1
|
Kurkinen K, Kärkkäinen O, Lehto SM, Luoma I, Kraav SL, Kivimäki P, Therman S, Tolmunen T. An exploratory study of metabolomics in endogenous and cannabis-use-associated psychotic-like experiences in adolescence. Transl Psychiatry 2024; 14:466. [PMID: 39511135 PMCID: PMC11543670 DOI: 10.1038/s41398-024-03163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
In adolescence, psychotic-like experiences (PLE) may indicate potential prodromal symptoms preceding the onset of psychosis. Metabolomic studies have shown promise in providing valuable insights into predicting psychosis with enhanced precision compared to conventional clinical features. This study investigated metabolomic alterations associated with PLE in 76 depressed adolescents aged 14-20 years. Serum concentrations of 92 metabolites were analyzed with liquid chromatography-mass spectrometry. PLE were assessed using the Youth Experiences and Health (YEAH) questionnaire. The associations between PLE symptom dimensions (delusions, paranoia, hallucinations, negative symptoms, thought disorder, and dissociation) and metabolite concentrations were analyzed in linear regression models adjusted for different covariates. The symptom dimensions consistently correlated with the metabolome in different models, except those adjusted for cannabis use. Specifically, the hallucination dimension was associated with 13 metabolites (acetoacetic acid, allantoin, asparagine, decanoylcarnitine, D-glucuronic acid, guanidinoacetic acid, hexanoylcarnitine, homogentisic acid, leucine, NAD+, octanoylcarnitine, trimethylamine-N-oxide, and valine) in the various linear models. However, when adjusting for cannabis use, eight metabolites were associated with hallucinations (adenine, AMP, cAMP, chenodeoxycholic acid, cholic acid, L-kynurenine, neopterin, and D-ribose-5-phosphate). The results suggest diverse mechanisms underlying PLE in adolescence; hallucinatory experiences may be linked to inflammatory functions, while cannabis use may engage an alternative metabolic pathway related to increased energy demand and ketogenesis in inducing PLE. The limited sample of individuals with depression restricts the generalizability of these findings. Future research should explore whether various experiences and related metabolomic changes jointly predict the onset of psychoses and related disorders.
Collapse
Affiliation(s)
- Karoliina Kurkinen
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland.
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway
- R&D Department, Division of Mental Health Services, Akershus University Hospital, PB 1000, 1478, Lørenskog, Norway
- Department of Psychiatry, Faculty of Medicine, University of Helsinki, Yliopistonkatu 3, 00014, Helsinki, Finland
| | - Ilona Luoma
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
- Department of Child Psychiatry, Kuopio University Hospital, Kaartokatu 9, Kuopio, Finland
| | - Siiri-Liisi Kraav
- Department of Social Sciences, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Petri Kivimäki
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
| | - Sebastian Therman
- Mental Health Team, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Tommi Tolmunen
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
- Kuopio University Hospital, Department of Adolescent Psychiatry, Kaartokatu 9, Kuopio, Finland
| |
Collapse
|
2
|
Weller AE, Ferraro TN, Doyle GA, Reiner BC, Berrettini WH, Crist RC. Analysis of single-cell transcriptome data from a mouse model implicates protein synthesis dysfunction in schizophrenia. Genes Genomics 2024; 46:1071-1084. [PMID: 39083157 DOI: 10.1007/s13258-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Schizophrenia is a mental disorder that causes considerable morbidity, whose risk largely results from genetic factors. Setd1a is a gene implicated in schizophrenia. OBJECTIVE To study the gene expression changes found in heterozygous Setd1a± knockout mice in order to gain useful insight into schizophrenia pathogenesis. METHODS We mined a single-cell RNA sequencing (scRNAseq) dataset from the prefrontal cortex (PFC) and striatum of Setd1a± mice and identified cell type-specific differentially expressed genes (DEGs) and differential transcript usage (DTU). DEGs and genes containing DTU found in each cell type were used to identify affected biological pathways using Ingenuity Pathway Analysis (IPA). RESULTS We identified 273 unique DEGs across all cell types in PFC and 675 unique gene peaks containing DTU. In striatum, we identified 327 unique DEGs across all cell types and 8 unique gene peaks containing DTU. Key IPA findings from the analysis of DEGs found in PFC and striatum implicate processes involved in protein synthesis, mitochondrial function, cell metabolism, and inflammation. IPA analysis of genes containing DTU in PFC points to protein synthesis, as well as cellular activities involving intracellular signaling and neurotransmission. One canonical pathway, 'EIF2 Signaling', which is involved in the regulation of protein synthesis, was detected in PFC DEGs, striatum DEGs, and PFC genes containing DTU, drawing attention to its importance in schizophrenia pathophysiology. CONCLUSION Processes involving protein synthesis in general and the 'EIF2 Signaling' pathway in particular could be targets for the development of new research strategies and biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Andrew E Weller
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US.
| | - Thomas N Ferraro
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, US
| | - Glenn A Doyle
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, US
| | - Benjamin C Reiner
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Wade H Berrettini
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Richard C Crist
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| |
Collapse
|
3
|
Evidence that complement and coagulation proteins are mediating the clinical response to omega-3 fatty acids: A mass spectrometry-based investigation in subjects at clinical high-risk for psychosis. Transl Psychiatry 2022; 12:454. [PMID: 36307392 PMCID: PMC9616837 DOI: 10.1038/s41398-022-02217-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) in early psychosis. The present study investigates the molecular mechanism of omega-3 PUFA-associated therapeutic effects in clinical high-risk (CHR) participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-months follow-up were included. Plasma protein levels were quantified using mass spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas chromatography. We examined the relationship between change in polyunsaturated PUFAs (between baseline and 6-month follow-up) and follow-up plasma proteins. Using mediation analysis, we investigated whether plasma proteins mediated the relationship between change in omega-3 PUFAs and clinical outcomes. A 6-months change in omega-3 PUFAs was associated with 24 plasma proteins at follow-up. Pathway analysis revealed the complement and coagulation pathway as the main biological pathway to be associated with change in omega-3 PUFAs. Moreover, complement and coagulation pathway proteins significantly mediated the relationship between change in omega-3 PUFAs and clinical outcome at follow-up. The inflammatory protein complement C5 and protein S100A9 negatively mediated the relationship between change in omega-3 PUFAs and positive symptom severity, while C5 positively mediated the relationship between change in omega-3 and functional outcome. The relationship between change in omega-3 PUFAs and cognition was positively mediated through coagulation factor V and complement protein C1QB. Our findings provide evidence for a longitudinal association of omega-3 PUFAs with complement and coagulation protein changes in the blood. Further, the results suggest that an increase in omega-3 PUFAs decreases symptom severity and improves cognition in the CHR state through modulating effects of complement and coagulation proteins.
Collapse
|