1
|
Sehatpour P, Kantrowitz JT. Finding the Right Dose: NMDA Receptor-Modulating Treatments for Cognitive and Plasticity Deficits in Schizophrenia and the Role of Pharmacodynamic Target Engagement. Biol Psychiatry 2025; 97:128-138. [PMID: 39218136 PMCID: PMC11634630 DOI: 10.1016/j.biopsych.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity. We review previously published clinical trials in CIAS that focused on NMDAR modulator treatments, focusing on published and recent developments of the use of novel NMDAR-modulating treatments for CIAS both alone and combined with plasticity/learning paradigms to enhance learning. We use this discussion of previous studies to highlight the importance of incorporating pharmacodynamic target engagement biomarkers early in treatment development, which can help predict which compounds will succeed or fail in phase 3. A range of direct and indirect NMDAR modulators are covered, including D-serine, D-cycloserine, memantine, and glycine and first-generation glycine transport inhibitors (e.g., sarcosine and bitopertin), as well as recent positive studies of iclepertin, a novel glycine transport inhibitor, and luvadaxistat, a D-amino acid oxidase inhibitor that increases brain D-serine levels, and indirect noninvasive brain stimulation NMDAR-modulating treatments. Several examples of successful use of pharmacodynamic target engagement biomarkers for dose/drug discovery are emphasized, including the mismatch negativity, auditory steady state, and time-frequency event-related potential approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
2
|
Molina JL, Joshi YB, Nungaray JA, Sprock J, Attarha M, Biagianti B, Thomas ML, Swerdlow NR, Light GA. Early auditory processing abnormalities alter individual learning trajectories and sensitivity to computerized cognitive training in schizophrenia. Psychol Med 2024; 54:2669-2676. [PMID: 38587021 DOI: 10.1017/s0033291724000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BACKGROUND Auditory system plasticity is a promising target for neuromodulation, cognitive rehabilitation and therapeutic development in schizophrenia (SZ). Auditory-based targeted cognitive training (TCT) is a 'bottom up' intervention designed to enhance the speed and accuracy of auditory information processing, which has been shown to improve neurocognition in certain SZ patients. However, the dynamics of TCT learning as a function of training exercises and their impact on neurocognitive functioning and therapeutic outcomes are unknown. METHODS Forty subjects (SZ, n = 21; healthy subjects (HS), n = 19) underwent comprehensive clinical, cognitive, and auditory assessments, including measurements of auditory processing speed (APS) at baseline and after 1-h of TCT. SZ patients additionally completed 30-hours of TCT and repeated assessments ~10-12 weeks later. RESULTS SZ patients were deficient in APS at baseline (d = 0.96, p < 0.005) relative to HS. After 1-h of TCT, analyses revealed significant main effects of diagnosis (d = 1.75, p = 0.002) and time (d = 1.04, p < 0.001), and a diagnosis × time interaction (d = 0.85, p = 0.02) on APS. APS learning effects were robust after 1-h in SZ patients (d = 1.47, p < 0.001) and persisted throughout the 30-h of training. Baseline APS was associated with verbal learning gains after 30-h of TCT (r = 0.51, p = 0.02) in SZ. CONCLUSIONS TCT learning metrics may have prognostic utility and aid in the prospective identification of individuals likely to benefit from TCT. Future experimental medicine studies may advance predictive algorithms that enhance TCT-related clinical, cognitive and functional outcomes.
Collapse
Affiliation(s)
- Juan L Molina
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Yash B Joshi
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - John A Nungaray
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Joyce Sprock
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Mouna Attarha
- Department of R&D, Posit Science Corporation, San Francisco, CA, USA
| | - Bruno Biagianti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Joshi YB, Gonzalez CE, Molina JL, MacDonald LR, Min Din J, Minhas J, Leposke T, Nordberg B, Li F, Talledo J, Sprock J, Swerdlow NR, Light GA. Mismatch negativity predicts initial auditory-based targeted cognitive training performance in a heterogeneous population across psychiatric disorders. Psychiatry Res 2023; 327:115215. [PMID: 37406367 DOI: 10.1016/j.psychres.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 07/07/2023]
Abstract
Auditory-based targeted cognitive training (ATCT) programs are emerging pro-cognitive therapeutic interventions which aim to improve auditory processing to attenuate cognitive impairment in a "bottom up" manner. Biomarkers of early auditory information processing (EAIP) like mismatch negativity (MMN) and P3a have been used successfully to predict gains from a full 40 h course of ATCT in schizophrenia (SZ). Here we investigated the ability of EAIP biomarkers to predict ATCT performance in a group of subjects (n = 26) across SZ, MDD, PTSD and GAD diagnoses. Cognition was assessed via the MATRICS Consensus Cognitive Battery (MCCB) and MMN/P3a were collected prior to completing 1 h of "Sound Sweeps," a representative ATCT exercise. Baseline and final performance over the first two levels of cognitive training served as the primary dependent variables. Groups had similar MMN, but the SZ group had attenuated P3a. MMN and MCCB cognitive domain t-scores, but not P3a, were strongly correlated with most ATCT performance measures, and explained up to 61% of variance in ATCT performance. Diagnosis was not a significant predictor for ATCT performance. These data suggest that MMN can predict ATCT performance in heterogeneous neuropsychiatric populations and should be considered in ATCT studies across diagnostically diverse cohorts.
Collapse
Affiliation(s)
- Yash B Joshi
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA.
| | - Christopher E Gonzalez
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| | - Juan L Molina
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| | - Laura R MacDonald
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Jenny Min Din
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Jessica Minhas
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Taylor Leposke
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Bethany Nordberg
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Francesca Li
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Jo Talledo
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| | - Joyce Sprock
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| | - Neal R Swerdlow
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| | - Gregory A Light
- VA San Diego Healthcare System, La Jolla, CA, USA; University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| |
Collapse
|
4
|
Sehatpour P, Iosifescu DV, De Baun HM, Shope C, Mayer MR, Gangwisch J, Dias E, Sobeih T, Choo TH, Wall MM, Medalia A, Saperstein AM, Kegeles LS, Girgis RR, Carlson M, Kantrowitz JT. Dose-Dependent Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia: A Double-Blind, Placebo-Controlled, Randomized, Target Engagement Clinical Trial of the NMDA Glutamate Receptor Agonist d-serine. Biol Psychiatry 2023; 94:164-173. [PMID: 36958998 PMCID: PMC10313776 DOI: 10.1016/j.biopsych.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Patients with schizophrenia show reduced NMDA glutamate receptor-dependent auditory plasticity, which is rate limiting for auditory cognitive remediation (AudRem). We evaluate the utility of behavioral and neurophysiological pharmacodynamic target engagement biomarkers, using a d-serine+AudRem combination. METHODS Forty-five participants with schizophrenia or schizoaffective disorder were randomized to 3 once-weekly AudRem visits + double-blind d-serine (80, 100, or 120 mg/kg) or placebo in 3 dose cohorts of 12 d-serine and 3 placebo-treated participants each. In AudRem, participants indicated which paired tone was higher in pitch. The primary outcome was plasticity improvement, operationalized as change in pitch threshold between AudRem tones [(test tone Hz - reference tone Hz)/reference tone Hz] between the initial plateau pitch threshold (mean of trials 20-30 of treatment visit 1) to pitch threshold at the end of visit(s). Target engagement was assessed by electroencephalography outcomes, including mismatch negativity (pitch primary). RESULTS There was a significant overall treatment effect for plasticity improvement (p = .014). Plasticity improvement was largest within the 80 and 100 mg/kg groups (p < .001, d > 0.67), while 120 mg/kg and placebo-treated participants showed nonsignificant within-group changes. Plasticity improvement was seen after a single treatment and was sustained on subsequent treatments. Target engagement was demonstrated by significantly larger mismatch negativity (p = .049, d = 1.0) for the 100 mg/kg dose versus placebo. CONCLUSIONS Our results demonstrate sufficient proof of principle for continued development of both the d-serine+AudRem combination and our target engagement methodology. The ultimate utility is dependent on the results of an ongoing larger, longer study of the combination for clinically relevant outcomes.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Dan V Iosifescu
- Nathan Kline Institute, Orangeburg, New York; Psychiatry, New York University Grossman School of Medicine, New York, New York
| | - Heloise M De Baun
- Area Psychosis, New York State Psychiatric Institute, New York, New York
| | | | - Megan R Mayer
- Area Psychosis, New York State Psychiatric Institute, New York, New York
| | - James Gangwisch
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Elisa Dias
- Nathan Kline Institute, Orangeburg, New York; Psychiatry, New York University Grossman School of Medicine, New York, New York
| | | | - Tse-Hwei Choo
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Melanie M Wall
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alice Medalia
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alice M Saperstein
- Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Lawrence S Kegeles
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ragy R Girgis
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Marlene Carlson
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Joshua T Kantrowitz
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
5
|
Perry A, Hughes LE, Adams N, Naessens M, Murley AG, Rouse MA, Street D, Jones PS, Cope TE, Kocagoncu E, Rowe JB. The neurophysiological effect of NMDA-R antagonism of frontotemporal lobar degeneration is conditional on individual GABA concentration. Transl Psychiatry 2022; 12:348. [PMID: 36030249 PMCID: PMC9420128 DOI: 10.1038/s41398-022-02114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023] Open
Abstract
There is a pressing need to accelerate therapeutic strategies against the syndromes caused by frontotemporal lobar degeneration, including symptomatic treatments. One approach is for experimental medicine, coupling neurophysiological studies of the mechanisms of disease with pharmacological interventions aimed at restoring neurochemical deficits. Here we consider the role of glutamatergic deficits and their potential as targets for treatment. We performed a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study in 20 people with symptomatic frontotemporal lobar degeneration (10 behavioural variant frontotemporal dementia, 10 progressive supranuclear palsy) and 19 healthy age- and gender-matched controls. Both magnetoencephalography sessions recorded a roving auditory oddball paradigm: on placebo or following 10 mg memantine, an uncompetitive NMDA-receptor antagonist. Ultra-high-field magnetic resonance spectroscopy confirmed lower concentrations of GABA in the right inferior frontal gyrus of people with frontotemporal lobar degeneration. While memantine showed a subtle effect on early-auditory processing in patients, there was no significant main effect of memantine on the magnitude of the mismatch negativity (MMN) response in the right frontotemporal cortex in patients or controls. However, the change in the right auditory cortex MMN response to memantine (vs. placebo) in patients correlated with individuals' prefrontal GABA concentration. There was no moderating effect of glutamate concentration or cortical atrophy. This proof-of-concept study demonstrates the potential for baseline dependency in the pharmacological restoration of neurotransmitter deficits to influence cognitive neurophysiology in neurodegenerative disease. With changes to multiple neurotransmitters in frontotemporal lobar degeneration, we suggest that individuals' balance of excitation and inhibition may determine drug efficacy, with implications for drug selection and patient stratification in future clinical trials.
Collapse
Affiliation(s)
- Alistair Perry
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Natalie Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michelle Naessens
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
6
|
Tian Q, Yang NB, Fan Y, Dong F, Bo QJ, Zhou FC, Zhang JC, Li L, Yin GZ, Wang CY, Fan M. Detection of Schizophrenia Cases From Healthy Controls With Combination of Neurocognitive and Electrophysiological Features. Front Psychiatry 2022; 13:810362. [PMID: 35449564 PMCID: PMC9016153 DOI: 10.3389/fpsyt.2022.810362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The search for a method that utilizes biomarkers to identify patients with schizophrenia from healthy individuals has occupied researchers for decades. However, no single indicator can be employed to achieve the good in clinical practice. We aim to develop a comprehensive machine learning pipeline based on neurocognitive and electrophysiological combined features for distinguishing schizophrenia patients from healthy people. METHODS In the present study, 69 patients with schizophrenia and 50 healthy controls participated. Neurocognitive (contains seven specific domains of cognition) and electrophysiological [prepulse inhibition, electroencephalography (EEG) power spectrum, detrended fluctuation analysis, and fractal dimension (FD)] features were collected, all these features were taken together to generate the identification models of schizophrenia by applying logistics, random forest, and extreme gradient boosting algorithm. The classification capabilities of these models were also evaluated. RESULTS Both the neurocognitive and electrophysiological feature sets showed a good classification effect with the highest accuracy greater than 85% and AUC greater than 90%. Specifically, the performances of the combined neurocognitive and electrophysiological feature sets achieved the highest accuracy of 93.28% and AUC of 97.91%. The extreme gradient boosting algorithm as a whole presented more stably and precisely in classification efficiency. CONCLUSION The highest classification accuracy of 93.28% by combination of neurocognitive and electrophysiological features shows that both measurements are appropriate indicators to be used in discriminating schizophrenia patients and healthy individuals. Also, among three algorithms, extreme gradient boosting had better classified performances than logistics and random forest algorithms.
Collapse
Affiliation(s)
- Qing Tian
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China.,Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, The Institute of Mental Health, Suzhou, China.,Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing, China
| | - Ning-Bo Yang
- Department of Psychiatry, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yu Fan
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, The Institute of Mental Health, Suzhou, China.,Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing, China
| | - Qi-Jing Bo
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing, China
| | - Fu-Chun Zhou
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing, China
| | - Ji-Cong Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, The School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Liang Li
- Department of Psychology, Peking University, Beijing, China
| | - Guang-Zhong Yin
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, The Institute of Mental Health, Suzhou, China
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ming Fan
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China.,Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Clayson PE, Molina JL, Joshi YB, Thomas ML, Sprock J, Nungaray J, Swerdlow NR, Light GA. Evaluation of the frequency following response as a predictive biomarker of response to cognitive training in schizophrenia. Psychiatry Res 2021; 305:114239. [PMID: 34673326 DOI: 10.1016/j.psychres.2021.114239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022]
Abstract
Neurophysiological biomarkers of auditory processing show promise predicting outcomes following auditory-based targeted cognitive training (TCT) in schizophrenia, but the viability of the frequency following response (FFR) as a biomarker has yet to be examined, despite its ecological and face validity for auditory-based interventions. FFR is an event-related potential (ERP) that reflects early auditory processing. We predicted that schizophrenia patients would show acute- and longer-term FFR malleability in the context of TCT. Patients were randomized to either TCT (n = 30) or treatment as usual (TAU; n = 22), and electroencephalography was recorded during rapid presentation of an auditory speech stimulus before treatment, after one hour of training, and after 30 h of training. Whereas patients in the TCT group did not show changes in FFR after training, amplitude reductions were observed in the TAU. FFR was positively associated with performance on a measure of single word-in-noise perception in the TCT group, and with a measure of sentence-in-noise perception in both groups. Psychometric reliability analyses of FFR scores indicated high internal consistency but low one-hour and 12-week test-rest reliability. These findings support the dissociation between measures of speech discriminability along the hierarchy of cortical and subcortical early auditory information processing in schizophrenia.
Collapse
Affiliation(s)
- Peter E Clayson
- Department of Psychology, University of South Florida, University of California San Diego, 9500 Gilman Drive #0804 La Jolla, Tampa, CA 92093, USA
| | - Juan L Molina
- VISN 22 Mental Illness Research, Education and Clinical Center (MIRECC), San Diego VA Healthcare System, San Diego, CA, USA
| | - Yash B Joshi
- VISN 22 Mental Illness Research, Education and Clinical Center (MIRECC), San Diego VA Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - John Nungaray
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Gregory A Light
- VISN 22 Mental Illness Research, Education and Clinical Center (MIRECC), San Diego VA Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Central auditory processing deficits in schizophrenia: Effects of auditory-based cognitive training. Schizophr Res 2021; 236:135-141. [PMID: 34500174 PMCID: PMC9259506 DOI: 10.1016/j.schres.2021.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sensory processing abnormalities are common in schizophrenia (SZ) and impact everyday functions, such as speech perception in noisy environments. Auditory-based targeted cognitive training (TCT) is a "bottom up" cognitive remediation intervention designed to enhance the speed and accuracy of low-level auditory information processing. However, the effects of TCT on behavioral measures of central auditory processing (CAP) and the role of CAP function on verbal learning outcomes in SZ are unknown. METHODS SZ (n = 42) and healthy subjects (CTL; n = 18) underwent comprehensive clinical, neurocognitive, and auditory assessments, including tests of hearing sensitivity and speech recognition (Words-in-Noise (WIN), Quick Speech-in-Noise (SIN)). SZ patients were randomized to receive either treatment-as-usual (TAU); or 30-h of TCT + TAU using a stratified, parallel design. SZ patients repeated assessments ~10-12 weeks later. RESULTS Patients exhibited deficits in both WIN (p < 0.05, d = 0.50) and SIN (p < 0.01, d = 0.63). A treatment × time interaction on WIN (p < 0.05, d = 0.74), but not SIN discriminability, was seen in the TCT group relative to TAU. Specific enhancements in the 4-dB over background range drove gains in WIN performance. Moreover, SZ patients with greater CAP deficits experienced robust gains in verbal learning after 30-h of TCT relative to SZ patients without CAP impairment (p < 0.01, d = 1.28). CONCLUSION Findings demonstrate that intensive auditory training enhances the fidelity of auditory processing and perception, such that specific CAP deficits were 'normalized' and were predictive of gains in verbal learning after TCT. It is conceivable that patients with deficiencies in CAP measures may benefit most from TCT and other interventions targeting auditory dysfunction in SZ.
Collapse
|
9
|
Kambeitz-Ilankovic L, Vinogradov S, Wenzel J, Fisher M, Haas SS, Betz L, Penzel N, Nagarajan S, Koutsouleris N, Subramaniam K. Multivariate pattern analysis of brain structure predicts functional outcome after auditory-based cognitive training interventions. NPJ SCHIZOPHRENIA 2021; 7:40. [PMID: 34413310 PMCID: PMC8376975 DOI: 10.1038/s41537-021-00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Cognitive gains following cognitive training interventions are associated with improved functioning in people with schizophrenia (SCZ). However, considerable inter-individual variability is observed. Here, we evaluate the sensitivity of brain structural features to predict functional response to auditory-based cognitive training (ABCT) at a single-subject level. We employed whole-brain multivariate pattern analysis with support vector machine (SVM) modeling to identify gray matter (GM) patterns that predicted higher vs. lower functioning after 40 h of ABCT at the single-subject level in SCZ patients. The generalization capacity of the SVM model was evaluated by applying the original model through an out-of-sample cross-validation analysis to unseen SCZ patients from an independent validation sample who underwent 50 h of ABCT. The whole-brain GM volume-based pattern classification predicted higher vs. lower functioning at follow-up with a balanced accuracy (BAC) of 69.4% (sensitivity 72.2%, specificity 66.7%) as determined by nested cross-validation. The neuroanatomical model was generalizable to an independent cohort with a BAC of 62.1% (sensitivity 90.9%, specificity 33.3%). In particular, greater baseline GM volumes in regions within superior temporal gyrus, thalamus, anterior cingulate, and cerebellum predicted improved functioning at the single-subject level following ABCT in SCZ participants. The present findings provide a structural MRI fingerprint associated with preserved GM volumes at a single baseline timepoint, which predicted improved functioning following an ABCT intervention, and serve as a model for how to facilitate precision clinical therapies for SCZ based on imaging data, operating at the single-subject level.
Collapse
Affiliation(s)
- Lana Kambeitz-Ilankovic
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Sophia Vinogradov
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Julian Wenzel
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Melissa Fisher
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Shalaila S. Haas
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Linda Betz
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Nora Penzel
- grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany ,grid.7644.10000 0001 0120 3326Department of Basic Medical Sciences, Neuroscience and Sense Organs – University of Bari Aldo Moro, Bari, Italy
| | - Srikantan Nagarajan
- grid.266102.10000 0001 2297 6811Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | - Nikolaos Koutsouleris
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany ,grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Karuna Subramaniam
- grid.266102.10000 0001 2297 6811Department of Psychiatry, University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
10
|
Blacker KJ, McHail DG. Time course of recovery from acute hypoxia exposure as measured by vigilance and event-related potentials. Physiol Behav 2021; 239:113508. [PMID: 34175363 DOI: 10.1016/j.physbeh.2021.113508] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022]
Abstract
Exposure to reduced levels of breathable oxygen is known to cause a number of deleterious effects on human performance. Previous work has demonstrated that in healthy adults, hypoxia results in decrements on a wide range of sensory, cognitive, and motor tasks. However, very little is known about the time course of recovery of cognitive functions following a hypoxic exposure. While previous studies have shown that physiological responses like heart rate and oxygen saturation rebound almost immediately, one previous study has shown a delayed recovery for response time (RT) measures following hypoxia. In the current study, we assessed the time course of neurocognitive recovery following a hypoxic exposure in healthy adults using the psychomotor vigilance task (PVT), passively elicited event-related potentials (ERPs) that assess auditory processing, and physiological measures. We also compared whether speed of recovery differed when participants were provided with 21% or 100% oxygen immediately following hypoxic exposure. Participants underwent a baseline testing session and two separate recovery sessions where they were assessed during a hypoxic exposure and at regular intervals for up to four hours post-exposure. Results demonstrated that RT, as measured by the PVT, significantly slowed during hypoxia compared to baseline and continued to be impaired until 60 min post-exposure. We assessed the mismatch negativity (MMN) and P3a ERP components in response to an auditory oddball paradigm and found a significant reduction in the amplitude of the MMN during hypoxia compared to baseline and that attenuation in amplitude persisted for up to 120 min post-exposure. Together, these results indicate that both RT and auditory processing showed a delayed recovery following hypoxia. We found no strong evidence for differential recovery speed based on recovery gas administered (21% versus 100% oxygen). These results have implications for guidance regarding return-to-duty status for military aviators following a hypoxic exposure.
Collapse
Affiliation(s)
- Kara J Blacker
- Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA.
| | - Daniel G McHail
- Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA.
| |
Collapse
|
11
|
Koshiyama D, Thomas ML, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA. Hierarchical Pathways from Sensory Processing to Cognitive, Clinical, and Functional Impairments in Schizophrenia. Schizophr Bull 2021; 47:373-385. [PMID: 32856089 PMCID: PMC7965084 DOI: 10.1093/schbul/sbaa116] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cognitive impairment is a hallmark of schizophrenia and a robust predictor of functional outcomes. Impairments are found in all phases of the illness and are only moderately attenuated by currently approved therapeutics. Neurophysiological indices of sensory discrimination (ie, mismatch negativity (MMN) and P3a amplitudes) and gamma-band auditory steady-state response (ASSR; power and phase locking) are translational biomarkers widely used in the development of novel therapeutics for neuropsychiatric disorders. It is unclear whether laboratory-based EEG measures add explanatory power to well-established models that use only cognitive, clinical, and functional outcome measures. Moreover, it is unclear if measures of sensory discrimination and gamma-band ASSR uniquely contribute to putative causal pathways linking sensory discrimination, neurocognition, negative symptoms, and functional outcomes in schizophrenia. To answer these questions, hierarchical associations among sensory processing, neurocognition, clinical symptoms, and functional outcomes were assessed via structural equation modeling in a large sample of schizophrenia patients (n = 695) and healthy comparison subjects (n = 503). The results showed that the neurophysiologic indices of sensory discrimination and gamma-band ASSR both significantly contribute to and yield unique hierarchical, "bottom-up" effects on neurocognition, symptoms, and functioning. Measures of sensory discrimination showed direct effects on neurocognition and negative symptoms, while gamma-band ASSR had a direct effect on neurocognition in patients. Continued investigation of the neural mechanisms underlying abnormal networks of MMN/P3a and gamma-band ASSR is needed to clarify the pathophysiology of schizophrenia and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael L Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- Department of Psychology, Colorado State University, Fort Collins, CO
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California San Diego, La Jolla, CA
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Juan L Molina
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
12
|
Hamilton HK, Roach BJ, Cavus I, Teyler TJ, Clapp WC, Ford JM, Tarakci E, Krystal JH, Mathalon DH. Impaired Potentiation of Theta Oscillations During a Visual Cortical Plasticity Paradigm in Individuals With Schizophrenia. Front Psychiatry 2020; 11:590567. [PMID: 33391054 PMCID: PMC7772351 DOI: 10.3389/fpsyt.2020.590567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term potentiation (LTP) is a form of experience-dependent synaptic plasticity mediated by glutamatergic transmission at N-methyl-D-aspartate receptors (NMDARs). Impaired neuroplasticity has been implicated in the pathophysiology of schizophrenia, possibly due to underlying NMDAR hypofunction. Analogous to the high frequency electrical stimulation used to induce LTP in vitro and in vivo in animal models, repeated high frequency presentation of a visual stimulus in humans in vivo has been shown to induce enduring LTP-like neuroplastic changes in electroencephalography (EEG)-based visual evoked potentials (VEPs) elicited by the stimulus. Using this LTP-like visual plasticity paradigm, we previously showed that visual high-frequency stimulation (VHFS) induced sustained changes in VEP amplitudes in healthy controls, but not in patients with schizophrenia. Here, we extend this prior work by re-analyzing the EEG data underlying the VEPs, focusing on neuroplastic changes in stimulus-evoked EEG oscillatory activity following VHFS. EEG data were recorded from 19 patients with schizophrenia and 21 healthy controls during the visual plasticity paradigm. Event-related EEG oscillations (total power, intertrial phase coherence; ITC) elicited by a standard black and white checkerboard stimulus (~0.83 Hz, several 2-min blocks) were assessed before and after exposure to VHFS with the same stimulus (~8.9 Hz, 2 min). A cluster-based permutation testing approach was applied to time-frequency data to examine LTP-like plasticity effects following VHFS. VHFS enhanced theta band total power and ITC in healthy controls but not in patients with schizophrenia. The magnitude and phase synchrony of theta oscillations in response to a visual stimulus were enhanced for at least 22 min following VHFS, a frequency domain manifestation of LTP-like visual cortical plasticity. These theta oscillation changes are deficient in patients with schizophrenia, consistent with hypothesized NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Timothy J. Teyler
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | | | - Judith M. Ford
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Erendiz Tarakci
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Swerdlow NR, Bhakta SG, Talledo J, Kotz J, Roberts BZ, Clifford RE, Thomas ML, Joshi YB, Molina JL, Light GA. Memantine effects on auditory discrimination and training in schizophrenia patients. Neuropsychopharmacology 2020; 45:2180-2188. [PMID: 32961542 PMCID: PMC7784956 DOI: 10.1038/s41386-020-00865-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
The uncompetitive low-affinity NMDA receptor antagonist, memantine, acutely increases electrophysiological measures of auditory information processing in both healthy subjects (HS) and patients with schizophrenia. Memantine effects on functional measures of auditory discrimination performance and learning are not known; conceivably, beneficial effects on these measures might suggest a role for memantine in augmenting the cognitive and functional impact of auditory targeted cognitive training (TCT). Here, carefully characterized HS (n = 20) and schizophrenia patients (n = 22) were tested in measures of auditory discrimination performance (words-in-noise (WIN), quick speech-in-noise (QuickSIN), gaps-in-noise) and auditory frequency modulation learning (a component of TCT) on 2 days about a week apart, after ingesting either placebo or 20 mg memantine po, in a double-blind, within-subject cross-over random order design. Memantine modestly enhanced functional measures of auditory discrimination in both schizophrenia patients (WIN) and HS (WIN and QuickSIN), as well as auditory frequency modulation learning in schizophrenia patients. These findings converge with a growing literature showing that memantine can enhance a range of metrics of auditory function. These properties could contribute to the apparent benefits of memantine as an adjunctive treatment in schizophrenia, and suggest that memantine might augment learning and potentially clinical gains from auditory-based TCT.
Collapse
Affiliation(s)
- Neal R. Swerdlow
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Savita G. Bhakta
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Jo Talledo
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Juliana Kotz
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Benjamin Z. Roberts
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Royce Ellen Clifford
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Michael L. Thomas
- grid.47894.360000 0004 1936 8083Department of Psychology, Colorado State University, Fort Collins, CO USA
| | - Yash B. Joshi
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA USA
| | - Juan L. Molina
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Gregory A. Light
- grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA USA
| |
Collapse
|
14
|
Gamma oscillations predict pro-cognitive and clinical response to auditory-based cognitive training in schizophrenia. Transl Psychiatry 2020; 10:405. [PMID: 33230190 PMCID: PMC7684295 DOI: 10.1038/s41398-020-01089-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Cognitive impairments are pervasive and disabling features of schizophrenia. Targeted cognitive training (TCT) is a "bottom-up" cognitive remediation intervention with efficacy for neurocognitive outcomes in schizophrenia, yet individual responses are variable. Gamma oscillatory measures are leading candidate biomarkers in the development of biologically informed pro-cognitive therapeutics. Forty-two schizophrenia patients were recruited from a long-term residential treatment facility. Participants were randomized to receive either 1 h of cognitive training (TCT, n = 21) or computer games (TAU, n = 21). All participants received standard-of-care treatment; the TCT group additionally completed 30 h of cognitive training. The auditory steady-state response paradigm was used to elicit gamma oscillatory power and synchrony during electroencephalogram recordings. Detailed clinical and cognitive assessments were collected at baseline and after completion of the study. Baseline gamma power predicted cognitive gains after a full course of TCT (MCCB, R2 = 0.31). A change in gamma power after 1-h TCT exposure predicted improvement in both positive (SAPS, R2 = 0.40) and negative (SANS, R2 = 0.30) symptoms. These relationships were not observed in the TAU group (MCCB, SAPS, and SANS, all R2 < 0.06). The results indicate that the capacity to support gamma oscillations, as well as the plasticity of the underlying ASSR circuitry after acute exposure to 1 h of TCT, reflect neural mechanisms underlying the efficacy of TCT, and may be used to predict individualized treatment outcomes. These findings suggest that gamma oscillatory biomarkers applied within the context of experimental medicine designs can be used to personalize individual treatment options for pro-cognitive interventions in patients with schizophrenia.
Collapse
|
15
|
Light GA, Joshi YB, Molina JL, Bhakta SG, Nungaray JA, Cardoso L, Kotz JE, Thomas ML, Swerdlow NR. Neurophysiological biomarkers for schizophrenia therapeutics. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Honda S, Matsumoto M, Tajinda K, Mihara T. Enhancing Clinical Trials Through Synergistic Gamma Power Analysis. Front Psychiatry 2020; 11:537. [PMID: 32587536 PMCID: PMC7299152 DOI: 10.3389/fpsyt.2020.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
While the etiology of many neuropsychiatric disorders remains unknown, increasing evidence suggests that aberrant sensory processing plays a central role. For this class of disorders, which are characterized by affective, cognitive, and behavioral symptoms, electroencephalography remains the dominant tool for providing insight into the physiological and molecular underpinnings of the disease state and predicting the effectiveness of investigational new drugs. Within the spectrum of electrical activity present in the CNS, high-frequency oscillations in the gamma band are frequently altered in these patient populations. Measurement of gamma oscillation can be further classified into baseline and evoked, each of which offers a specific commentary on disease state. Baseline gamma analysis provides a surrogate of pharmacodynamics and predicting the time course effects of clinical candidate drugs, while alterations in evoked (time-locked) gamma power may serve as a disease biomarker and have utility in assessing patient response to new drugs. Together, these techniques offer complimentary methods of analysis for discrete realms of clinical and translational medicine. In terms of drug development, comprehensive analysis containing aspects of both baseline and evoked gamma oscillations may prove more useful in establishing better workflow and more accurate criteria for the testing of investigational new drugs.
Collapse
Affiliation(s)
- Sokichi Honda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Mitsuyuki Matsumoto
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Katsunori Tajinda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Takuma Mihara
- Candidate Discovery Research Labs, DDR, Astellas Pharm Inc., Tsukuba, Japan
| |
Collapse
|
17
|
Kambeitz-Ilankovic L, Wenzel J, Haas SS, Ruef A, Antonucci LA, Sanfelici R, Paolini M, Koutsouleris N, Biagianti B. Modeling Social Sensory Processing During Social Computerized Cognitive Training for Psychosis Spectrum: The Resting-State Approach. Front Psychiatry 2020; 11:554475. [PMID: 33329091 PMCID: PMC7716799 DOI: 10.3389/fpsyt.2020.554475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Greater impairments in early sensory processing predict response to auditory computerized cognitive training (CCT) in patients with recent-onset psychosis (ROP). Little is known about neuroimaging predictors of response to social CCT, an experimental treatment that was recently shown to induce cognitive improvements in patients with psychosis. Here, we investigated whether ROP patients show interindividual differences in sensory processing change and whether different patterns of SPC are (1) related to the differential response to treatment, as indexed by gains in social cognitive neuropsychological tests and (2) associated with unique resting-state functional connectivity (rsFC). Methods: Twenty-six ROP patients completed 10 h of CCT over the period of 4-6 weeks. Subject-specific improvement in one CCT exercise targeting early sensory processing-a speeded facial Emotion Matching Task (EMT)-was studied as potential proxy for target engagement. Based on the median split of SPC from the EMT, two patient groups were created. Resting-state activity was collected at baseline, and bold time series were extracted from two major default mode network (DMN) hubs: left medial prefrontal cortex (mPFC) and left posterior cingulate cortex (PCC). Seed rsFC analysis was performed using standardized Pearson correlation matrices, generated between the average time course for each seed and each voxel in the brain. Results: Based on SPC, we distinguished improvers-i.e., participants who showed impaired performance at baseline and reached the EMT psychophysical threshold during CCT-from maintainers-i.e., those who showed intact EMT performance at baseline and sustained the EMT psychophysical threshold throughout CCT. Compared to maintainers, improvers showed an increase of rsFC at rest between PCC and left superior and medial frontal regions and the cerebellum. Compared to improvers, maintainers showed increased rsFC at baseline between PCC and superior temporal and insular regions bilaterally. Conclusions: In ROP patients with an increase of connectivity at rest in the default mode network, social CCT is still able to induce sensory processing changes that however do not translate into social cognitive gains. Future studies should investigate if impairments in short-term synaptic plasticity are responsible for this lack of response and can be remediated by pharmacological augmentation during CCT.
Collapse
Affiliation(s)
- Lana Kambeitz-Ilankovic
- Department of Psychiatry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Julian Wenzel
- Department of Psychiatry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Linda A Antonucci
- Department of Psychiatry, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Department of Education, Psychology, Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Rachele Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.,Max Planck School of Cognition, Leipzig, Germany
| | - Marco Paolini
- Department of Radiology, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Bruno Biagianti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of R&D, Posit Science Corporation, San Francisco, CA, United States
| |
Collapse
|
18
|
Zhu T. Challenges of Psychiatry Drug Development and the Role of Human Pharmacology Models in Early Development-A Drug Developer's Perspective. Front Psychiatry 2020; 11:562660. [PMID: 33584358 PMCID: PMC7873432 DOI: 10.3389/fpsyt.2020.562660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Psychiatric diseases have the lowest probability of success in clinical drug development. This presents not only an issue to address the unmet medical needs of patients, but also a hurdle for pharmaceutical and biotech industry to continue R&D in this disease area. Fundamental pharmacokinetic and pharmacodynamic principles provide an understanding of the drug exposure, target binding and pharmacological activity at the target site of action for a new drug candidate. Collectively, these principles determine the likelihood of testing the mechanism of action and enhancing the likelihood of candidate survival in Phase 2 clinical development, therefore, they are termed as the "three pillars of survival." Human Phase 1 pharmacokinetic and pharmacodynamic studies provide evidence of the three pillars. Electroencephalogram (EEG) assessments and cognitive function tests in schizophrenia patients can provide proof of pharmacology and ensure that a pharmacological active regimen will be tested in Phase 2 proof of concept (POC) studies for the treatment of cognitive impairment associated with schizophrenia (CIAS).
Collapse
Affiliation(s)
- Tong Zhu
- Astellas Pharma Global Development, Northbrook, IL, United States
| |
Collapse
|
19
|
Selection criteria for neurophysiologic biomarkers to accelerate the pace of CNS therapeutic development. Neuropsychopharmacology 2020; 45:237-238. [PMID: 31506611 PMCID: PMC6879638 DOI: 10.1038/s41386-019-0519-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Seech TR, Funke ME, Sharp RF, Light GA, Blacker KJ. Impaired Sensory Processing During Low-Oxygen Exposure: A Noninvasive Approach to Detecting Changes in Cognitive States. Front Psychiatry 2020; 11:12. [PMID: 32082202 PMCID: PMC7006237 DOI: 10.3389/fpsyt.2020.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
The ability to detect novelty in our environment is a critical sensory function. A reliable set of event-related potentials (ERP), known as the auditory deviance response (ADR), are elicited in the absence of directed attention and indexes functionally relevant networks. The ADR consists of three peaks: mismatch negativity (MMN), P3a, and reorienting negativity (RON) that are sequentially evoked in response to unattended changes in repetitive background stimulation. While previous studies have established the ADR's sensitivity to a range of pharmacologic and nonpharmacologic interventions and are leading candidate biomarkers of perturbations of the central nervous system (CNS), here we sought to determine if ADR peaks are sensitive to decreases in breathable oxygen. Participants performed a visuomotor tracking task while EEG was recorded during two 27-min sessions. The two sessions differed in the amount of environmental oxygen available: 10.6% O2 (hypoxia) versus 20.4% O2 (normoxia). ERPs were measured while a series of identical, or "standard," tones combined with occasional "oddball," tones, were presented. MMN, P3a, and RON were assessed in response to the oddball compared to the standard stimuli. Behavioral impairment during hypoxia was demonstrated by a deficit in tracking performance compared to the normoxia condition. Whereas no changes were detected in the MMN or RON, the amplitude of the P3a component was significantly reduced during hypoxia compared to normoxia, within the first 9 min of exposure. To our knowledge, this is the first study to demonstrate the effect of low oxygen exposure on passively elicited neural measures of early sensory processing. This study demonstrates that passively elicited EEG measures, reflecting preattentive auditory processing, are disrupted by acute hypoxia. Results have implications for the development of biomarkers for the noninvasive assessment of CNS perturbations.
Collapse
Affiliation(s)
- Todd R Seech
- Warfighter Effectiveness Research Center, U.S. Air Force Academy, Colorado Springs, CO, United States
| | - Matthew E Funke
- Naval Medical Research Unit-Dayton, Wright-Patterson AFB, Dayton, OH, United States
| | - Richard F Sharp
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States.,VISN-22 Mental Illness, Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, United States
| | - Kara J Blacker
- Naval Medical Research Unit-Dayton, Wright-Patterson AFB, Dayton, OH, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
21
|
Hochberger WC, Thomas ML, Joshi YB, Molina J, Treichler EBH, Nungaray J, Cardoso L, Sprock J, Swerdlow N, Light GA. Oscillatory biomarkers of early auditory information processing predict cognitive gains following targeted cognitive training in schizophrenia patients. Schizophr Res 2020; 215:97-104. [PMID: 31759809 PMCID: PMC7035985 DOI: 10.1016/j.schres.2019.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023]
Abstract
Auditory-based targeted cognitive training (TCT) is an effective and well-validated intervention for the treatment of cognitive impairment in schizophrenia patients. Improvements in higher-order cognition, reductions in symptom severity, and increases in psychosocial functioning secondary to TCT are thought to be driven by "bottom-up" enhancement of early auditory information processing (EAIP). Despite strong evidence of efficacy at the group level, there is significant variability in response to TCT, with few well-delineated biomarkers for predicting individual benefit. EEG biomarkers of EAIP are indicators of early-treatment sensitivity that predict full-course TCT outcome; however, further characterization is necessary for biomarker-guided clinical trials. The current study examined baseline and early-treatment sensitivity (i.e., change from baseline after 1 h) in theta band oscillatory activity to deviant stimuli as moderators of full course (30 h) TCT response in treatment-refractory schizophrenia patients randomly assigned to receive either treatment-as-usual (TAU; n = 22) or TAU augmented with TCT (n = 30). Theta evoked power and phase locking at baseline predicted patient improvements in global cognitive function after 30 h of TCT. Decrease in theta activity to deviant stimuli after 1 h of TCT predicted improvements in verbal learning after 30 h. Exploratory analyses using EEG composite scores had high levels of sensitivity and specificity for identifying patients most likely to benefit from TCT. The integrity of baseline neurophysiologic activity associated with EAIP, as well as the sensitivity of the underlying circuity to change, likely reflects an intermediate therapeutic process underlying the effectiveness of TCT that can be used to predict patient response to treatment.
Collapse
Affiliation(s)
- William C Hochberger
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Michael L Thomas
- Colorado State University, Department of Psychology, Fort Collins, CO, USA
| | - Yash B Joshi
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Juan Molina
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Emily B H Treichler
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John Nungaray
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Lauren Cardoso
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Joyce Sprock
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Neal Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gregory A Light
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
MacDonald ML, Garver M, Newman J, Sun Z, Kannarkat J, Salisbury R, Glausier J, Ding Y, Lewis DA, Yates N, Sweet RA. Synaptic Proteome Alterations in the Primary Auditory Cortex of Individuals With Schizophrenia. JAMA Psychiatry 2020; 77:86-95. [PMID: 31642882 PMCID: PMC6813579 DOI: 10.1001/jamapsychiatry.2019.2974] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Importance Findings from unbiased genetic studies have consistently implicated synaptic protein networks in schizophrenia, but the molecular pathologic features within these networks and their contribution to the synaptic and circuit deficits thought to underlie disease symptoms remain unknown. Objective To determine whether protein levels are altered within synapses from the primary auditory cortex (A1) of individuals with schizophrenia and, if so, whether these differences are restricted to the synapse or occur throughout the gray matter. Design, Setting, and Participants This paired case-control study included tissue samples from individuals with schizophrenia obtained from the Allegheny County Office of the Medical Examiner. An independent panel of health care professionals made consensus DSM-IV diagnoses. Each tissue sample from an individual with schizophrenia was matched by sex, age, and postmortem interval with 1 sample from an unaffected control individual. Targeted mass spectrometry was used to measure protein levels in A1 gray matter homogenate and synaptosome preparations. All experimenters were blinded to diagnosis. Mass spectrometry data were collected from September 26 through November 4, 2016, and analyzed from November 3, 2016, to July 15, 2019. Main Outcomes and Measures Primary measures were homogenate and synaptosome protein levels and their coregulation network features. Hypotheses generated before data collection were (1) that levels of canonical postsynaptic proteins in A1 synaptosome preparations would differ between individuals with schizophrenia and controls and (2) that these differences would not be explained by changes in total A1 homogenate protein levels. Results Synaptosome and homogenate protein levels were investigated in 48 individuals with a schizophrenia diagnosis and 48 controls (mean age in both groups, 48 years [range, 17-83 years]); each group included 35 males (73%) and 13 females (27%). Robust alterations (statistical cutoff set at an adjusted Limma P < .05) were observed in synaptosome levels of canonical mitochondrial and postsynaptic proteins that were highly coregulated and not readily explained by postmortem interval, antipsychotic drug treatment, synaptosome yield, or underlying alterations in homogenate protein levels. Conclusions and Relevance These findings suggest a robust and highly coordinated rearrangement of the synaptic proteome. In line with unbiased genetic findings, alterations in synaptic levels of postsynaptic proteins were identified, providing a road map to identify the specific cells and circuits that are impaired in individuals with schizophrenia A1.
Collapse
Affiliation(s)
- Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan Garver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhe Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Kannarkat
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
de la Garrigue N, Glasser J, Sehatpour P, Iosifescu DV, Dias E, Carlson M, Shope C, Sobeih T, Choo TH, Wall MM, Kegeles LS, Gangwisch J, Mayer M, Brazis S, De Baun HM, Wolfer S, Bermudez D, Arnold M, Rette D, Meftah AM, Conant M, Lieberman JA, Kantrowitz JT. Grant Report on d-Serine Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia †. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200018. [PMID: 32856005 PMCID: PMC7448686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report on the rationale and design of an ongoing NIMH sponsored R61-R33 project in schizophrenia/schizoaffective disorder. This project studies augmenting the efficacy of auditory neuroplasticity cognitive remediation (AudRem) with d-serine, an N-methyl-d-aspartate-type glutamate receptor (NMDAR) glycine-site agonist. We operationalize improved (smaller) thresholds in pitch (frequency) between successive auditory stimuli after AudRem as improved plasticity, and mismatch negativity (MMN) and auditory θ as measures of functional target engagement of both NMDAR agonism and plasticity. Previous studies showed that AudRem alone produces significant, but small cognitive improvements, while d-serine alone improves symptoms and MMN. However, the strongest results for plasticity outcomes (improved pitch thresholds, auditory MMN and θ) were found when combining d-serine and AudRem. AudRem improvements correlated with reading and other auditory cognitive tasks, suggesting plasticity improvements are predictive of functionally relevant outcomes. While d-serine appears to be efficacious for acute AudRem enhancement, the optimal dose remains an open question, as does the ability of combined d-serine + AudRem to produce sustained improvement. In the ongoing R61, 45 schizophrenia patients will be randomized to receive three placebo-controlled, double-blind d-serine + AudRem sessions across three separate 15 subject dose cohorts (80/100/120 mg/kg). Successful completion of the R61 is defined by ≥moderate effect size changes in target engagement and correlation with function, without safety issues. During the three-year R33, we will assess the sustained effects of d-serine + AudRem. In addition to testing a potentially viable treatment, this project will develop a methodology to assess the efficacy of novel NMDAR modulators, using d-serine as a "gold-standard".
Collapse
Affiliation(s)
| | - Juliana Glasser
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Pejman Sehatpour
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Elisa Dias
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Marlene Carlson
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Tarek Sobeih
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Tse-Hwei Choo
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Melanie M. Wall
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence S. Kegeles
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - James Gangwisch
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Megan Mayer
- New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | - Dalton Bermudez
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Molly Arnold
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | | - Amir M. Meftah
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Melissa Conant
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jeffrey A. Lieberman
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Joshua T. Kantrowitz
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA,Correspondence: Joshua T. Kantrowitz, ; Tel.: +1-646-774-6738
| |
Collapse
|
24
|
Dondé C, Martinez A, Sehatpour P, Patel GH, Kraut R, Kantrowitz JT, Javitt DC. Neural and functional correlates of impaired reading ability in schizophrenia. Sci Rep 2019; 9:16022. [PMID: 31690846 PMCID: PMC6831596 DOI: 10.1038/s41598-019-52669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/22/2019] [Indexed: 01/14/2023] Open
Abstract
Deficits in early auditory processing (EAP) are a core component of schizophrenia (SZ) and contribute significantly to impaired overall function. Here, we evaluate the potential contributions of EAP-related impairments in reading to functional capacity and outcome, relative to effects of auditory social cognitive and general neurocognitive dysfunction. Participants included 30-SZ and 28-controls of similar age, sex, and educational achievement. EAP was assessed using an auditory working memory (tone-matching) task. Phonological processing and reading Fluency were assessed using the Comprehensive Test of Phonological Processing and Woodcock-Johnson reading batteries, respectively. Auditory-related social cognition was assessed using measures of emotion/sarcasm recognition. Functional capacity and outcome were assessed using the UCSD Performance-based Skills Assessment and Specific Level of Functioning scale, respectively. fMRI resting-state functional-connectivity (rsFC) was used to evaluate potential underlying substrates. As predicted, SZ patients showed significant and interrelated deficits in both phonological processing (d = 0.74, p = 0.009) and reading fluency (d = 1.24, p < 0.00005). By contrast, single word reading (d = 0.35, p = 0.31) was intact. In SZ, deficits in EAP and phonological reading ability significantly predicted reduced functional capacity, but not functional outcome. By contrast, deficits in reading fluency significantly predicted impairments in both functional capacity and functional outcome. Moreover, deficits in reading fluency correlated with rsFC alterations among auditory thalamus, early auditory and auditory association regions. These findings indicate significant contributions of EAP deficits and functional connectivity changes in subcortical and early auditory regions to reductions in reading fluency, and of impaired reading ability to impaired functional outcome in SZ.
Collapse
Affiliation(s)
- Clément Dondé
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, F-69000, France. .,University Lyon 1, Villeurbanne, F-69000, France. .,Centre Hospitalier Le Vinatier, Bron, France. .,Nathan Kline Institute, Orangeburg, NY, USA. .,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA.
| | - Antigona Martinez
- Nathan Kline Institute, Orangeburg, NY, USA.,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Pejman Sehatpour
- Nathan Kline Institute, Orangeburg, NY, USA.,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Gaurav H Patel
- Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Kraut
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Joshua T Kantrowitz
- Nathan Kline Institute, Orangeburg, NY, USA.,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Daniel C Javitt
- Nathan Kline Institute, Orangeburg, NY, USA. .,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
25
|
Hochberger WC, Joshi YB, Zhang W, Thomas ML, Braff DL, Swerdlow NR, Light GA. Decomposing the constituent oscillatory dynamics underlying mismatch negativity generation in schizophrenia: Distinct relationships to clinical and cognitive functioning. Int J Psychophysiol 2019; 145:23-29. [PMID: 30586570 PMCID: PMC7261144 DOI: 10.1016/j.ijpsycho.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Abnormalities in early auditory information processing (EAIP) contribute to higher-order deficits in cognition and psychosocial functioning in schizophrenia. A passive auditory oddball paradigm is commonly used to evoke event-related potential (ERP) measures of EAIP reflecting auditory sensory registration and deviance detection, including mismatch negativity (MMN) and P3a responses. MMN and P3a have been extensively studied in healthy subjects and neuropsychiatric patient populations and are increasingly used as translational biomarkers in the development of novel therapeutics. Despite widespread use, relatively few studies have examined the constituent oscillatory elements and the extent to which sensory registration and deviance detection represent distinct or intercorrelated processes. This study aimed to determine the factor structure and clinical correlates of these oscillatory measures in schizophrenia patients (n = 706) and healthy comparison subjects (n = 615) who underwent clinical, cognitive, and functional characterization and EEG testing via their participation in the Consortium of Genomics in Schizophrenia (COGS-2) study. Results revealed significant deficits in theta-band (4-7 Hz) evoked power and phase locking in patients. Exploratory factor analyses of both ERP and oscillatory measures revealed two dissociable factors reflecting sensory registration and deviance detection. While each factor shared a significant correlation with social cognition, the deviance detection factor had a unique relationship to multiple cognitive and clinical domains. Results support the continued advancement of functionally relevant oscillatory measures underlying EAIP in the development of precognitive therapeutics.
Collapse
Affiliation(s)
- W C Hochberger
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Y B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - W Zhang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - M L Thomas
- Colorado State University, Department of Psychology, Fort Collins, CO, United States of America
| | - D L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - N R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - G A Light
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| |
Collapse
|
26
|
Kruiper C, Glenthøj BY, Oranje B. Effects of clonidine on MMN and P3a amplitude in schizophrenia patients on stable medication. Neuropsychopharmacology 2019; 44:1062-1067. [PMID: 30797222 PMCID: PMC6462011 DOI: 10.1038/s41386-019-0351-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/30/2023]
Abstract
Schizophrenia is a complex brain disease involving several neurotransmitter systems, including aberrant noradrenergic activity, which might underlie cognitive deficits. Clonidine is an α2A-agonist and previous research has demonstrated that single dosages of clonidine normalize sensori(motor) gating in schizophrenia. Currently, we investigated whether clonidine is able to normalize mismatch negativity (MMN) and P3a amplitude deficits in this same group of patients. This is important, since reports have shown that MMN amplitude is associated with cognitive functioning and daily life functions in schizophrenia. Twenty chronically ill, male schizophrenia patients were tested with the MMN paradigm from the Copenhagen Psychophysiological Test Battery (CPTB) on 5 occasions, separated by a week. Patients received randomized, yet balanced, either a placebo or a single dose (25, 50, 75 or 150 μg) of clonidine (each dose only once) on top of their usual medication on each occasion. Patients were matched on age and gender with 20 healthy controls (HC) who did not receive any treatment. We found decreased MMN and P3a amplitudes in our patients compared to HC. Although clonidine did neither significantly increase MMN nor P3a amplitude in our patients, it did increase certain levels of MMN and P3a amplitude such that these were not significantly different anymore from the healthy controls. Together with our previous reports indicating normalized sensori(motor) gating in the same patients following administration of clonidine, our results could be of potential high clinical relevance in treating schizophrenia. Future studies should focus on longer trial periods to investigate if clonidine also improves cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Caitlyn Kruiper
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark. .,Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Birte Y. Glenthøj
- 0000 0001 0674 042Xgrid.5254.6Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark ,0000 0001 0674 042Xgrid.5254.6Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- 0000 0001 0674 042Xgrid.5254.6Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark ,0000000120346234grid.5477.1Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands ,0000 0001 0674 042Xgrid.5254.6Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Hochberger WC, Joshi YB, Thomas ML, Zhang W, Bismark AW, Treichler EBH, Tarasenko M, Nungaray J, Sprock J, Cardoso L, Swerdlow N, Light GA. Neurophysiologic measures of target engagement predict response to auditory-based cognitive training in treatment refractory schizophrenia. Neuropsychopharmacology 2019; 44:606-612. [PMID: 30377381 PMCID: PMC6333927 DOI: 10.1038/s41386-018-0256-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/01/2018] [Indexed: 01/20/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and a strong predictor of psychosocial disability. Auditory-based targeted cognitive training (TCT) aims to enhance verbal learning and other domains of cognitive functioning through "bottom-up" tuning of the neural systems underlying early auditory information processing (EAIP). Although TCT has demonstrated efficacy at the group level, individual response to TCT varies considerably, with nearly half of patients showing little-to-no benefit. EEG measures of EAIP, mismatch negativity (MMN) and P3a, are sensitive to the neural systems engaged by TCT exercises and might therefore predict clinical outcomes after a full course of treatment. This study aimed to determine whether initial malleability of MMN and P3a to 1-h of auditory-based TCT predicts improvements in verbal learning and clinical symptom reduction following a full (30-h) course of TCT. Treatment refractory patients diagnosed with schizophrenia were randomly assigned to receive treatment-as-usual (TAU; n = 22) or TAU augmented with TCT (n = 23). Results indicated that malleability (i.e., change from baseline after the initial 1-h dose of TCT) of MMN and P3a predicted improvements in verbal learning as well as decreases in the severity of positive symptoms. Examination of MMN and P3a malleability in patients after their first dose of TCT can be used to predict clinical response to a full course of treatment and shows promise for future biomarker-informed treatment assignment.
Collapse
Affiliation(s)
- William C Hochberger
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Wendy Zhang
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program (JDP) in Clinical Psychology, San Diego, CA, USA
| | - Andrew W Bismark
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Emily B H Treichler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Melissa Tarasenko
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - John Nungaray
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Lauren Cardoso
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Alpine Special Treatment Center Inc., Alpine, CA, USA
| | - Neal Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA.
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program (JDP) in Clinical Psychology, San Diego, CA, USA.
| |
Collapse
|
28
|
Rosburg T, Schmidt A. Potential Mechanisms for the Ketamine-Induced Reduction of P3b Amplitudes. Front Behav Neurosci 2018; 12:308. [PMID: 30618662 PMCID: PMC6297878 DOI: 10.3389/fnbeh.2018.00308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
In specific dosages, the N-methyl-D-aspartate receptor (NMDA) antagonist ketamine can be used to model transient psychotic symptoms in healthy individuals that resemble those of schizophrenia. Ketamine administration also temporarily impairs cognitive functions, which can be studied by event-related potentials (ERPs). ERPs also allow dissecting what stages of information processing are affected by ketamine and what stages remain functional. For tasks requiring the differentiation of targets and non-targets, it has repeatedly been shown that ketamine administration in healthy individuals leads to decreased amplitudes of the ERP component P3b in response to target stimuli. However, it could be argued that this ketamine-induced P3b reduction is the consequence of an increased difficulty to differentiate targets from non-targets, primarily mediated by ketamine's psychotomimetic rather than pharmacological effects. The current review of ERP studies seeks to clarify the issue whether P3b effects of ketamine may indeed be explained as the consequence of an experienced increase in task difficulty or whether alternative mechanisms are perhaps more plausible. The review first summarizes the effects of task difficulty on ERP components related to intentional stimulus categorization (P3b), involuntary attention switches to distractors (P3a), as well as sensory processing (P1, N1). Secondly, the ERP effects of task difficulty are contrasted with those observed in ketamine studies in healthy individuals. Findings show that P3b amplitudes are consistently diminished by an increased task difficulty, as well as after ketamine administration. In contrast and as most important difference, increased task difficulty leads to increased P3a amplitudes to distractors presented in same modality as targets, whereas ketamine leads to reduced P3a amplitudes for such distractors. This dissociation indicates that the decreased P3b amplitudes after ketamine cannot be explained by a drug-induced increase in task difficulty. The conjoint reductions of P3a and P3b amplitudes instead suggest that working memory operations, in particular working memory updating are impaired after ketamine, which is in line with previous behavioral findings.
Collapse
Affiliation(s)
- Timm Rosburg
- Forensic Department, University Psychiatric Clinics Basel, Basel, Switzerland
| | - André Schmidt
- Department of Psychiatry, University Psychiatric Clinics Basel, Basel, Switzerland
| |
Collapse
|
29
|
Joshi YB, Light GA. Using EEG-Guided Basket and Umbrella Trials in Psychiatry: A Precision Medicine Approach for Cognitive Impairment in Schizophrenia. Front Psychiatry 2018; 9:554. [PMID: 30510520 PMCID: PMC6252381 DOI: 10.3389/fpsyt.2018.00554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Due to advances over the last several decades, many fields of medicine are moving toward a precision medicine approach where treatments are tailored to nuanced patient factors. While in some disciplines these innovations are commonplace leading to unique biomarker-guided experimental medicine trials, there are no such analogs in psychiatry. In this brief review, we will overview two unique biomarker-guided trial designs for future use in psychiatry: basket and umbrella trials. We will illustrate how such trials could be useful in psychiatry using schizophrenia as a candidate illness, the EEG measure mismatch negativity as the candidate biomarker, and cognitive impairment as the target disease dimension.
Collapse
Affiliation(s)
- Yash B Joshi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Health Care System, San Diego, CA, United States
| |
Collapse
|