1
|
A S S, Thapliyal A, Pant K. In-silico modeling of the interplay between APOE4, NLRP3, and ACE2-SPIKE complex in neurodegeneration between Alzheimer and SARS-CoV: implications for understanding pathogenesis and developing therapeutic strategies. J Biomol Struct Dyn 2024; 42:9678-9690. [PMID: 37643074 DOI: 10.1080/07391102.2023.2252094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The multifaceted interplay between neurodegenerative pathologies, including Alzheimer's disease (AD), and the highly virulent severe acute respiratory syndrome coronavirus (SARS-CoV), is implicated in various conditions. AD and SARS-CoV pathogenesis involve the APOE4 allele, NLRP3 inflammasome, and ACE2-SPIKE complex. APOE4, a genetic polymorphism of the APOE gene, is associated with an increased susceptibility to AD. NLRP3, an inflammatory protein of the innate immune system, plays a pivotal role in immune response cascades. In SARS-CoV, the ACE2 receptor serves as the principal portal for cellular entry, while APOE4 intricately interacts with the ACE2-spike protein complex, enhancing viral internalization process. The interaction of NLRP3 with the ACE2-spike protein complex leads to increased inflammatory signaling. The convergence of APOE4/NLRP3 and ACE2-spike protein complex interactions suggests a possible link between SARS and AD. Therefore, the current research centralizes the association between by utilizing SARS-CoV datasets to explore possible mechanisms that account for the pathogenesis of SARS-CoV and AD. The work is further extended to unveil the molecular interactions of APOE4 and NLRP3 with the ACE2-Spike protein complex at the molecular level by employing molecular dynamics simulation techniques. The therapeutic efficacy of Chyawanprash nutraceuticals is evaluated as their inhibitory potential towards APOE4-ACE2-Spike protein and NLRP3-ACE2-Spike protein complexes. Notably, our simulations unequivocally demonstrate the robust and enduring binding capability of the compound Phyllantidine with the target complexes throughout the simulation period. The findings of the studies further corroborate the primary hypothesis of APOE4 and NLRP3 as driver factors in the pathogenesis of both SARS-CoV and AD. Therefore, this research establishes a paradigm for comprehending the complex interaction between AD and SARS-CoV and lays the groundwork for further study in this domain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sriranjini A S
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ashish Thapliyal
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
2
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Elfiky MM, Saad HM, Batiha GES. Therapeutic Potential Effect of Glycogen Synthase Kinase 3 Beta (GSK-3β) Inhibitors in Parkinson Disease: Exploring an Overlooked Avenue. Mol Neurobiol 2024; 61:7092-7108. [PMID: 38367137 PMCID: PMC11338983 DOI: 10.1007/s12035-024-04003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Al Minufya, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
4
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Saad HM, Batiha GES. The Molecular Pathway of p75 Neurotrophin Receptor (p75NTR) in Parkinson's Disease: The Way of New Inroads. Mol Neurobiol 2024; 61:2469-2480. [PMID: 37897634 DOI: 10.1007/s12035-023-03727-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease of the brain. PD is characterized by motor and non-motor symptoms. The p75 neurotrophin receptor (p75NTR) is a functional receptor for different growth factors including pro-brain derived neurotrophic factor (pro-BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Consequently, this review aimed to illustrate the detrimental and beneficial role of p75NTR in PD. Diverse studies showed that p75NTR and its downstream signaling are intricate in the pathogenesis of PD. Nevertheless, pro-apoptotic and pro-survival pathways mediated by p75NTR in PD were not fully clarified. Of note, p75NTR plays a critical role in the regulation of dopaminergic neuronal survival and apoptosis in the CNS. Particularly, p75NTR can induce selective apoptosis of dopaminergic neurons and progression of PD. In addition, p75NTR signaling inhibits the expression of transcription factors which are essential for the survival of dopaminergic neurons. Also, p75NTR expression is connected with the severity of dopaminergic neuronal injury. These verdicts implicate p75NTR signaling in the pathogenesis of PD, though the underlying mechanistic pathways remain not elucidated. Collectively, the p75NTR signaling pathway induces a double-sword effect either detrimental or beneficial depending on the ligands and status of PD neuropathology. Therefore, p75NTR signaling seems to be protective via phosphoinositide 3-kinase (PI3K)/AKT and Bcl-2 and harmful via activation of JNK, caspase 3, nuclear factor kappa B (NF-κB), and RhoA pathways.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
5
|
Su P, Jiang C, Zhang Y. The implication of infection with respiratory syncytial virus in pediatric recurrent wheezing and asthma: knowledge expanded post-COVID-19 era. Eur J Clin Microbiol Infect Dis 2024; 43:403-416. [PMID: 38153660 DOI: 10.1007/s10096-023-04744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection has been identified to serve as the primary cause of acute lower respiratory infectious diseases in children under the age of one and a significant risk factor for the emergence and development of pediatric recurrent wheezing and asthma, though the exact mechanism is still unknown. METHODS AND RESULTS In this study, we discuss the key routes that lead to recurrent wheezing and bronchial asthma following RSV infection. It is interesting to note that following the coronavirus disease 2019 (COVID-19) epidemic, the prevalence of RSV changes significantly. This presents us with a rare opportunity to better understand the associated mechanism for RSV infection, its effects on the respiratory system, and the immunological response to RSV following the COVID-19 epidemic. To better understand the associated mechanisms in the occurrence and progression of pediatric asthma, we thoroughly described how the RSV infection directly destroys the physical barrier of airway epithelial tissue, promotes inflammatory responses, enhances airway hyper-responsiveness, and ultimately causes the airway remodeling. More critically, extensive discussion was also conducted regarding the potential impact of RSV infection on host pulmonary immune response. CONCLUSION In conclusion, this study offers a comprehensive perspective to better understand how the RSV infection interacts in the control of the host's pulmonary immune system, causing recurrent wheezing and the development of asthma, and it sheds fresh light on potential avenues for pharmaceutical therapy in the future.
Collapse
Affiliation(s)
- Peipei Su
- Xi'an Medical University, Xi'an, 710068, Shaanxi, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Congshan Jiang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
6
|
Nandi D, Debnath M, Forster J, Pandey A, Bharadwaj H, Patel R, Kulkarni A. Nanoparticle-mediated co-delivery of inflammasome inhibitors provides protection against sepsis. NANOSCALE 2024; 16:4678-4690. [PMID: 38317511 DOI: 10.1039/d3nr05570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The NLRP3 inflammasome, a multiprotein complex responsible for triggering the release of pro-inflammatory cytokines, plays a crucial role in inducing the inflammatory response associated with sepsis. While small molecule inhibitors of the NLRP3 inflammasome have been investigated for sepsis management, delivering NLRP3 inhibitors has been accompanied by several challenges, primarily related to the drug formulation, delivery route, stability, and toxicity. Many existing inflammasome inhibitors either show higher liver toxicity or require a high dosage to efficiently impede the inflammasome complex assembly. Moreover, the potential synergistic effects of combining multiple inflammasome inhibitors in sepsis therapy remain largely unexplored. Therefore, a rational approach is essential for presenting the potential administration of NLRP3 small molecule inhibitors to inhibit NLRP3 inflammasome activation effectively. In this context, we present a lipid nanoparticle-based dual-drug delivery system loaded with MCC 950 and disulfiram, demonstrating markedly higher efficiency compared to an equivalent amount of free-drug combinations and individual drug nanoparticles in vitro. This combination therapy substantially improved the in vivo survival rate of mice for LPS-induced septic peritonitis. Additionally, the synergistic approach illustrated a significant reduction in the expression of active caspase-1 as well as IL-1β inhibition integral components in the NLRP3 pathway. This study underscores the importance of integrating combination therapies facilitated by nanoparticle delivery to address the limitations of small molecule inflammasome inhibitors.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
| | - Ankit Pandey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| | - Hariharan Bharadwaj
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, Massachusetts 01107, United States.
| | - Ruchi Patel
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, Massachusetts 01107, United States.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
8
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
9
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
10
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Rafeeq MF. The link between metabolic syndrome and Alzheimer disease: A mutual relationship and long rigorous investigation. Ageing Res Rev 2023; 91:102084. [PMID: 37802319 DOI: 10.1016/j.arr.2023.102084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
It has been illustrated that metabolic syndrome (MetS) is associated with Alzheimer disease (AD) neuropathology. Components of MetS including central obesity, hypertension, insulin resistance (IR), and dyslipidemia adversely affect the pathogenesis of AD by different mechanisms including activation of renin-angiotensin system (RAS), inflammatory signaling pathways, neuroinflammation, brain IR, mitochondrial dysfunction, and oxidative stress. MetS exacerbates AD neuropathology, and targeting of molecular pathways in MetS by pharmacological approach could a novel therapeutic strategy in the management of AD in high risk group. However, the underlying mechanisms of these pathways in AD neuropathology are not completely clarified. Therefore, this review aims to elucidate the association between MetS and AD regarding the oxidative and inflammatory mechanistic pathways.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Hamad RS, Al-Kuraishy HM, Alexiou A, Papadakis M, Ahmed EA, Saad HM, Batiha GES. SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Cell Stress Chaperones 2023; 28:657-673. [PMID: 37796433 PMCID: PMC10746631 DOI: 10.1007/s12192-023-01379-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
Collapse
Affiliation(s)
- Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
12
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
13
|
Al-kuraishy HM, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GES. New insights on the potential effect of vinpocetine in Parkinson's disease: one of the neglected warden and baffling topics. Metab Brain Dis 2023; 38:1831-1840. [PMID: 37335452 PMCID: PMC10348926 DOI: 10.1007/s11011-023-01254-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Vinpocetine (VPN) is an ethyl apovincaminate that has anti-inflammatory and antioxidant effects by inhibiting the expression of nuclear factor kappa B (NF-κB) and phosphodiesterase enzyme 1 (PDE-1). VPN is used in the management of stroke, dementia, and other neurodegenerative brain diseases. VPN may be effective in treating Parkinson's disease (PD). Therefore, this review aimed to clarify the mechanistic role of VPN in the management of PD. VPN has protective and restorative effects against neuronal injury by reducing neuroinflammation, and improvement of synaptic plasticity and cerebral blood flow. VPN protects dopaminergic neurons by reducing oxidative stress, lipid peroxidation, glutamate neurotoxicity, and regulation of Ca+ 2 overloads. VPN can alleviate PD neuropathology through its anti-inflammatory, antioxidant, antiapoptotic and neurogenic effects. VPN through inhibition of PDE1 improves cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP) signaling in the dopaminergic neurons of the substantia nigra (SN). VPN improves PD neuropathology through PDE1 inhibition with a subsequent increase of the cAMP/cGMP signaling pathway. Therefore, increasing cAMP leads to antioxidant effects, while augmentation of cGMP by VPN leads to anti-inflammatory effects which reduced neurotoxicity and development of motor severity in PD. In conclusion, this review indicated that VPN could be effective in the management of PD.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al- Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, Germany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, 51744 Marsa Matruh, Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
14
|
Al-kuraishy HM, Al-Gareeb AI, Alkazmi L, El-Bouseary MM, Hamad RS, Abdelhamid M, Batiha GES. The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review. J Immunol Res 2023; 2023:5544819. [PMID: 37383608 PMCID: PMC10299886 DOI: 10.1155/2023/5544819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Chronic helminth infections (CHIs) can induce immunological tolerance through the upregulation of regulatory T cells. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and exaggerated immune response may cause immune-mediated tissue damage. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immune-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Since CHIs have immunomodulatory effects, therefore, this narrative review aimed to clarify how CHIs modulate the immunoinflammatory response in SARS-CoV-2 infection. CHIs, through helminth-derived molecules, may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the inflammatory signaling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points in the initial phase and immunomodulation in the late phase of the disease by suppressing the release of pro-inflammatory cytokines. In conclusion, CHIs may reduce the severity of SARS-CoV-2 infection by reducing hyperinflammation and exaggerated immune response. Thus, retrospective and prospective studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
15
|
Kunvariya AD, Dave SA, Modi ZJ, Patel PK, Sagar SR. Exploration of multifaceted molecular mechanism of angiotensin-converting enzyme 2 (ACE2) in pathogenesis of various diseases. Heliyon 2023; 9:e15644. [PMID: 37153428 PMCID: PMC10160752 DOI: 10.1016/j.heliyon.2023.e15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a homolog of ACE (a transmembrane bound dipeptidyl peptidase enzyme). ACE2 converts angiotensinogen to the heptapeptide angiotensin-(1-7). ACE2 and its product, angiotensin-(1-7), have counteracting effects against the adverse actions of other members of renin-angiotensin system (RAS). ACE2 and its principal product, angiotensin-(1-7), were considered an under recognized arm of the RAS. The COVID-19 pandemic brought to light this arm of RAS with special focus on ACE2. Membrane bound ACE2 serves as a receptor for SARS-CoV-2 viral entry through spike proteins. Apart from that, ACE2 is also involved in the pathogenesis of various other diseases like cardiovascular disease, cancer, respiratory diseases, neurodegenerative diseases and infertility. The present review focuses on the molecular mechanism of ACE2 in neurodegenerative diseases, cancer, cardiovascular disease, infertility and respiratory diseases, including SARS-CoV-2. This review summarizes unveiled roles of ACE2 in the pathogenesis of various diseases which further provides intriguing possibilities for the use of ACE2 activators and RAS modulating agents for various diseases.
Collapse
Affiliation(s)
- Aditi D. Kunvariya
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Shivani A. Dave
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Zeal J. Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Paresh K. Patel
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Sneha R. Sagar
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
- Corresponding author.
| |
Collapse
|
16
|
Al-Kuraishy HM, Al-Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, Batiha GES. Parkinson's Disease Risk and Hyperhomocysteinemia: The Possible Link. Cell Mol Neurobiol 2023:10.1007/s10571-023-01350-8. [PMID: 37074484 DOI: 10.1007/s10571-023-01350-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neurons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficiencies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progression of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
- Faculty of Veterinary medicine , Hokkaido University, Sapporo, Japan.
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira, 22511, Egypt.
| |
Collapse
|
17
|
Jiao R, Han Z, Ma J, Wu S, Wang Z, Zhou G, Liu X, Li J, Yan X, Meng A. Irisin attenuates fine particulate matter induced acute lung injury by regulating Nod2/NF-κB signaling pathway. Immunobiology 2023; 228:152358. [PMID: 37003140 DOI: 10.1016/j.imbio.2023.152358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
Air pollution consisting of fine particulate matter (PM2.5) can induce or aggravate pulmonary inflammatory injury. Irisin has been shown to inhibit inflammation and help to protect against acute kidney, lung or brain injury. However, the role of irisin in lung inflammation after exposure to PM2.5 remains unclear. The aim of this study was to investigate the effect and molecular mechanism of irisin supplementation on in vitro and in vivo models of PM2.5-induced acute lung injury(ALI). C57BL/6 mice and alveolar macrophage cell line (MH-S) were treated with PM2.5. Histopathological examination and FNDC5/ irisin immunofluorescence staining was performed on lung tissue sections. MH-S cell viability was determined by CCK-8 assay. The levels of Nod2, NF-κB p65 and NLRP3 were detected by qRT-PCR and western blotting. The levels of cytokines (IL-1β, IL-18 and TNF-α) were detected by ELISA. PM2.5 exposure induced increased secretion of pro-inflammatory factors and activation of Nod2, NF-κB p65 and NLRP3 as well as endogenous levels of irisin. In vivo and in vitro inflammation was alleviated by irisin supplementation. Irisin significantly decreased IL-1β, IL-18, and TNF-α production at both mRNA and protein level. Expression levels of Nod2, NF-κB p65, and NLRP3 were all significantly affected by irisin. In vivo the degree of pulmonary injury and inflammatory infiltration was weakened after irisin administration. In vitro, irisin could inhibit the activation of the NLRP3 inflammasome for a sustained period of 24 h, and its inhibitory ability was gradually enhanced. In conclusion, our findings indicate that irisin can modulate the inflammatory injury of lung tissue caused by PM2.5 through the Nod2/NF-κB signaling pathway, suggesting that irisin can be a candidate for the therapeutic or preventive intervention in acute lung inflammation.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhuoxiao Han
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jiao Ma
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Siyu Wu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zheng Wang
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Guangwei Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xinxiu Liu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xixin Yan
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Aihong Meng
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|