1
|
Sha M, Liu F, Miao M, Meng Q, Luo F, Wei X. Diverse Microstructures and Quasi-Ionic Liquid-like Transport Mechanisms in Concentrated "Water-in-Salt" Lithium Salt Electrolytes: A Molecular Dynamics Study. J Phys Chem Lett 2024; 15:8736-8742. [PMID: 39162359 DOI: 10.1021/acs.jpclett.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
"Water-in-salt"(WIS) electrolytes as potential green and nonflammable electrolytes are currently applied in various energy storage devices, such as lithium-ion batteries and supercapacitors. However, the microstructure at molecular scale and fast ion transport mechanism in such aqueous electrolytes are still under heavy debate due to the complex interactions among ions and water. Here, molecular dynamics simulations are used to study the microstructure and ion transport behaviors from the very dilute LiTFSI/water solution to the highly concentrated WIS electrolytes. It revealed that the diverse microstructures such as completely hydrated ions, ion complexes, and bridge-water molecules are jointly responsible for the electrochemical stability of WIS electrolytes. Diffusion model analysis showed that the Li+ ions exhibit a vehicular transport mechanism with first shell water molecules and structural diffusion mechanism with TFSI- anions. The lithium ion and its first hydration shell act as a single cationic entity. The entity forms a quasi-ionic liquid-like dynamic transport structure with associated anions. Our study challenges previous findings that the high transport dynamics of lithium ions arises from their transport in water-rich nanodomains in high-concentration WIS systems.
Collapse
Affiliation(s)
- Maolin Sha
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Fengjun Liu
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Meng Miao
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Qiangqiang Meng
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Fabao Luo
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei 230061, China
| | - Xin Wei
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| |
Collapse
|
2
|
Li H, Qi J, Tang Y, Liu G, Yan J, Feng Z, Wei Y, Yang Q, Ye M, Zhang Y, Wen Z, Liu X, Li CC. Superhalide-Anion-Motivator Reforming-Enabled Bipolar Manipulation toward Longevous Energy-Type Zn||Chalcogen Batteries. NANO LETTERS 2024; 24:6465-6473. [PMID: 38767853 DOI: 10.1021/acs.nanolett.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.
Collapse
Affiliation(s)
- Hongqing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jintu Qi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongchao Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Guigui Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianping Yan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenfeng Feng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yue Wei
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808 Guangdong China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minghui Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhipeng Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
3
|
Khan Z, Kumar D, Crispin X. Does Water-in-Salt Electrolyte Subdue Issues of Zn Batteries? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300369. [PMID: 37220078 DOI: 10.1002/adma.202300369] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Zn-metal batteries (ZnBs) are safe and sustainable because of their operability in aqueous electrolytes, abundance of Zn, and recyclability. However, the thermodynamic instability of Zn metal in aqueous electrolytes is a major bottleneck for its commercialization. As such, Zn deposition (Zn2+ → Zn(s)) is continuously accompanied by the hydrogen evolution reaction (HER) (2H+ → H2 ) and dendritic growth that further accentuate the HER. Consequently, the local pH around the Zn electrode increases and promotes the formation of inactive and/or poorly conductive Zn passivation species (Zn + 2H2 O → Zn(OH)2 + H2 ) on the Zn. This aggravates the consumption of Zn and electrolyte and degrades the performance of ZnB. To propel HER beyond its thermodynamic potential (0 V vs standard hydrogen electrode (SHE) at pH 0), the concept of water-in-salt-electrolyte (WISE) has been employed in ZnBs. Since the publication of the first article on WISE for ZnB in 2016, this research area has progressed continuously. Here, an overview and discussion on this promising research direction for accelerating the maturity of ZnBs is provided. The review briefly describes the current issues with conventional aqueous electrolyte in ZnBs, including a historic overview and basic understanding of WISE. Furthermore, the application scenarios of WISE in ZnBs are detailed, with the description of various key mechanisms (e.g., side reactions, Zn electrodeposition, anions or cations intercalation in metal oxide or graphite, and ion transport at low temperature).
Collapse
Affiliation(s)
- Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Divyaratan Kumar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
4
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
5
|
Platek-Mielczarek A, Piwek J, Frackowiak E, Fic K. Ambiguous Role of Cations in the Long-Term Performance of Electrochemical Capacitors with Aqueous Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23860-23874. [PMID: 37142329 DOI: 10.1021/acsami.2c21926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A comprehensive comparison of electrochemical capacitors (ECs) with various aqueous alkali metal sulfate solutions (Li2SO4, Na2SO4, Rb2SO4, and Cs2SO4) is reported. The EC with a less conductive 1 mol L-1 Li2SO4 solution demonstrates the best long-term performance (214 h floating test) compared to the EC with a highly conductive 1 mol L-1 Cs2SO4 solution (200 h). Both the positive and negative EC electrodes are affected by extensive oxidation and hydrogen electrosorption, respectively, during the aging process, as proven by the SBET fade. Interestingly, carbonate formation is observed as a minor cause of aging. Two strategies for optimizing sulfate-based ECs are proposed. In the first approach, Li2SO4 solutions with the pH adjusted to 3, 7, and 11 are investigated. The sulfate solution alkalization inhibits subsequent redox reactions, and as a result, EC performance is successfully enhanced. The second approach exploits so-called bication electrolytic solutions based on a mixture of Li2SO4 and Na2SO4 at an equal concentration. This concept allows the operational time to be significantly prolonged, up to 648 h (+200% compared to 1 mol L-1 Li2SO4). Therefore, two successful pathways for improving sulfate-based ECs are demonstrated.
Collapse
Affiliation(s)
- Anetta Platek-Mielczarek
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8006 Zurich, Switzerland
| | - Justyna Piwek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Elzbieta Frackowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Krzysztof Fic
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
6
|
Wei J, Liu J, Sun X, Miao J, Fang D. Transport properties and ionicity in allyl-/alkylether-based ILs and their binary systems with acetonitrile as the potential electrolytes: Correlation with interactions and structures. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Amiri M, Bélanger D. Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. J Phys Chem B 2023; 127:2979-2990. [PMID: 36952601 DOI: 10.1021/acs.jpcb.2c07308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Water-in-salt electrolytes constitute a new class of materials that have distinct properties relative to lower-concentration solutions. A recent approach to further increase the salt concentration and decrease the water content includes the addition of an ionic liquid to a highly concentrated aqueous solution. However, the physicochemical and electrochemical properties of aqueous lithium acetate-1-ethyl-3-methylimidazolium acetate solutions as well as the molecular interactions between electrolyte species have not been characterized. Here, we investigate these properties by evaluation of the ionic conductivity, viscosity, and thermal properties as well as the electrochemical behavior of various electrodes in these electrolytes. The intermolecular interactions are probed by nuclear magnetic resonance and infrared spectroscopies. We find that the addition of the ionic liquid increases the solubility limit of lithium acetate and that with an increase in both acetate salt and ionic liquid concentration in the electrolyte and decrease in water concentration, a strong acetate-water network is formed. The electrochemical stability window increases upon addition of the ionic liquid and reaches a value larger than 5 V for a set of negative Al and positive Ti electrodes in the highest acetate salt/ionic liquid concentration. Preliminary electrochemical charge storage performance measurements of a symmetric device based on two porous carbon electrodes cycled at a current density of 25 mA g-1 delivered a specific capacitance of 20 F g-1 with a Coulombic efficiency higher than 99% using a 1.8 V voltage window.
Collapse
Affiliation(s)
- Mona Amiri
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | - Daniel Bélanger
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| |
Collapse
|
8
|
Tang P, Tan W, Li F, Xue S, Ma Y, Jing P, Liu Y, Zhu J, Yan X. A Pseudocapacitor Diode Based on Ion-Selective Surface Redox Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209186. [PMID: 36564639 DOI: 10.1002/adma.202209186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Supercapacitor diode (CAPode) is a novel device that integrates ion diode functionality into a conventional electrical double-layer capacitor and is expected to have great applications in emerging fields such as signal propagation, microcircuit rectification, logic operations, and neuromorphology. Here, a brand new pseudocapacitor diode is reported that has both high charge storage (50.2 C g-1 at 20 mV s-1 ) and high rectification (the rectification ratio of 0.79 at 200 mV s-1 ) properties, which is realized by the ion-selective surface redox reaction of spinel ZnCo2 O4 in aqueous alkaline electrolyte. Furthermore, an application of the integrated device is demonstrated in the logic gate of circuit system to realize the logic operations of "AND" and "OR". This work not only expands the types of CAPodes, but also provides a train of thought for constructing high-performance capacitive ionic diodes.
Collapse
Affiliation(s)
- Pei Tang
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wuyang Tan
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fangzhou Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, Guangdong, 510275, China
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Shan Xue
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China
| | - Yihui Ma
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Pengwei Jing
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanghui Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, Guangdong, 510275, China
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jian Zhu
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xingbin Yan
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, Guangdong, 510275, China
| |
Collapse
|
9
|
Park G, Park H, Seol W, Suh S, Jo JY, Kumar S, Kim HJ. Inhibition of Zinc Dendrites Realized by a β-P(VDF-TrFE) Nanofiber Layer in Aqueous Zn-Ion Batteries. MEMBRANES 2022; 12:1014. [PMID: 36295773 PMCID: PMC9610699 DOI: 10.3390/membranes12101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Uncontrollable Zn dendrite formations and parasitic side reactions on Zn electrodes induce poor cycling stability and safety issues, preventing the large-scale commercialization of Zn-ion batteries. Herein, to achieve uniform Zn deposition and suppress side reactions, an electrospun ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer, a P(VDF-TrFE) nanofiber layer, is introduced as an artificial solid-electrolyte interface on a Cu substrate acting as a current collector. The aligned molecular structure of β-P(VDF-TrFE) can effectively suppress localized current density on the Cu surface, lead to uniform Zn deposition, and suppress side reactions by preventing direct contact between electrodes and aqueous electrolytes. The half-cell configuration formed by the newly fabricated electrode can achieve an average coulombic efficiency of 99.2% over 300 cycles without short-circuiting at a current density of 1 mA cm-2 and areal capacity of 1 mAh cm-2. Stable cycling stability is also maintained for 200 cycles at a current density of 0.5 A g-1 in a full-cell test using MnO2 as a cathode.
Collapse
Affiliation(s)
- Geumyong Park
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Hyeonghun Park
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - WooJun Seol
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Seokho Suh
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Ji Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Santosh Kumar
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Hyeong-Jin Kim
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
10
|
Seon E, Jang S, Raj MR, Tak Y, Lee G. Ultrahigh Energy Density and Long-Life Cyclic Stability of Surface-Treated Aluminum-Ion Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45059-45072. [PMID: 36165465 DOI: 10.1021/acsami.2c15701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, aluminum-graphene supercapacitors (denoted as aluminum-ion supercapacitors; ASCs), consisting of a battery-type aluminum anode, a capacitor-type graphene cathode, and ionic liquid 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum chloride (AlCl3) electrolyte, were prepared. This study primarily aimed to investigate the enhanced electrochemical performance of ASCs arising from changes in the surface oxide layer and morphology via electrochemical surface treatments, including electropolishing and electrodeposition of aluminum anodes. The ASC devices based on an electrodeposited anode at a current density of 3 A g-1 exhibited a high specific capacity of 211 F g-1 compared to that of the electropolished anode (∼186 F g-1); these were 20 and 5.7%, respectively, higher than that of the pristine aluminum anode. In particular, the electrodeposited ASC delivered an energy density of 151 W h kg-1 at a power density of 3,390 W kg-1. Furthermore, a maximum power density of 11,104 W kg-1 was achieved at an energy density of 124.3 W h kg-1. These values are among the best as compared to those of previously reported aluminum-based supercapacitors, suggesting the potential feasibility of these ASCs with outstanding energy and power densities for next-generation energy storage devices.
Collapse
Affiliation(s)
- Eunbin Seon
- Materials and Electrochemistry Lab., Department of Chemical Engineering, Inha University, 22212 Incheon, Republic of Korea
| | - Sujin Jang
- Materials and Electrochemistry Lab., Department of Chemical Engineering, Inha University, 22212 Incheon, Republic of Korea
| | - Michael Ruby Raj
- Advanced Energy Materials Design Lab., School of Chemical Engineering, Yeungnam University, 38541 Gyeongsan, Republic of Korea
| | - Yongsug Tak
- Materials and Electrochemistry Lab., Department of Chemical Engineering, Inha University, 22212 Incheon, Republic of Korea
| | - Gibaek Lee
- Advanced Energy Materials Design Lab., School of Chemical Engineering, Yeungnam University, 38541 Gyeongsan, Republic of Korea
| |
Collapse
|
11
|
Peng L, Wu X, Jia M, Qian W, Zhang X, Zhou N, Zhang L, Jian C, Zhang S. Solvating power regulation enabled low concentration electrolyte for lithium batteries. Sci Bull (Beijing) 2022; 67:2235-2244. [DOI: 10.1016/j.scib.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
12
|
Geng Q, Wang H, Wang J, Hong J, Sun W, Wu Y, Wang Y. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks. SMALL METHODS 2022; 6:e2200314. [PMID: 35691937 DOI: 10.1002/smtd.202200314] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Aqueous lithium storage devices are promising candidates for next-generation energy storage applications, featuring low-cost, safety, environmental benignness, and grid-scale merits. Developing reliable anode materials with fast Li+ diffusion is paramount to stimulate their development. Herein, the electrochemical performance and mechanism of a redox-active β-ketoenamine-linked covalent organic framework (COF) (2,6-diaminoanthraquinone and 2,4,6-triformylphloroglucinol COF, DAAQ-TFP-COF) for lithium storage in aqueous electrolyte are explored for the first time. Systematic studies demonstrate that, by the conversion of neutral COF into anionic COF via a pinpoint surgery on the β-ketoenamine linkage, the resultative COF shows doubled Li+ storage capacity (132 mAh g-1 at 0.5 A g-1 , 87% of theoretical specific capacity), good rate capability (108 mAh g-1 at 10 A g-1 ), and excellent cyclability in 1000 cycles. This pinpoint surgery can be promising in extending the electrochemical applications of β-ketoenamine-linked COFs. The Li+ storage mechanism is investigated by ex situ electron paramagnetic resonance, in situ/ex situ Fourier transform infrared investigations, and density functional theory calculations. As a proof of new concept, a novel aqueous lithium-ion capacitor assembled with DAAQ-TFP-COF anode delivers high specific capacitance of 224 F g-1 (0.1 A g-1 ), supercapacitor-level power density (≈4000 W kg-1 ), and long cyclability.
Collapse
Affiliation(s)
- Qianhao Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Haichao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinlong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jie Hong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weiwei Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, P. R. China
| | - Yang Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
13
|
Zhu J, Sun Y, Gao J, Qin Z, Zhou Y, Tian R, Gao Y. Water-in-salt electrolytes achieve high energy densities at an ultralow-temperature for aqueous symmetrical supercapacitors. Chem Commun (Camb) 2022; 58:5861-5864. [PMID: 35470361 DOI: 10.1039/d2cc01202b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LiTFSI/H2O water-in-salt electrolytes with different concentrations show high energy densities for capacitive charge storage at sub-zero-temperatures (e.g. 32.23, 38.35 and 35 W h kg-1 at 0, -10 and -20 °C, which are 1.44, 1.71 and 1.56 times that of normal temperature).
Collapse
Affiliation(s)
- Jiajing Zhu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| | - Yi Sun
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| | - Jie Gao
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| | - Zhanbin Qin
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| | - Yanan Zhou
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| | - Ran Tian
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| | - Yun Gao
- College of Chemical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, P. R. China.
| |
Collapse
|
14
|
Tian K, Wang Z, Di H, Wang H, Zhang Z, Zhang S, Wang R, Zhang L, Wang C, Yin L. Superimposed Effect of La Doping and Structural Engineering to Achieve Oxygen-Deficient TiNb 2O 7 for Ultrafast Li-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10478-10488. [PMID: 35179347 DOI: 10.1021/acsami.1c24909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
TiNb2O7 (TNO) is a competitive candidate of a fast-charging anode due to its high specific capacity. However, the insulator nature seriously hinders its rate performance. Herein, the La3+-doped mesoporous TiNb2O7 materials (La-M-TNO) were first synthesized via a facile one-step solvothermal method with the assistance of polyvinyl pyrrolidone (PVP). The synergic effect of La3+ doping and the mesoporous structure enables a dual improvement on the electronic conductivity and ionic diffusion coefficient, which delivers an impressive specific capacity of 213 mAh g-1 at 30 C. The capacity retention (@30C/@1C) increases from 33 to 53 and 74% for TNO, M-TNO, and La-M-TNO (0.03), respectively, demonstrating a step-by-step improvement of rate performance by making porous structures and intrinsic conductivity enhancement. DFT calculations verify that the enhancement in electronic conductivity due to La3+ doping and oxygen vacancy, which induce localized energy levels via slight hybridization of O 2p, Ti 3d, and Nb 4d orbits. Meanwhile, the GITT result indicates that PVP-induced self-assembly of TNO accelerates the lithium ion diffusion rate by shortening the Li+ diffusion path. This work verifies the effectiveness of the porous structure and highlights the significance of electronic conductivity to rate performance, especially at >30C. It provides a general approach to low-conductivity electrode materials for fast Li-ion storage.
Collapse
Affiliation(s)
- Kangdong Tian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Zhongxiao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Haoxiang Di
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Haoyu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Shoubao Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Luyuan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
15
|
1,3-Dimethyl-2-imidazolidinone: an ideal electrolyte solvent for high-performance Li–O2 battery with pretreated Li anode. Sci Bull (Beijing) 2022; 67:141-150. [DOI: 10.1016/j.scib.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
|
16
|
Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci Bull (Beijing) 2022; 67:716-724. [DOI: 10.1016/j.scib.2022.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
|
17
|
Sui D, Chang M, Peng Z, Li C, He X, Yang Y, Liu Y, Lu Y. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2771. [PMID: 34685207 PMCID: PMC8537845 DOI: 10.3390/nano11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Lithium-ion capacitors (LICs) are attracting increasing attention because of their potential to bridge the electrochemical performance gap between batteries and supercapacitors. However, the commercial application of current LICs is still impeded by their inferior energy density, which is mainly due to the low capacity of the cathode. Therefore, tremendous efforts have been made in developing novel cathode materials with high capacity and excellent rate capability. Graphene-based nanomaterials have been recognized as one of the most promising cathodes for LICs due to their unique properties, and exciting progress has been achieved. Herein, in this review, the recent advances of graphene-based cathode materials for LICs are systematically summarized. Especially, the synthesis method, structure characterization and electrochemical performance of various graphene-based cathodes are comprehensively discussed and compared. Furthermore, their merits and limitations are also emphasized. Finally, a summary and outlook are presented to highlight some challenges of graphene-based cathode materials in the future applications of LICs.
Collapse
Affiliation(s)
- Dong Sui
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Meijia Chang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Zexin Peng
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Changle Li
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Xiaotong He
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yanliang Yang
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yanhong Lu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
18
|
Chen S, Sun P, Humphreys J, Zou P, Zhang M, Jeerh G, Sun B, Tao S. N, N-Dimethylacetamide-Diluted Nitrate Electrolyte for Aqueous Zn//LiMn 2O 4 Hybrid Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46634-46643. [PMID: 34570470 DOI: 10.1021/acsami.1c12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
N,N-Dimethylacetamide (DMA) cooperated with LiNO3 salt has previously shown to be a promising electrolyte for a Li//O2 battery, showing good stability against both the O2 electrode reaction and Li stripping/plating. In this work, DMA is hybridized with a concentrated nitrate electrolyte [2.5 m Zn(NO3)2 + 13 m LiNO3 aqueous solution] for better electrochemical stability while using less dissolved salts. The widest electrochemical stability window for this DMA-diluted electrolyte is determined as 3.1 V, the negative critical stability potential of which is -1.6 V versus Ag/AgCl, indicating desirable stability against hydrogen evolution and Zn deposition. The findings can be attributed to the weakened Li+/Zn2+ solvation sheath caused by low permittivity of DMA, as revealed through Raman spectra characterization and molecular dynamics simulation. A Zn//Zn symmetrical cell and Zn//LiMn2O4 hybrid ion batteries are assembled in air directly, attributed to the stability of DMA toward O2. Zn stripping/plating with a dendrite-free morphology is delivered for 110 h and 200 charge/discharge cycles under 1 C rate, achieving 99.0% Coulombic efficiency. The maximum capacity of the battery is 121.0 mA h·g-1 under 0.2 C rate (based on the mass of LiMn2O4), delivering an energy density of 165.8 W h·kg-1 together with 2.0 V working voltage. This work demonstrates the feasibility and validity of utilizing a relatively dilute electrolyte dissolved in oxygen for a highly stable aqueous rechargeable battery.
Collapse
Affiliation(s)
- Shigang Chen
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Pan Sun
- NSF's ChemMatCARS, University of Chicago, Chicago, Illinois 60637, United States
| | - John Humphreys
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Peimiao Zou
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Mengfei Zhang
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Georgina Jeerh
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Boyao Sun
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Shanwen Tao
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Becker M, Rentsch D, Reber D, Aribia A, Battaglia C, Kühnel R. The Hydrotropic Effect of Ionic Liquids in Water‐in‐Salt Electrolytes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian Becker
- Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
- Department of Materials ETH Zurich 8093 Zurich Switzerland
| | - Daniel Rentsch
- Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - David Reber
- Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Abdessalem Aribia
- Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
- Department of Materials ETH Zurich 8093 Zurich Switzerland
| | - Corsin Battaglia
- Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Ruben‐Simon Kühnel
- Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| |
Collapse
|
20
|
Becker M, Rentsch D, Reber D, Aribia A, Battaglia C, Kühnel RS. The Hydrotropic Effect of Ionic Liquids in Water-in-Salt Electrolytes*. Angew Chem Int Ed Engl 2021; 60:14100-14108. [PMID: 33786945 DOI: 10.1002/anie.202103375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 11/11/2022]
Abstract
Water-in-salt electrolytes have successfully expanded the electrochemical stability window of aqueous electrolytes beyond 2 V. Further improvements in stability can be achieved by partially substituting water with either classical organic solvents or ionic liquids. Here, we study ternary electrolytes composed of LiTFSI, water, and imidazolium ionic liquids. We find that the LiTFSI solubility strongly increases from 21 mol kg-1 in water to up to 60 mol kg-1 in the presence of ionic liquid. The solution structure is investigated with Raman and NMR spectroscopy and the enhanced LiTFSI solubility is found to originate from a hydrotropic effect of the ionic liquids. The increased reductive stability of the ternary electrolytes enables stable cycling of an aqueous lithium-ion battery with an energy density of 150 Wh kg-1 on the active material level based on commercially relevant Li4 Ti5 O12 and LiNi0.8 Mn0.1 Co0.1 O2 electrode materials.
Collapse
Affiliation(s)
- Maximilian Becker
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.,Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Daniel Rentsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - David Reber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Abdessalem Aribia
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.,Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Corsin Battaglia
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Ruben-Simon Kühnel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
21
|
Quan T, Härk E, Xu Y, Ahmet I, Höhn C, Mei S, Lu Y. Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt" Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3979-3990. [PMID: 33427459 DOI: 10.1021/acsami.0c19506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
"Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI) and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 °C has been studied, which presents a gravimetric capacitance of 128 F g-1 and a volumetric capacitance of 197.12 F cm-3 at 55 °C compared to 87.5 F g-1 and 134.75 F cm-3 at 15 °C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors.
Collapse
Affiliation(s)
- Ting Quan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Eneli Härk
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yaolin Xu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ibbi Ahmet
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christian Höhn
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry, Universität Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
| |
Collapse
|
22
|
Wang H, Deng Y, Qiu J, Wu J, Zhang K, Shao J, Yan L. In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors. CHEMSUSCHEM 2021; 14:632-641. [PMID: 33047843 DOI: 10.1002/cssc.202002236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Biodegradable hydrogel electrolytes are particularly attractive in the fabrication of all-solid-state supercapacitors due to environmental benignity and avoiding of leakage. The introduction of "water-in-salt" (WIS) electrolytes into hydrogels will further broaden the electrochemical stability window of aqueous supercapacitors significantly. Meanwhile, the addition of an organic co-solvent can effectively overcome the inevitable salt precipitation and extend the temperature adaptability. Herein, an in situ cross-linking approach was demonstrated without any extra binder to obtain a "dimethyl sulfoxide/water-in-salt"-based (DWIS) chitosan hydrogel electrolyte. Interestingly, the addition of 4-7 mol L-1 of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salts not only conforms to the criterion of WIS, but also promoted the successful gelation through the supramolecular complexation between Li+ -solvated complexes and chitosan chains. A hydrogel-based all-solid-state supercapacitor was fabricated using the DWIS chitosan hydrogel as the electrolyte and separator while nitrogen-doped graphene hydrogel (NG) was used as the electrode. The optimized supercapacitor with a wide operating voltage of 2.1 V showed a high specific capacitance of 107.6 F g-1 at 1 A g-1 , remarkable capacitance retention of 80.1 % after 5000 cycles, a superior energy density of 62.9 Wh kg-1 at a power density of 1025.5 W kg-1 , and excellent temperature stability in the range of -20 to 70 °C. These findings suggest that the as-prepared hydrogel electrolyte holds great potential in the practical application of high-performance solid-state energy storage devices.
Collapse
Affiliation(s)
- Hongfei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yongqi Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jun Qiu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Juan Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Kefu Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jingwen Shao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
23
|
Electroactivity of 3D conducting polymers in water-in-salt electrolyte and their electrochemical capacitor performance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|