Psychiatry (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4012, Basel, Switzerland.
| |
Collapse
|
6
|
Notaras M, van den Buuse M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2018; 25:434-454. [DOI: 10.1177/1073858418810142] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, brain-derived neurotrophic factor (BDNF) has spawned a literature that now spans 35 years of research. While all neurotrophins share considerable overlap in sequence homology and their processing, BDNF has become the most widely studied neurotrophin because of its broad roles in brain homeostasis, health, and disease. Although research on BDNF has produced thousands of articles, there remain numerous long-standing questions on aspects of BDNF molecular biology and signaling. Here we provide a comprehensive review, including both a historical narrative and a forward-looking perspective on advances in the actions of BDNF within the brain. We specifically review BDNF’s gene structure, peptide composition (including domains, posttranslational modifications and putative motif sites), mechanisms of transport, signaling pathway recruitment, and other recent developments including the functional effects of genetic variation and the discovery of a new BDNF prodomain ligand. This body of knowledge illustrates a highly conserved and complex role for BDNF within the brain, that promotes the idea that the neurotrophin biology of BDNF is diverse and that any disease involvement is likely to be equally multifarious.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Swerdlow NR, Light GA. Sensorimotor gating deficits in schizophrenia: Advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophr Res 2018; 198. [PMID: 29525460 PMCID: PMC6103885 DOI: 10.1016/j.schres.2018.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States.
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
8
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|