1
|
Carbonell C, Linares-Moreau M, Borisov SM, Falcaro P. Multimaterial Digital-Light Processing of Metal-Organic Framework (MOF) Composites: A Versatile Tool for the Rapid Microfabrication of MOF-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408770. [PMID: 39252650 DOI: 10.1002/adma.202408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Patterning Metal-Organic Frameworks (MOFs) is essential for their use in sensing, electronics, photonics, and encryption technologies. However, current lithography methods are limited in their ability to pattern more than two MOFs, hindering the potential for creating advanced multifunctional surfaces. Additionally, balancing design flexibility, simplicity, and cost often results in compromises. This study addresses these challenges by combining Digital-Light Processing (DLP) with a capillary-assisted stop-flow system to enable multimaterial MOF patterning. It demonstrates the desktop fabrication of multiplexed arbitrary micropatterns across cm-scale areas while preserving the MOF's pore accessibility. The ink, consisting of a MOF crystal suspension in a low volatile solvent, a mixture of high molecular weight oligomers, and a photoinitiator, is confined by capillarity in the DLP projection area and quickly exchanged using syringe pumps. The versatility of this method is demonstrated by the direct printing of a ZIF-8-based luminescent oxygen sensor, a 5-component dynamic information concealment method, and a PCN-224-based colorimetric sensor for amines, covering disparate pore and analyte sizes. The multi-MOF capabilities, simplicity, and accessibility of this strategy pave the way for the facile exploration of MOF materials across a wide range of applications, with the potential to significantly accelerate the design-to-application cycle of MOF-based devices.
Collapse
Affiliation(s)
- Carlos Carbonell
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), Barcelona, 08193, Spain
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
2
|
Li Y, Gu Y, Pang Y, Zhao Q. Laser induced graphene goes stretchable for multimodal sensing. Sci Bull (Beijing) 2024; 69:1601-1603. [PMID: 38637225 DOI: 10.1016/j.scib.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China.
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China.
| |
Collapse
|
3
|
Qian X, Deng W, Wang W, Liu Y, Jiang L. Mining local and global spatiotemporal features for tactile object recognition. Front Neurorobot 2024; 18:1387428. [PMID: 38765872 PMCID: PMC11102050 DOI: 10.3389/fnbot.2024.1387428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The tactile object recognition (TOR) is highly important for environmental perception of robots. The previous works usually utilize single scale convolution which cannot simultaneously extract local and global spatiotemporal features of tactile data, which leads to low accuracy in TOR task. To address above problem, this article proposes a local and global residual (LGR-18) network which is mainly consisted of multiple local and global convolution (LGC) blocks. An LGC block contains two pairs of local convolution (LC) and global convolution (GC) modules. The LC module mainly utilizes a temporal shift operation and a 2D convolution layer to extract local spatiotemporal features. The GC module extracts global spatiotemporal features by fusing multiple 1D and 2D convolutions which can expand the receptive field in temporal and spatial dimensions. Consequently, our LGR-18 network can extract local-global spatiotemporal features without using 3D convolutions which usually require a large number of parameters. The effectiveness of LC module, GC module and LGC block is verified by ablation studies. Quantitative comparisons with state-of-the-art methods reveal the excellent capability of our method.
Collapse
Affiliation(s)
- Xiaoliang Qian
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wei Deng
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wei Wang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yucui Liu
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Liying Jiang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
4
|
Xi J, Yang H, Li X, Wei R, Zhang T, Dong L, Yang Z, Yuan Z, Sun J, Hua Q. Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:465. [PMID: 38470794 DOI: 10.3390/nano14050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human-machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors.
Collapse
Affiliation(s)
- Jianguo Xi
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huaiwen Yang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Li
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Ruilai Wei
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Taiping Zhang
- Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenjun Yang
- Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei 230011, China
| | - Zuqing Yuan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qilin Hua
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
- Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
5
|
Karimov KS, Chani MTS, Kamal T, Zameer Abbas S, Azum N, Asiri AM. Fabrication and Investigation of Deformable Rubber-Carbon Nanotube-Glue Gel-Based Impedimetric and Capacitive Tactile Sensors for Pressure and Displacement Measurements. Gels 2024; 10:76. [PMID: 38275850 PMCID: PMC10815435 DOI: 10.3390/gels10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Carbon nanotube-glue composite gel-based surface-type elastic sensors with a cylindrical shape deformable (flexible) metallic body were fabricated for tactile pressure and compressive displacement sensing. The fabrication of the sensors was performed using the rubbing-in technique. The effect of the pressure and the compressive displacement on the capacitance and the impedance of the sensors were investigated at various frequencies (in the range of 1 kHz to 200 kHz). It was found that under the effect of pressure from 0 to 9 g/cm2, the capacitance increased by 1.86 and 1.78 times, while the impedance decreased by 1.84 and 1.71 times at the frequencies of 1 kHz to 200 kHz, respectively. The effect of displacement on the impedance and the capacitance of the device was also investigated at various frequencies from 1 kHz to 200 kHz. The results showed that under the effect of compressive displacement up to 25 µm, the impedance of the sensors decreased on average by 1.19 times, while the capacitance increased by 1.09 times, accordingly. The frequency response of the displacement sensor showed that it matched with the low-pass filter. The obtained results are explained based on changes in the shape and geometrical parameters of the cylindrical-shaped conductive body. These results have also been explained on the basis of the distance between the conductive plates of the capacitive sensors during compression, which takes place under the effect of applied pressure or displacement. Moreover, the design of the sensors is simple and easy to fabricate, and their use is also earthy. The fabricated sensors have great potential for commercialization.
Collapse
Affiliation(s)
- Khasan S. Karimov
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Swabi 23640, Pakistan; (K.S.K.); (S.Z.A.)
- Center for Innovative Development of Science and Technologies of Academy of Sciences, Rudaki Ave., 33, Dushanbe 734025, Tajikistan
| | - Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.); (N.A.); (A.M.A.)
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.); (N.A.); (A.M.A.)
| | - Syed Zameer Abbas
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Swabi 23640, Pakistan; (K.S.K.); (S.Z.A.)
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.); (N.A.); (A.M.A.)
| | - Abdullah Mohamed Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.); (N.A.); (A.M.A.)
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Xu W, Ren Q, Li J, Xu J, Bai G, Zhu C, Li W. Triboelectric Contact Localization Electronics: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:449. [PMID: 38257543 PMCID: PMC10819133 DOI: 10.3390/s24020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The growing demand from the extended reality and wearable electronics market has led to an increased focus on the development of flexible human-machine interfaces (HMI). These interfaces require efficient user input acquisition modules that can realize touch operation, handwriting input, and motion sensing functions. In this paper, we present a systematic review of triboelectric-based contact localization electronics (TCLE) which play a crucial role in enabling the lightweight and long-endurance designs of flexible HMI. We begin by summarizing the mainstream working principles utilized in the design of TCLE, highlighting their respective strengths and weaknesses. Additionally, we discuss the implementation methods of TCLE in realizing advanced functions such as sliding motion detection, handwriting trajectory detection, and artificial intelligence-based user recognition. Furthermore, we review recent works on the applications of TCLE in HMI devices, which provide valuable insights for guiding the design of application scene-specified TCLE devices. Overall, this review aims to contribute to the advancement and understanding of TCLE, facilitating the development of next-generation HMI for various applications.
Collapse
Affiliation(s)
- Wei Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
| | - Qingying Ren
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
| | - Jinze Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Jie Xu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Gang Bai
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Chen Zhu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Wei Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| |
Collapse
|
7
|
Gao N, Huang J, Chen Z, Liang Y, Zhang L, Peng Z, Pan C. Biomimetic Ion Channel Regulation for Temperature-Pressure Decoupled Tactile Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302440. [PMID: 37668280 DOI: 10.1002/smll.202302440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Indexed: 09/06/2023]
Abstract
The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.
Collapse
Affiliation(s)
- Naiwei Gao
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiaoya Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwu Chen
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yegang Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Li Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhang X, Wang Y, Liu H, Xiong Y. Three-dimensional force detection and decoupling of a fiber grating sensor for a humanoid prosthetic hand. OPTICS EXPRESS 2023; 31:38268-38287. [PMID: 38017937 DOI: 10.1364/oe.502912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023]
Abstract
A fiber Bragg grating (FBG) based three-dimensional (3D) force sensor for a humanoid prosthetic hand is designed, which can precisely detect 3D force and compensate for ambient temperature. FBG was encapsulated in polydimethylsiloxane (PDMS) for force sensitization and immobilization, and the structural parameters of the sensor were optimized by using finite element simulation, so that its sensitivity to 3D force is enhanced. In the meantime, the calibration experiments for normal force fZ, shear force fX/fY, and temperature were conducted, and the 3D force data were decoupled using the least square (LS) and backpropagation (BP) neural networks decoupling methods, so that an overall decoupling error is 0.038. The results show that the sensor has a simple structure, high sensitivity, high linearity, good creep resistance, and rapid decoupling, providing a successful design for the 3D force detection of a humanoid prosthetic hand.
Collapse
|
9
|
Castaneda TS, Matos J, Capsi-Morales P, Piazza C. Spatial and Temporal Analysis of Normal and Shear Forces During Grasping, Manipulation and Social Activities. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941284 DOI: 10.1109/icorr58425.2023.10304717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Extensive research has established and widely acknowledged the important contribution of human hand sensory receptors in providing tactile feedback. The absence of these receptors results in a poor perception of the environment, impairing our efficient manipulation skills. Although the literature emphasizes the significance of normal forces in human grasping, further investigations should point toward the role of shear forces in this process. This paper presents an analysis of human everyday grasping activities through the use of 20 three-axis magnetic soft skin force sensors, in the form of rings and bands, that measure both normal and shear forces. Our study includes twelve tasks that cover various grasping requirements. Results highlight the importance of spatial information and the usefulness of shear forces in the prediction of unexpected changes that can not be always observed in normal forces. Tactile sensing can ultimately be integrated into prosthetic and rehabilitation devices for improved control and potentially provide sensory feedback to the user.
Collapse
|
10
|
Taleei T, Nazem-Zadeh MR, Amiri M, Keliris GA. EEG-based functional connectivity for tactile roughness discrimination. Cogn Neurodyn 2023; 17:921-940. [PMID: 37522039 PMCID: PMC10374498 DOI: 10.1007/s11571-022-09876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022] Open
Abstract
Tactile sensation and perception involve cooperation between different parts of the brain. Roughness discrimination is an important phase of texture recognition. In this study, we investigated how different roughness levels would influence the brain network characteristics. We recorded EEG signals from nine right-handed healthy subjects who underwent touching three surfaces with different levels of roughness. The experiment was separately repeated in 108 trials for each hand for both static and dynamic touch. For estimation of the functional connectivity between brain regions, the phase lag index method was employed. Frequency-specific connectivity patterns were observed in the ipsilateral and contralateral hemispheres to the hand of interest, for delta, theta, alpha, and beta frequency bands under the study. A number of connections were identified to be in charge of discrimination between surfaces in both alpha and beta frequency bands for the left hand in static touch and for the right hand in dynamic touch. In addition, common connections were determined in both hands for all three roughness in alpha band for static touch and in theta band for dynamic touch. The common connections were identified for the smooth surface in beta band for static touch and in delta and alpha bands for dynamic touch. As observed for static touch in alpha band and for dynamic touch in theta band, the number of common connections between the two hands was decreased by increasing the surface roughness. The results of this research would extend the current knowledge about tactile information processing in the brain. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09876-1.
Collapse
Affiliation(s)
- Tahereh Taleei
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
11
|
Hou N, Wang H, Zhang A, Li L, Li X, Zhang W. Flexible coaxial composite fiber based on carbon nanotube and thermochromic particles for multifunctional sensor and wearable electronics. LAB ON A CHIP 2023; 23:2294-2303. [PMID: 37073455 DOI: 10.1039/d3lc00164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fibrous sensors are of interest in the fields of human activity, health monitoring and human-computer interactions due to their ability to measure human activity signals such as temperature and pressure. Although many different structures and conductive materials exist for fibrous sensors, the design and fabrication of fibrous multifunctional sensors still pose significant challenges. Here, we have designed a fibrous multifunctional sensor based on a wet-spinning three-layer coaxial fiber that exhibits a GF value of up to 45.05 in the 10-80% strain range and a sensitivity of 5.926 kPa-1 in the 0.2-2.0 kPa pressure range, while the presence of thermochromic microcapsules allows the fibrous sensor to exhibit different colors at different temperatures: blue at 18 °C, purple at 40 °C and green at 60 °C. The multifunctional fibrous sensor can monitor human joint activity and environmental temperature changes in real time, and is easier to integrate into wearable fabrics due to its fiber shape, offering new possibilities for wearable health monitoring.
Collapse
Affiliation(s)
- Ningle Hou
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Hui Wang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Aijia Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Xiaoting Li
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Qian X, Meng J, Wang W, Jiang L. Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition. Front Neurorobot 2023; 17:1159168. [PMID: 37180284 PMCID: PMC10169613 DOI: 10.3389/fnbot.2023.1159168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Tactile object recognition (TOR) is very important for the accurate perception of robots. Most of the TOR methods usually adopt uniform sampling strategy to randomly select tactile frames from a sequence of frames, which will lead to a dilemma problem, i.e., acquiring the tactile frames with high sampling rate will get lots of redundant data, while the low sampling rate will miss important information. In addition, the existing methods usually adopt single time scale to construct TOR model, which will induce that the generalization capability is not enough for processing the tactile data generated under different grasping speeds. To address the first problem, a novel gradient adaptive sampling (GAS) strategy is proposed, which can adaptively determine the sampling interval according to the importance of tactile data, therefore, the key information can be acquired as much as possible when the number of tactile frames is limited. To handle the second problem, a multiple temporal scale 3D convolutional neural networks (MTS-3DCNNs) model is proposed, which downsamples the input tactile frames with multiple temporal scales (MTSs) and extracts the MTS deep features, and the fused features have better generalization capability for recognizing the object grasped with different speed. Furthermore, the existing lightweight network ResNet3D-18 is modified to obtain a MR3D-18 network which can match the tactile data with smaller size and prevent the overfitting problem. The ablation studies show the effectiveness of GAS strategy, MTS-3DCNNs, and MR3D-18 networks. The comprehensive comparisons with advanced methods demonstrate that our method is SOTA on two benchmarks.
Collapse
Affiliation(s)
| | | | - Wei Wang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Liying Jiang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
13
|
Fluorescent N-CQDs uniformly implanted into sponge-like PVDF-HFP piezoelectric film by facile two-step process for multifunctional pressure sensor. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
14
|
Hasija A, Thompson AJ, Singh L, S N M, Mangalampalli KSRN, McMurtrie JC, Bhattacharjee M, Clegg JK, Chopra D. Plastic Deformation in a Molecular Crystal Enables a Piezoresistive Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206169. [PMID: 36587988 DOI: 10.1002/smll.202206169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Organic materials are promising candidates for the development of efficient sensors for many medicinal and materials science applications. Single crystals of a small molecule, 4-trifluoromethyl phenyl isothiocyanate (4CFNCS), exhibit plastic deformation when bent, twisted, or coiled. Synchrotron micro-focus X-ray diffraction mapping of the bent region of the crystal confirms the mechanism of deformation. The crystals are incorporated into a flexible piezoresistive sensor using a composite constituting PEDOT: PSS/4CFNCS, which shows an impressive performance at high-pressure ranges (sensitivity 0.08 kPa-1 above 44 kPa).
Collapse
Affiliation(s)
- Avantika Hasija
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhopal, MP, 462066, India
| | - Amy J Thompson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Lakhvir Singh
- i-lab, Electrical Engineering and Computer Science, Indian Institute of Science Education and Research Bhopal, Bhopal, MP, 462066, India
| | - Megha S N
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, Kanchipuram, 603203, India
| | - Kiran S R N Mangalampalli
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, Kanchipuram, 603203, India
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Mitradip Bhattacharjee
- i-lab, Electrical Engineering and Computer Science, Indian Institute of Science Education and Research Bhopal, Bhopal, MP, 462066, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhopal, MP, 462066, India
| |
Collapse
|
15
|
Zhang C, Cui S, Wang S, Hu J, Huangfu Y, Zhang B. High-Precision 3D Reconstruction Study with Emphasis on Refractive Calibration of GelStereo-Type Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2675. [PMID: 36904879 PMCID: PMC10007575 DOI: 10.3390/s23052675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
GelStereo sensing technology is capable of performing three-dimensional (3D) contact shape measurement under various contact structures such as bionic curved surfaces, which has promising advantages in the field of visuotactile sensing. However, due to multi-medium ray refraction in the imaging system, robust and high-precision tactile 3D reconstruction remains a challenging problem for GelStereo-type sensors with different structures. In this paper, we first propose a universal Refractive Stereo Ray Tracing (RSRT) model for GelStereo-type sensing systems to realize 3D reconstruction of the contact surface. Moreover, a relative geometry-based optimization method is presented to calibrate multiple parameters of the proposed RSRT model, such as the refractive indices and structural dimensions. Furthermore, extensive quantitative calibration experiments are performed on four different GelStereo sensing platforms; the experimental results show that the proposed calibration pipeline can achieve less than 0.35 mm in Euclidean distance error, based on which we believe that the proposed refractive calibration method can be further applied in more complex GelStereo-type and other similar visuotactile sensing systems. Such high-precision visuotactile sensors can facilitate the study of robotic dexterous manipulation.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaowei Cui
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingyi Hu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yipeng Huangfu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Boyue Zhang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Yuan M, Zhang X, Wang J, Zhao Y. Recent Progress of Energy-Storage-Device-Integrated Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040645. [PMID: 36839014 PMCID: PMC9964226 DOI: 10.3390/nano13040645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
With the rapid prosperity of the Internet of things, intelligent human-machine interaction and health monitoring are becoming the focus of attention. Wireless sensing systems, especially self-powered sensing systems that can work continuously and sustainably for a long time without an external power supply have been successfully explored and developed. Yet, the system integrated by energy-harvester needs to be exposed to a specific energy source to drive the work, which provides limited application scenarios, low stability, and poor continuity. Integrating the energy storage unit and sensing unit into a single system may provide efficient ways to solve these above problems, promoting potential applications in portable and wearable electronics. In this review, we focus on recent advances in energy-storage-device-integrated sensing systems for wearable electronics, including tactile sensors, temperature sensors, chemical and biological sensors, and multifunctional sensing systems, because of their universal utilization in the next generation of smart personal electronics. Finally, the future perspectives of energy-storage-device-integrated sensing systems are discussed.
Collapse
|
17
|
Man J, Chen G, Chen J. Recent Progress of Biomimetic Tactile Sensing Technology Based on Magnetic Sensors. BIOSENSORS 2022; 12:1054. [PMID: 36421172 PMCID: PMC9688171 DOI: 10.3390/bios12111054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/14/2023]
Abstract
In the past two decades, biomimetic tactile sensing technology has been a hot spot in academia. It has prospective applications in many fields such as medical treatment, health monitoring, robot tactile feedback, and human-machine interaction. With the rapid development of magnetic sensors, biomimetic tactile sensing technology based on magnetic sensors (which are called magnetic tactile sensors below) has been widely studied in recent years. In order to clarify the development status and application characteristics of magnetic tactile sensors, this paper firstly reviews the magnetic tactile sensors from three aspects: the types of magnetic sensors, the sources of magnetic field, and the structures of sensitive bodies used in magnetic tactile sensors. Secondly, the development of magnetic tactile sensors in four applications of robot precision grasping, texture characterization, flow velocity measurement, and medical treatment is introduced in detail. Finally, this paper analyzes technical difficulties and proposes prospective research directions for magnetic tactile sensors.
Collapse
Affiliation(s)
- Jiandong Man
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyuan Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Tactile sensing technology in bionic skin: A review. Biosens Bioelectron 2022; 220:114882. [DOI: 10.1016/j.bios.2022.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
19
|
Sun T, Zhao H, Zhang J, Chen Y, Gao J, Liu L, Niu S, Han Z, Ren L, Lin Q. Degradable Bioinspired Hypersensitive Strain Sensor with High Mechanical Strength Using a Basalt Fiber as a Reinforced Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42723-42733. [PMID: 36073899 DOI: 10.1021/acsami.2c12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors have received extensive attention due to their broad application prospects. However, a majority of present flexible strain sensors may fail to maintain normal sensing performances upon external loads because of their low strength and thus their performances are affected drastically with increasing loads, which severely restricts large-area popularization and application. Scorpions with hypersensitive vibration slit sensilla are coincident with a similar predicament. Herein, it is revealed that scorpions intelligently use risky slits to detect subtle vibrations, and meanwhile, the distinct layered composites of the main body of this organ prevent catastrophic failure of the sensory structure. Furthermore, the extensive use of flexible sensors will generate a mass of electronic waste just as obsoleting silicon-based devices. Considering mechanical properties and environmental issues, a flexible strain sensor based on an elastomer (Ecoflex)-wrapped fabric with the woven structure was designed and fabricated. Note that introducing a "green" basalt fiber (BF) into a degradable elastomer can effectively avoid environmental issues and significantly enhance the mechanical properties of the sensor. As a result, it shows excellent sensitivity (gauge factor (GF) ∼138.10) and high durability (∼40,000 cycles). Moreover, the reduced graphene oxide (RGO)/BF/Ecoflex flexible strain sensor possesses superior mechanical properties (tensile strength ∼20 MPa) and good flexibility. More significantly, the sensor can maintain normal performances under large external tensions, impact loads, and even underwater environments, providing novel design principles for environmentally friendly flexible sensors under extremely harsh environments.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Houqi Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yu Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jiqi Gao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Linpeng Liu
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410012, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Qiao Lin
- Biomedical Microelectromechanical Systems Laboratory, Department of Mechanical Engineering, Columbia University, New York 10027, United States
| |
Collapse
|
20
|
Duan Y, Wu J, He S, Su B, Li Z, Wang Y. Bioinspired Spinosum Capacitive Pressure Sensor Based on CNT/PDMS Nanocomposites for Broad Range and High Sensitivity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3265. [PMID: 36234394 PMCID: PMC9565558 DOI: 10.3390/nano12193265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Flexible pressure sensors have garnered much attention recently owing to their prospective applications in fields such as structural health monitoring. Capacitive pressure sensors have been extensively researched due to their exceptional features, such as a simple structure, strong repeatability, minimal loss and temperature independence. Inspired by the skin epidermis, we report a high-sensitivity flexible capacitive pressure sensor with a broad detection range comprising a bioinspired spinosum dielectric layer. Using an abrasive paper template, the bioinspired spinosum was fabricated using carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. It was observed that nanocomposites comprising 1 wt% CNTs had excellent sensing properties. These capacitive pressure sensors allowed them to function at a wider pressure range (~500 kPa) while maintaining sensitivity (0.25 kPa-1) in the range of 0-50 kPa, a quick response time of approximately 20 ms and a high stability even after 10,000 loading-unloading cycles. Finally, a capacitive pressure sensor array was created to detect the deformation of tires, which provides a fresh approach to achieving intelligent tires.
Collapse
Affiliation(s)
- Yanhao Duan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Jian Wu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Shixue He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Benlong Su
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Zhe Li
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
21
|
Xu H, Tao J, Liu Y, Mo Y, Bao R, Pan C. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202477. [PMID: 35948484 DOI: 10.1002/smll.202202477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
An all-fibrous large-area (20 × 50 cm2 ) tailorable triboelectric nanogenerator (LT-TENG) is prepared using a one-step solution blow spinning technology, which has the advantages of easy operation, scale-up in the area, and high production efficiency. The prepared LT-TENG is composed of polyvinylidene fluoride (PVDF)/MXene (Ti3 C2 Tx ) nanofibers (NFs) and conductive textile. Benefiting from the fibrous materials and large-area properties, the LT-TENG possesses the merits of good tailorability, breathability, hydrophobicity, and washability. When optimized by mixing the MXene into PVDF NFs, the LT-TENG has a preferable output and sensing property, with a detection range over 16 kPa and a relatively high sensitivity of 12.33 V KPa-1 . At maximum applied pressure, the voltage, current, and charge are 108 V, 38 µA, and 35 nC, respectively. This LT-TENG can serve as a biomechanical energy harvester when used as wearable devices with an output power density of 12.6 mW m-2 at an external load resistance of 500 MΩ, and it also has the ability of self-powered tactile sensing for pressure mapping and slide sensing. Thus, this LT-TENG exhibits great potential prospects in wearable devices, intelligent robots, and human-machine interaction.
Collapse
Affiliation(s)
- Huayu Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Juan Tao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yue Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yepei Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Rongrong Bao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
22
|
Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. MICROMACHINES 2022; 13:1356. [PMID: 36014277 PMCID: PMC9412724 DOI: 10.3390/mi13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
As an important branch of wearable electronics, highly flexible and wearable sensors are gaining huge attention due to their emerging applications. In recent years, the participation of wearable devices in sports has revolutionized the way to capture the kinematical and physiological status of athletes. This review focuses on the rapid development of flexible and wearable sensor technologies for sports. We identify and discuss the indicators that reveal the performance and physical condition of players. The kinematical indicators are mentioned according to the relevant body parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally, the available wearable devices and their significant applications in monitoring these kinematical and physiological parameters are described with emphasis. The potential challenges and prospects for the future developments of wearable sensors in sports are discussed comprehensively. This review paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the wearable techniques applied in different sports.
Collapse
Affiliation(s)
- Lei Liu
- Department of Sports, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuefeng Zhang
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
23
|
Wu M, Wang Q, Cheng Z. Cleaning Quality Control Management of Medical Equipment in Hospital Disinfection Supply Room Based on Smart Medicine. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4380735. [PMID: 36035836 PMCID: PMC9410962 DOI: 10.1155/2022/4380735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
With the continuous improvement of medical level, the demand for medical devices increases year by year, and it is necessary to track the quality and safety of medical devices. Establishing the cleaning quality control management of medical devices can not only reduce medical accidents and inhibit the spread of counterfeit or substandard medical devices but also help enterprises find the source of problems, determine the flow of the same batch of products, and warn relevant enterprises to take measures after the occurrence of problem products, and ultimately ensure the rights and interests of consumers. This study aims to study the cleaning quality control management of medical equipment in the hospital disinfection supply room based on smart medical care and proposes related concepts of smart medical care, as well as related theories of Internet of Things technology and medical equipment tracking system and related concepts of medical equipment cleaning. In this study, by comparing the cleaning compliance rates of the two groups of medical devices through smart medical care, it can be seen that 100% of the research group applying program-based management is significantly higher than 76.6% of the conventional management path. There was statistical significance in the data comparison between groups (P < 0.05). Therefore, programmatic management is more targeted than conventional management paths.
Collapse
Affiliation(s)
- Meixia Wu
- Central Sterile Supply Department, Yiwu Central Hospital, Jinhua 322000, Zhejiang, China
| | - Qing Wang
- Central Sterile Supply Department, Yiwu Central Hospital, Jinhua 322000, Zhejiang, China
| | - Zhuolin Cheng
- Central Sterile Supply Department, Yiwu Central Hospital, Jinhua 322000, Zhejiang, China
| |
Collapse
|
24
|
Liu R, Liu H, Lyu T, Chen K, Wang Z, Tian Y. Tri‐state recyclable multifunctional hydrogel for flexible sensors. J Appl Polym Sci 2022. [DOI: 10.1002/app.52928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ruonan Liu
- College of Medicine and Biological Information Engineering Northeastern University Shenyang Liaoning China
| | - He Liu
- College of Medicine and Biological Information Engineering Northeastern University Shenyang Liaoning China
| | - Tong Lyu
- College of Medicine and Biological Information Engineering Northeastern University Shenyang Liaoning China
| | - Kun Chen
- College of Medicine and Biological Information Engineering Northeastern University Shenyang Liaoning China
| | - Zhaoyang Wang
- College of Medicine and Biological Information Engineering Northeastern University Shenyang Liaoning China
| | - Ye Tian
- Foshan Graduate School of Innovation Northeastern University Foshan Guangdong China
| |
Collapse
|
25
|
Luo Y, Zhao L, Luo G, Li M, Han X, Xia Y, Li Z, Lin Q, Yang P, Dai L, Niu G, Wang X, Wang J, Lu D, Jiang Z. All electrospun fabrics based piezoelectric tactile sensor. NANOTECHNOLOGY 2022; 33:415502. [PMID: 35793643 DOI: 10.1088/1361-6528/ac7ed5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Tactile sensors have been widely used in the areas of health monitoring and intelligent human-machine interface. Flexible tactile sensors based on nanofiber mats made by electrospinning can meet the requirements of comfortability and breathability for wearing the body very well. Here, we developed a flexible and self-powered tactile sensor that was sandwich assembled by electrospun organic electrodes and a piezoelectric layer. The metal-free organic electrodes of thermal plastic polyurethane (PU) nanofibers decorated with multi-walled carbon nanotubes were fabricated by electrospinning followed by ultrasonication treatment. The electrospun polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) mat was utilized as the piezoelectric layer, and it was found that the piezoelectric performance of PVDF-TrFE nanofiber mat added with barium titanate (BaTiO3) nanoparticles was enhanced about 187% than that of the pure PVDF-TrFE nanofiber mat. For practical application, the as-prepared piezoelectric tactile sensor exhibited an approximative linear relationship between the external force and the electrical output. Then the array of fabricated sensors was attached to the fingertips of a glove to grab a cup of water for tactile sensing, and the mass of water can be directly estimated according to the outputs of the sensor array. Attributed to the integrated merits of good flexibility, enhanced piezoelectric performance, light weight, and efficient gas permeability, the developed tactile sensor could be widely used as wearable devices for robot execution end or prosthesis for tactile feedback.
Collapse
Affiliation(s)
- Yunyun Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiangguang Han
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yong Xia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ziping Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ping Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Liyan Dai
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Gang Niu
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiaozhang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jiuhong Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Dejiang Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
26
|
Zheng Y, Liu T, Wu J, Xu T, Wang X, Han X, Cui H, Xu X, Pan C, Li X. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202238. [PMID: 35538660 DOI: 10.1002/adma.202202238] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Indexed: 06/14/2023]
Abstract
The triboelectric nanogenerator (TENG) is an emerging technology that offers excellent potential for the conversion of mechanical energy from rain into electricity for hybrid energy applications. However, a high-performance TENG is yet to be achieved because a quantitative analysis method for the energy conversion process is still lacking. Herein, a quantitative analysis method, termed the "kinetic energy calculation and current integration" (KECCI) method, which significantly improves the understanding of the mechanical-to-electrical energy conversion process, is presented. Based on the KECCI method, a high-performance TENG is developed by systematically optimizing a biomimetic surface structure and instant switch design, with 1.25 mA short-circuit current (Isc ), 150 V open-circuit voltage (Voc ), and a high energy-conversion efficiency of 24.89%. Furthermore, a multilayered TENG device is proposed for continuously harvesting the kinetic energy of raindrops for further improvement in the energy-conversion efficiency. Finally, the multilayered TENGs are integrated with organic photovoltaics, achieving all-weather energy harvesting. This work presents a validated theoretical basis that will guide further development of TENGs toward higher performances, which will promote the commercialization of hybrid TENG systems for all-weather applications.
Collapse
Affiliation(s)
- Yang Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Tong Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junpeng Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tiantian Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiandi Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Xun Han
- College of Mechatronics and Control Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaofeng Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Mechatronics and Control Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Xiaoyi Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
27
|
Zazoum B, Batoo KM, Khan MAA. Recent Advances in Flexible Sensors and Their Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4653. [PMID: 35746434 PMCID: PMC9228765 DOI: 10.3390/s22124653] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 05/03/2023]
Abstract
Flexible sensors are low cost, wearable, and lightweight, as well as having a simple structure as per the requirements of engineering applications. Furthermore, for many potential applications, such as human health monitoring, robotics, wearable electronics, and artificial intelligence, flexible sensors require high sensitivity and stretchability. Herein, this paper systematically summarizes the latest progress in the development of flexible sensors. The review briefly presents the state of the art in flexible sensors, including the materials involved, sensing mechanisms, manufacturing methods, and the latest development of flexible sensors in health monitoring and soft robotic applications. Moreover, this paper provides perspectives on the challenges in this field and the prospect of flexible sensors.
Collapse
Affiliation(s)
- Bouchaib Zazoum
- Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia;
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Azhar Ali Khan
- Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia;
| |
Collapse
|
28
|
Wang Y, Hu Z, Wang J, Liu X, Shi Q, Wang Y, Qiao L, Li Y, Yang H, Liu J, Zhou L, Yang Z, Lee C, Xu M. Deep Learning-Assisted Triboelectric Smart Mats for Personnel Comprehensive Monitoring toward Maritime Safety. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24832-24839. [PMID: 35593366 DOI: 10.1021/acsami.2c05734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring the crew of a ship can be performed by combining sensors and artificial intelligence methods to process sensing data. In this study, we developed a deep learning (DL)-assisted minimalist structure triboelectric smart mat system for obtaining abundant crew information without the privacy concerns of taking video. The smart mat system is fabricated using a conductive sponge with different filling rates and a fluorinated ethylene propylene membrane. The proposed dual-channel measurement method improves the stability of the generated signal. Comprehensive crew and cargo monitoring, including personnel and status identification, as well as positioning and counting functions are realized by the DL-assisted triboelectric smart mat system according to the analysis of instant sensory data. Real-time monitoring of crews through fixed and mobile devices improves the ability and efficiency of handling emergencies. The smart mat system provides privacy concerns and an effective way to build ship Internet of Things and ensure personnel safety.
Collapse
Affiliation(s)
- Yan Wang
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhiyuan Hu
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Wang
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Xiangyu Liu
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yawei Wang
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Lin Qiao
- Navigation College, Dalian Maritime University, Dalian 116026, China
| | - Yahui Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengyi Yang
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jianhua Liu
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Leyan Zhou
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Zhuoqing Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Minyi Xu
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
29
|
Pagoli A, Chapelle F, Corrales-Ramon JA, Mezouar Y, Lapusta Y. Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4083. [PMID: 35684706 PMCID: PMC9185300 DOI: 10.3390/s22114083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
This paper presents a novel design and development of a low-cost and multi-touch sensor based on capacitive variations. This new sensor is very flexible and easy to fabricate, making it an appropriate choice for soft robot applications. Materials (conductive ink, silicone, and control boards) used in this sensor are inexpensive and easily found in the market. The proposed sensor is made of a wafer of different layers, silicone layers with electrically conductive ink, and a pressure-sensitive conductive paper sheet. Previous approaches like e-skin can measure the contact point or pressure of conductive objects like the human body or finger, while the proposed design enables the sensor to detect the object's contact point and the applied force without considering the material conductivity of the object. The sensor can detect five multi-touch points at the same time. A neural network architecture is used to calibrate the applied force with acceptable accuracy in the presence of noise, variation in gains, and non-linearity. The force measured in real time by a commercial precise force sensor (ATI) is mapped with the produced voltage obtained by changing the layers' capacitance between two electrode layers. Finally, the soft robot gripper embedding the suggested tactile sensor is utilized to grasp an object with position and force feedback signals.
Collapse
Affiliation(s)
- Amir Pagoli
- Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (F.C.); (Y.M.); (Y.L.)
| | - Frédéric Chapelle
- Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (F.C.); (Y.M.); (Y.L.)
| | - Juan-Antonio Corrales-Ramon
- CiTIUS (Centro Singular de Investigación en Tecnoloxías Intelixentes), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Youcef Mezouar
- Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (F.C.); (Y.M.); (Y.L.)
| | - Yuri Lapusta
- Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (F.C.); (Y.M.); (Y.L.)
| |
Collapse
|
30
|
Subad RASI, Saikot MMH, Park K. Soft Multi-Directional Force Sensor for Underwater Robotic Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:3850. [PMID: 35632258 PMCID: PMC9146921 DOI: 10.3390/s22103850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023]
Abstract
Tactile information is crucial for recognizing physical interactions, manipulation of an object, and motion planning for a robotic gripper; however, concurrent tactile technologies have certain limitations over directional force sensing. In particular, they are expensive, difficult to fabricate, and mostly unsuitable for underwater use. Here, we present a facile and cost-effective synthesis technique of a flexible multi-directional force sensing system, which is also favorable to be utilized in underwater environments. We made use of four flex sensors within a silicone-made hemispherical shell structure. Each sensor was placed 90° apart and aligned with the curve of the hemispherical shape. If the force is applied on the top of the hemisphere, all the flex sensors would bend uniformly and yield nearly identical readings. When force is applied from a different direction, a set of flex sensors would characterize distinctive output patterns to localize the point of contact as well as the direction and magnitude of the force. The deformation of the fabricated soft sensor due to applied force was simulated numerically and compared with the experimental results. The fabricated sensor was experimentally calibrated and tested for characterization including an underwater demonstration. This study would widen the scope of identification of multi-directional force sensing, especially for underwater soft robotic applications.
Collapse
Affiliation(s)
- Rafsan Al Shafatul Islam Subad
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA;
| | - Md Mahmud Hasan Saikot
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh;
| | - Kihan Park
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA;
| |
Collapse
|
31
|
A Low-Noise and Monolithic Array Tactile Sensor Based on Incremental Delta-Sigma Analog-to-Digital Converters. ELECTRONICS 2022. [DOI: 10.3390/electronics11081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A low-noise and monolithic array tactile sensor, in which a tactile sensing unit, a low-noise analog front end (AFE), and a high-resolution delta-sigma analog-to-digital converter (ΔΣ ADC) are fully integrated, is presented in this paper. In this proposed system, compared with a discrete-device-based board-level system, the parasitic effect of a long cable connection can be reduced, and results are more accurate. Furthermore, a smaller system area and a lower power consumption can be achieved in this monolithic system. A discrete-continuous mixed mode bandpass AFE is proposed to filter out low-frequency flicker noise and high-frequency white noise. In order to improve the quantization rate of the sensor readout circuit and further suppress the high-frequency noise, a two-way alternate sample-and-hold circuit scheme is adopted in this design. The proposed tactile sensor is designed and fabricated in a 0.5-μm CMOS (Complementary metal oxide semiconductor)mixed-signal process with a 16 × 16 array and a total chip area of 1.9 × 1.9 cm2. This chip consumes 33.5 mW from a 5 V supply. The measurement results showed that the signal-to-noise and distortion rate (SNDR) was 65.2894 dB and that the effective number of bits (ENoB) was 10.553 dB. Moreover, this sensor could achieve a pressure measurement range of 0.002–0.5 N with a resolution of 0.4 mN.
Collapse
|
32
|
Ding G, Chen RS, Xie P, Yang B, Shang G, Liu Y, Gao L, Mo WA, Zhou K, Han ST, Zhou Y. Filament Engineering of Two-Dimensional h-BN for a Self-Power Mechano-Nociceptor System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200185. [PMID: 35218611 DOI: 10.1002/smll.202200185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The switching variability caused by intrinsic stochasticity of the ionic/atomic motions during the conductive filaments (CFs) formation process largely limits the applications of diffusive memristors (DMs), including artificial neurons, neuromorphic computing and artificial sensory systems. In this study, a DM device with improved device uniformity based on well-crystallized two-dimensional (2D) h-BN, which can restrict the CFs formation from three to two dimensions due to the high migration barrier of Ag+ between h-BN interlayer, is developed. The BN-DM has potential arrayable feature with high device yield of 88%, which can be applied for building a reservoir computing system for digital pattern recognition with high accuracy rate of 96%, and used as an artificial nociceptor to sense the external noxious stimuli and mimic the important biological nociceptor properties. By connecting the BN-DM to a self-made triboelectric nanogenerator (TENG), a self-power mechano-nociceptor system, which can successfully mimic the important nociceptor features of "threshold", "relaxation" and "allodynia" is designed.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruo-Si Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Peng Xie
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Baidong Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Liu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lili Gao
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wen-Ai Mo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
33
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
34
|
Meng L, He J, Pan C. Research Progress on Hydrogel-Elastomer Adhesion. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2548. [PMID: 35407880 PMCID: PMC8999559 DOI: 10.3390/ma15072548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Hydrophilic hydrogels exhibit good mechanical properties and biocompatibility, whereas hydrophobic elastomers show excellent stability, mechanical firmness, and waterproofing in various environments. Hydrogel-elastomer hybrid material devices show varied application prospects in the field of bioelectronics. In this paper, the research progress in hydrogel-elastomer adhesion in recent years, including the hydrogel-elastomer adhesion mechanism, adhesion method, and applications in the bioelectronics field, is reviewed. Finally, the research status of adhesion between hydrogels and elastomers is presented.
Collapse
Affiliation(s)
- Lirong Meng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (L.M.); (C.P.)
| | - Jiang He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Caofeng Pan
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (L.M.); (C.P.)
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Liu Y, Sheng Z, Huang J, Liu W, Ding H, Peng J, Zhong B, Sun Y, Ouyang X, Cheng H, Wang X. Moisture-resistant MXene-sodium alginate sponges with sustained superhydrophobicity for monitoring human activities. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 432:134370. [PMID: 35110969 PMCID: PMC8803272 DOI: 10.1016/j.cej.2021.134370] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wearable mechanical sensors are easily influenced by moisture resulting in inaccuracy for monitoring human health and body motions. Though the superhydrophobic barrier has been extensively explored as passive water repel strategy on the sensor surface, the dense superhydrophobic surface not only limits the sensor working under large deformations but also inevitable degradation in high humidity or saturation water vapor environments. This work reports a superhydrophobic MXene-sodium alginate sponge (SMSS) pressure sensor with a low voltage Joule heating effect to provide sustain moisture-insensitive property for both sensing performance and superhydrophobicity by heating-driven water molecules away. Because of the positive temperature coefficient under pressure applied, the Joule heating can provides a stable temperature to the moisture-insensitivity property during the whole dynamic pressure cycled. Therefore, the pressure sensor with a simple spray-coating superhydrophobic coating on the outer layer demonstrates key capabilities even in extreme use scenarios with high humidity or water vapor and also provides stable and reliable bio-signal monitoring.
Collapse
Affiliation(s)
- Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhong Sheng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jielong Huang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongyan Ding
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Bowen Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuhui Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
36
|
Liu Y, Tao J, Yang W, Zhang Y, Li J, Xie H, Bao R, Gao W, Pan C. Biodegradable, Breathable Leaf Vein-Based Tactile Sensors with Tunable Sensitivity and Sensing Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106906. [PMID: 35199486 DOI: 10.1002/smll.202106906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/19/2021] [Indexed: 05/15/2023]
Abstract
Resistive pressure sensors have been widely studied for application in flexible wearable devices due to their outstanding pressure-sensitive characteristics. In addition to the outstanding electrical performance, environmental friendliness, breathability, and wearable comfortability also deserve more attention. Here, a biodegradable, breathable multilayer pressure sensor based piezoresistive effect is presented. This pressure sensor is designed with all biodegradable materials, which show excellent biodegradability and breathability with a three-dimensional porous hierarchical structure. Moreover, due to the multilayer structure, the contact area of the pressure sensitive layers is greatly increased and the loading pressure can be distributed to each layer, so the pressure sensor shows excellent pressure-sensitive characteristics over a wide pressure sensing range (0.03-11.60 kPa) with a high sensitivity (6.33 kPa-1 ). Furthermore, the sensor is used as a human health monitoring equipment to monitor the human physiological signals and main joint movements, as well as be developed to detect different levels of pressure and further integrated into arrays for pressure imaging and a flexible musical keyboard. Considering the simple manufacturing process, the low cost, and the excellent performance, leaf vein-based pressure sensors provide a good concept for environmentally friendly wearable devices.
Collapse
Affiliation(s)
- Yue Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Juan Tao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenkai Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Jing Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Huilin Xie
- Sinoma Synthetic Crystals Co, Ltd, Beijing, 100018, P. R. China
| | - Rongrong Bao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Wenchao Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Department of Civil Engineering, Monash University, Clayton, 3800, Australia
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
37
|
Chen P, Pan J, Gao W, Wan B, Kong X, Cheng Y, Liu K, Du S, Ji W, Pan C, Wang ZL. Anisotropic Carrier Mobility from 2H WSe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108615. [PMID: 34859917 DOI: 10.1002/adma.202108615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Transition metal dichalcogenides (TMDCs) with 2H phase are expected to be building blocks in next-generation electronics; however, they suffer from electrical anisotropy, which is the basics for multi-terminal artificial synaptic devices, digital inverters, and anisotropic memtransistors, which are highly desired in neuromorphic computing. Herein, the anisotropic carrier mobility from 2H WSe2 is reported, where the anisotropic degree of carrier mobility spans from 0.16 to 0.95 for various WSe2 field-effect transistors under a gate voltage of -60 V. Phonon scattering, impurity ions scattering, and defect scattering are excluded for anisotropic mobility. An intrinsic screening layer is proposed and confirmed by Z-contrast scanning transmission electron microscopy (STEM) imaging to respond to the electrical anisotropy. Seven types of intrinsic screening layers are created and calculated by density functional theory to evaluate the modulated electronic structures, effective masses, and scattering intensities, resulting in anisotropic mobility. The discovery of anisotropic carrier mobility from 2H WSe2 provides a degree of freedom for adjusting the physical properties of 2H TMDCs and fertile ground for exploring and integrating TMDC electronic transistors with better performance along the direction of high mobility.
Collapse
Affiliation(s)
- Ping Chen
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jinbo Pan
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenchao Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bensong Wan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xianghua Kong
- Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | - Yang Cheng
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, 100871, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, 100871, China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, 100872, China
| | - Caofeng Pan
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
38
|
Zeng J, Zhao J, Li C, Qi Y, Liu G, Fu X, Zhou H, Zhang C. Triboelectric Nanogenerators as Active Tactile Stimulators for Multifunctional Sensing and Artificial Synapses. SENSORS (BASEL, SWITZERLAND) 2022; 22:975. [PMID: 35161721 PMCID: PMC8840436 DOI: 10.3390/s22030975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
The wearable tactile sensors have attracted great attention in the fields of intelligent robots, healthcare monitors and human-machine interactions. To create active tactile sensors that can directly generate electrical signals in response to stimuli from the surrounding environment is of great significance. Triboelectric nanogenerators (TENGs) have the advantages of high sensitivity, fast response speed and low cost that can convert any type of mechanical motion in the surrounding environment into electrical signals, which provides an effective strategy to design the self-powered active tactile sensors. Here, an overview of the development in TENGs as tactile stimulators for multifunctional sensing and artificial synapses is systematically introduced. Firstly, the applications of TENGs as tactile stimulators in pressure, temperature, proximity sensing, and object recognition are introduced in detail. Then, the research progress of TENGs as tactile stimulators for artificial synapses is emphatically introduced, which is mainly reflected in the electrolyte-gate synaptic transistors, optoelectronic synaptic transistors, floating-gate synaptic transistors, reduced graphene oxides-based artificial synapse, and integrated circuit-based artificial synapse and nervous systems. Finally, the challenges of TENGs as tactile stimulators for multifunctional sensing and artificial synapses in practical applications are summarized, and the future development prospects are expected.
Collapse
Affiliation(s)
- Jianhua Zeng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.); (H.Z.)
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengxi Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Youchao Qi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianpeng Fu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zhou
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.); (H.Z.)
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
| | - Chi Zhang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.); (H.Z.)
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (J.Z.); (C.L.); (Y.Q.); (G.L.); (X.F.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Wang X, Xu J, Zhang Y, Wang T, Wang Q, Yang Z, Zhang X. High-strength, high-toughness, self-healing thermosetting shape memory polyurethane enabled by dual dynamic covalent bonds. Polym Chem 2022. [DOI: 10.1039/d2py00564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smart materials that integrate multiple functions into one system will broaden the application range of materials, but there are still challenges to obtain a material with excellent shape memory, toughness,...
Collapse
|
40
|
Li J, Yuan Z, Han X, Wang C, Huo Z, Lu Q, Xiong M, Ma X, Gao W, Pan C. Biologically Inspired Stretchable, Multifunctional, and 3D Electronic Skin by Strain Visualization and Triboelectric Pressure Sensing. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jing Li
- Center on Nanoenergy ResearchSchool of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Zuqing Yuan
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
| | - Xun Han
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
| | - Chunfeng Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
| | - Zhihao Huo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
| | - Qiuchun Lu
- Center on Nanoenergy ResearchSchool of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Meiling Xiong
- Center on Nanoenergy ResearchSchool of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Xiaole Ma
- Center on Nanoenergy ResearchSchool of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Wenchao Gao
- Department of Civil Engineering Monash University Clayton 3800 Australia
| | - Caofeng Pan
- Center on Nanoenergy ResearchSchool of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
41
|
Qin L, Zhang Y. A reference spike train-based neurocomputing method for enhanced tactile discrimination of surface roughness. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Pyo S, Lee J, Bae K, Sim S, Kim J. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005902. [PMID: 33887803 DOI: 10.1002/adma.202005902] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Indexed: 05/27/2023]
Abstract
Flexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin. Here, important advances in flexible tactile sensors over recent years are summarized, from sensor designs to system-level applications. This review focuses on the representative strategies based on design and material configurations for improving key performance parameters including sensitivity, detection range/linearity, response time/hysteresis, spatial resolution/crosstalk, multidirectional force detection, and insensitivity to other stimuli. System-level integration for practical applications beyond conceptual prototypes and promising applications, such as artificial electronic skin for robotics and prosthetics, wearable controllers for electronics, and bidirectional communication tools, are also discussed. Finally, perspectives on issues regarding further advances are provided.
Collapse
Affiliation(s)
- Soonjae Pyo
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jaeyong Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyubin Bae
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangjun Sim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
43
|
Liu H, Guo ZH, Xu F, Jia L, Pan C, Wang ZL, Pu X. Triboelectric-optical responsive cholesteric liquid crystals for self-powered smart window, E-paper display and optical switch. Sci Bull (Beijing) 2021; 66:1986-1993. [PMID: 36654168 DOI: 10.1016/j.scib.2021.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Intelligent responsive devices are crucial for a variety of applications ranging from smart electronics to robotics. Electro-responsive cholesteric liquid crystals (CLC) have been widely applied in display panels, smart windows, and so on. In this work, we realize the mechanical stimuli-triggered optical responses of the CLC by integrating it with a triboelectric nanogenerator (TENG), which converts the mechanical motion into alternating current electricity and then tunes the different optical responses of the CLC. When the voltage applied on the CLC is relatively low (15-40 V), the TENG drives the switching between the bistable planar state and focal conic state of the CLC, which shows potential applications in self-powered smart windows or E-paper displays. When the voltage supplied by the TENG is larger than 60 V, a self-powered optical switch is demonstrated by utilizing the transformation between focal conic state and instantons homeotropic state of the CLC. This triboelectric-optical responsive device consumes no extra electric power and suggests a great potential for future smart electronics.
Collapse
Affiliation(s)
- Huanxin Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Hao Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Jia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongxiang Pan
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Center on Nanoenergy Research, School of Physical Science and Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhong Lin Wang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Center on Nanoenergy Research, School of Physical Science and Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245, USA.
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Center on Nanoenergy Research, School of Physical Science and Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
44
|
Zhang T, Xie L, Li J, Huang Z, Lei H, Liu Y, Wen Z, Xie Y, Sun X. All-in-One Self-Powered Human-Machine Interaction System for Wireless Remote Telemetry and Control of Intelligent Cars. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2711. [PMID: 34685152 PMCID: PMC8539533 DOI: 10.3390/nano11102711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
The components in traditional human-machine interaction (HMI) systems are relatively independent, distributed and low-integrated, and the wearing experience is poor when the system adopts wearable electronics for intelligent control. The continuous and stable operation of every part always poses challenges for energy supply. In this work, a triboelectric technology-based all-in-one self-powered HMI system for wireless remote telemetry and the control of intelligent cars is proposed. The dual-network crosslinking hydrogel was synthesized and wrapped with functional layers to fabricate a stretchable fibrous triboelectric nanogenerator (SF-TENG) and a supercapacitor (SF-SC), respectively. A self-charging power unit containing woven SF-TENGs, SF-SCs, and a power management circuit was exploited to harvest mechanical energy from the human body and provided power for the whole system. A smart glove designed with five SF-TENGs on the dorsum of five fingers acts as a gesture sensor to generate signal permutations. The signals were processed by the microcontroller and then wirelessly transmitted to the intelligent car for remote telemetry and control. This work is of paramount potential for the application of various terminal devices in self-powered HMI systems with high integration for wearable electronics.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; (T.Z.); (Z.H.)
- Inkjet Printing Technology Research Center, Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lingjie Xie
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (L.X.); (J.L.); (Y.L.)
| | - Junyan Li
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (L.X.); (J.L.); (Y.L.)
| | - Zheguan Huang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; (T.Z.); (Z.H.)
- Inkjet Printing Technology Research Center, Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hao Lei
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
| | - Yina Liu
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (L.X.); (J.L.); (Y.L.)
| | - Zhen Wen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
| | - Yonglin Xie
- Inkjet Printing Technology Research Center, Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
| |
Collapse
|
45
|
Dvořák N, Chung K, Mueller K, Ku PC. Ultrathin Tactile Sensors with Directional Sensitivity and a High Spatial Resolution. NANO LETTERS 2021; 21:8304-8310. [PMID: 34597518 DOI: 10.1021/acs.nanolett.1c02837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ultrathin tactile sensor with directional sensitivity and capable of mapping at a high spatial resolution is proposed and demonstrated. Each sensor node consists of two gallium nitride (GaN) nanopillar light-emitting diodes. Shear stress applied on the nanopillars causes the electrons and holes to separate in the radial direction and reduces the light intensity emitted from the nanopillars. A sensor array comprising 64 sensor nodes was designed and fabricated. Two-dimensional directional sensitivity was experimentally confirmed with a dynamic range of 1-30 mN and an accuracy of ±1.3 mN. Tracking and mapping of an external force moving across the sensor array were also demonstrated. Finally, the proposed tactile sensor's sensitivity was tested with a fingertip gently moving across the sensor array. The sensor successfully registered the finger movement's direction and fingerprint pattern.
Collapse
Affiliation(s)
- Nathan Dvořák
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Kunook Chung
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Kobie Mueller
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Pei-Cheng Ku
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| |
Collapse
|
46
|
Niu H, Zhang H, Yue W, Gao S, Kan H, Zhang C, Zhang C, Pang J, Lou Z, Wang L, Li Y, Liu H, Shen G. Micro-Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100804. [PMID: 34240560 DOI: 10.1002/smll.202100804] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Indexed: 06/13/2023]
Abstract
Template methods are regarded as an important method for micro-nano processing in the active layer of flexible tactile sensors. These template methods use physical/chemical processes to introduce micro-nano structures on the active layer, which improves many properties including sensitivity, response/recovery time, and detection limit. However, since the processing process and applicable conditions of the template method have not yet formed a perfect system, the development and commercialization of flexible tactile sensors based on the template method are still at a relatively slow stage. Despite the above obstacles, advances in microelectronics, materials science, nanoscience, and other disciplines have laid the foundation for various template methods, enabling the continuous development of flexible tactile sensors. Therefore, a comprehensive and systematic review of flexible tactile sensors based on the template method is needed to further promote progress in this field. Here, the unique advantages and shortcomings of various template methods are summarized in detail and discuss the research progress and challenges in this field. It is believed that this review will have a significant impact on many fields of flexible electronics, which is beneficial to promote the cross-integration of multiple fields and accelerate the development of flexible electronic devices.
Collapse
Affiliation(s)
- Hongsen Niu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Huiyun Zhang
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Wenjing Yue
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Song Gao
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Hao Kan
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Chunwei Zhang
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Jinbo Pang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| | - Yang Li
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, 250022, China
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
47
|
Yang X, Li B, Yang L, Shen H. Robust Estimation of Contact Force and Location for Magnetic-Field-Based Soft Tactile Sensor Considering Magnetic Source Inconsistency. SENSORS (BASEL, SWITZERLAND) 2021; 21:5388. [PMID: 34450834 PMCID: PMC8400369 DOI: 10.3390/s21165388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022]
Abstract
Flexible magnetic-field-based tactile sensors (FMFTS) have numerous advantages including low cost, ease of manufacture, simple wiring, high sensitivity, and so on. Flexible magnetic-field-based tactile sensors need to be calibrated before use to build accurate mapping between contact force and magnetic field intensity measured by magnetic sensors; however, when considering remanence inconsistency of magnetic source, each FMFTS needs to be calibrated independently to enhance accuracy, and the complex preparation prevents FMFTS from being used conveniently. A robust estimation method of contact force and location that can tolerate remanence inconsistency of magnetic source in FMFTS is proposed. Firstly, the position and orientation of magnetic source were tracked using the Levenberg-Marquart algorithm, and the tracking results were insensitive to the remanence of magnetic source with appropriate cost function. Secondly, the mapping between magnitude and location of contact force and position and orientation of magnetic source was built with calibration of one sensor; the mapping only depends on the structural response of flexible substrate, and thus can be extended to estimate external force and location for other sensors with the same structure. The proposed method was evaluated in both simulations and experiments, and the results confirm that the estimation of magnitude and location of external force for FMFTS with the same structure and different remanence could reach acceptable accuracy, depending on single calibration. The proposed method can be used to simplify the calibration procedure and remove the barrier for large-scale application of FMFTS and replacement of damaged FMFTS.
Collapse
Affiliation(s)
| | - Bingchu Li
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Y.); (L.Y.); (H.S.)
| | | | | |
Collapse
|
48
|
Peng Y, Yang N, Xu Q, Dai Y, Wang Z. Recent Advances in Flexible Tactile Sensors for Intelligent Systems. SENSORS (BASEL, SWITZERLAND) 2021; 21:5392. [PMID: 34450833 PMCID: PMC8401379 DOI: 10.3390/s21165392] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Tactile sensors are an important medium for artificial intelligence systems to perceive their external environment. With the rapid development of smart robots, wearable devices, and human-computer interaction interfaces, flexible tactile sensing has attracted extensive attention. An overview of the recent development in high-performance tactile sensors used for smart systems is introduced. The main transduction mechanisms of flexible tactile sensors including piezoresistive, capacitive, piezoelectric, and triboelectric sensors are discussed in detail. The development status of flexible tactile sensors with high resolution, high sensitive, self-powered, and visual capabilities are focused on. Then, for intelligent systems, the wide application prospects of flexible tactile sensors in the fields of wearable electronics, intelligent robots, human-computer interaction interfaces, and implantable electronics are systematically discussed. Finally, the future prospects of flexible tactile sensors for intelligent systems are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Zhiqiang Wang
- Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China; (Y.P.); (N.Y.); (Q.X.); (Y.D.)
| |
Collapse
|
49
|
Feng R, Mu Y, Zeng X, Jia W, Liu Y, Jiang X, Gong Q, Hu Y. A Flexible Integrated Bending Strain and Pressure Sensor System for Motion Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:3969. [PMID: 34207521 PMCID: PMC8226861 DOI: 10.3390/s21123969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
Flexible sensors have attracted increasing research interest due to their broad application potential in the fields of human-computer interaction, medical care, sports monitoring, etc. Constructing an integrated sensor system with high performance and being capable of discriminating different stimuli remains a challenge. Here, we proposed a flexible integrated sensor system for motion monitoring that can measure bending strain and pressure independently with a low-cost and simple fabrication process. The resistive bending strain sensor in the system is fabricated by sintering polyimide (PI), demonstrating a gauge factor of 9.54 and good mechanical stability, while the resistive pressure sensor is constructed based on a composite structure of silver nanowires (AgNWs) and polydimethylsiloxane (PDMS)-expandable microspheres with a tunable sensitivity and working range. Action recognition is demonstrated by attaching the flexible integrated sensor system on the wrist with independent strain and pressure information recorded from corresponding sensors. It shows a great application potential in motion monitoring and intelligent human-machine interfaces.
Collapse
Affiliation(s)
- Rou Feng
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; (R.F.); (Y.M.); (Y.L.); (X.J.); (Q.G.)
| | - Yifeng Mu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; (R.F.); (Y.M.); (Y.L.); (X.J.); (Q.G.)
| | - Xiangwen Zeng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China; (X.Z.); (W.J.)
| | - Weijie Jia
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China; (X.Z.); (W.J.)
| | - Yuxuan Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; (R.F.); (Y.M.); (Y.L.); (X.J.); (Q.G.)
| | - Xijun Jiang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; (R.F.); (Y.M.); (Y.L.); (X.J.); (Q.G.)
| | - Qibei Gong
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; (R.F.); (Y.M.); (Y.L.); (X.J.); (Q.G.)
| | - Youfan Hu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; (R.F.); (Y.M.); (Y.L.); (X.J.); (Q.G.)
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China; (X.Z.); (W.J.)
| |
Collapse
|
50
|
Affiliation(s)
- Rongrong Bao
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332-0245 USA
| |
Collapse
|