1
|
Thakur A, Kumar A. Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. CHEMOSPHERE 2024; 352:141369. [PMID: 38342150 DOI: 10.1016/j.chemosphere.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, 803108, India.
| |
Collapse
|
2
|
Pang C, Li Y, Wu H, Deng Z, Yuan S, Tan W. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107367. [PMID: 38171110 DOI: 10.1016/j.jenvrad.2023.107367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Immobilization of uranyl by indigenous microorganisms has been proposed as an economic and clean in-situ approach for removal of uranium, but the potential mechanisms of the process and the stability of precipitated uranium in the presence of widespread Fe(III) (hydr)oxides remain elusive. The potential of iron to serve as a reductant and/or an oxidant of uranium indicates that bioemediation strategies which mainly rely on the reduction of highly soluble U(VI) to poorly soluble U(IV) minerals to retard uranium transport in groundwater may be enhanced or hindered under different environmental conditions. This study purposes to determine the effect of ubiquitous Fe(III) (hydr)oxides (two-line ferrihydrite, hematite and goethite) on the removal of U(VI) by Leifsonia sp. isolated from an acidic tailings pond in China. The removal mechanism was elucidated via SEM-EDS, XPS and Mössbauer. The results show that the removal of U(VI) was retarded by Fe(III) (hydr)oxides when the initial concentration of U(VI) was 10 mg/L, pH was 6, temperature was 25 °C. Particularly, the retardatory effect of hematite on U(VI) removal was blindingly obvious. Also, it is worth noting that the U(VI) in the precipitate slow-released in the Fe(III) (hydrodr) oxide treatment groups, accompanied by an increase in Fe(II) concentration. SEM-EDS results demonstrated that the ferrihydrite converted to goethite may be the reason for U(VI) release in the process of 15 days culture. Mössbauer spectra fitting results further imply that the metastable iron oxides were transformed into stable Fe3O4 state. XPS measurements results showed that uranium product is most likely a mixture of Iron-U(IV) and Iron-U(VI), which indicated that the hexavalent uranium was converted into tetravalent uranium. These observations imply that the stability of the uranium in groundwater may be impacted on the prevailing environmental conditions, especially the solid-phase Fe(III) (hydr)oxide in groundwater or sediment.
Collapse
Affiliation(s)
- Chao Pang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Yuan Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Han Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Zhiwen Deng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Shanlin Yuan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenfa Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Maksymowicz P, Samecka-Cymerman A, Rajsz A, Wojtuń B, Rudecki A, Lenarcik M, Kempers AJ. Metals in Callitriche cophocarpa from small rivers with various levels of pollution in SW Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97888-97899. [PMID: 37599347 PMCID: PMC10495474 DOI: 10.1007/s11356-023-28372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/18/2023] [Indexed: 08/22/2023]
Abstract
The anthropogenic impact of metals on aquatic environments is a risk for biota, and thus their levels must be controlled. Callitriche cophocarpa Sendtn. belongs to a genus with a potential for accumulation of elevated metal levels. Thus, it may provide consolidated evidence of contamination. Therefore, the aim of this investigation was to determine Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in this species collected together with water and bottom sediments from rivers with various levels of pollution. Of these rivers, one less polluted and one more polluted was selected for the collection of C. cophocarpa for an experiment to compare its Cu and Zn concentration potential. Both metals were supplemented at concentrations 0.01, 0.02, 0.03, 0.05, 0.08 and 0.14 mg L-1 of Cu as CuSO4 × 5H2O and 0.4, 0.6, 0,9, 1,35, 2.03 and 3.04 mg L-1 of Zn as ZnSO4 × 7H2O, and in the binary design containing (mg·L-1) 0.01Cu + 0.4Zn, 0.02Cu + 0.6Zn, 0.03Cu + 0.9Zn, 0.05Cu + 1.4Zn, 0.08Cu + 2.03 Zn and 0.14Cu + 3.04Zn. The upper concentrations of Cr, Cu, Mn and Zn in C. cophocarpa shoots from both types of rivers as well as of Ni and Pb in shoots from more polluted rivers were higher than the values typical for toxicity thresholds with no visible harmful effects, which may indicate accumulation abilities of C. cophocarpa for these metals. Both roots and shoots of C. cophocarpa may be included in the group of macroconcentrators for bottom sediments with respect to Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn and deconcentrators of Pb. Greater accumulation of most metals in roots than in shoots indicates their restricted mobility and translocation by C. cophocarpa to shoots. C. cophocarpa from the less polluted river and exposed to all experimental solutions contained significantly higher levels of Cu and Zn than that from the more polluted river exposed to identical experimental solutions. The plants collected from the more polluted river influenced by surplus of metals and living under chemical stress could probably limit further accumulation by developing a resistance mechanism. Cu and Zn contents in C. cophocarpa were higher when treated with separate metals than for binary treatment both in the more and less polluted river. Such research presenting the impact of a combination of metals could be important for understanding and explaining the interactions of these elements which may influence their bioavailability in nature as well as importance in the evaluation of the risk of environmental toxicity.
Collapse
Affiliation(s)
- Przemysław Maksymowicz
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Aleksandra Samecka-Cymerman
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Adam Rajsz
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Bronisław Wojtuń
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Andrzej Rudecki
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Maciej Lenarcik
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Alexander J. Kempers
- Institute for Water and Wetland Research, Department of Environmental Science, Radboud University, Huygens Building, Heijendaalseweg 135, Nijmegen, 6525 AJ The Netherlands
| |
Collapse
|
4
|
Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, Rinklebe J, Chen X, Peng W. A strategy for bioremediation of nuclear contaminants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120964. [PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation, Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Wang Q, Huang T, Du J, Zhou L. Enhancement of Uranium Recycling from Tailings Caused by the Microwave Irradiation-Induced Composite Oxidation of the Fe-Mn Binary System. ACS OMEGA 2022; 7:24574-24586. [PMID: 35874237 PMCID: PMC9301716 DOI: 10.1021/acsomega.2c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extraction of uranium (U)-related minerals from raw ore sands via a leaching procedure would produce enormous amounts of tailings, not only causing radioactivity contamination to surroundings but also wasting the potential U utilization. Effective recycling of U from U tailings is propitious to the current issues in U mining industries. In this study, the influence of the composite oxidation of Fe(III) and Mn(VII) intensified by microwave (MW) irradiation on the acid leaching of U from tailings was comprehensively explored in sequential and coupling systems. The U leaching activities from the tailing specimens were explicitly enhanced by MW irradiation. The composite oxidation caused by Fe(III) and Mn(VII) further facilitated the leaching of U ions from the tailing under MW irradiation in two systems. Maximum leaching efficiencies of 84.61, 80.56, and 92.95% for U ions were achieved in the Fe(III)-, Mn(VII)-, and Fe(III)-Mn(VII)-participated coupling systems, respectively. The inappropriateness of the shrinking core model (SCM) demonstrated by the linear fittings and analysis of variance (ANOVA) for the two systems explained a reverse increase of solid cores in the later stage of leaching experiments. The internal migration of oxidant ions into the particle cores enhanced by MW accelerated the dissolution of Al, Fe, and Mn constituents under acidic conditions, which further strengthened U extraction from tailing specimens.
Collapse
Affiliation(s)
- Qingxiang Wang
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
| | - Tao Huang
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
- Suzhou
Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China
| | - Jing Du
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
| | - Lulu Zhou
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
| |
Collapse
|
6
|
Lopes JM, Lentini CAD, Mendonça LFF, Lima ATC, Vasconcelos RN, Silva AX, Porsani MJ. Absorbed dose rate for marine biota due to the oil spilled using ICRP reference animal and Monte Carlo simulation. Appl Radiat Isot 2022; 188:110354. [PMID: 35810708 DOI: 10.1016/j.apradiso.2022.110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
The current study aimed to obtain dose conversion coefficients for marine animals due to an oil spill accident using two variables: crude oil activity concentration and organism depth. Thorium series presented a dose contribution twice that uranium series for similar conditions. Bi-214 and Tl-208 stood out for delivering a higher dose rate for uranium and thorium series, respectively. Results obtained can be used to assess the maximum exposure time for emergency oil control, removal, and mitigation in an oil spill accident.
Collapse
Affiliation(s)
- José M Lopes
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40170-110, Salvador, Brazil.
| | - Carlos A D Lentini
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40170-110, Salvador, Brazil; Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geofísica, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| | - Luís F F Mendonça
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40170-110, Salvador, Brazil; Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| | - André T C Lima
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| | - Rodrigo N Vasconcelos
- Programa de Pós-Graduação em Modelagem em Ciências da Terra e do Ambiente (PPGM), Universidade Estadual de Feira de Santana - UEFS, 44036-900, Feira de Santana, Brazil
| | - Ademir X Silva
- Programa de Engenharia Nuclear (PEN/COPPE), Universidade Federal do Rio de Janeiro - UFRJ, 21941-914, Rio de Janeiro, Brazil
| | - Milton J Porsani
- Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geofísica, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| |
Collapse
|
7
|
Akash S, Sivaprakash B, Raja VCV, Rajamohan N, Muthusamy G. Remediation techniques for uranium removal from polluted environment - Review on methods, mechanism and toxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119068. [PMID: 35240271 DOI: 10.1016/j.envpol.2022.119068] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
Uranium, a radionuclide, is a predominant element utilized for speciality requirements in industrial applications, as fuels and catalyst. The radioactive properties and chemical toxicity of uranium causes a major threat to the ecosystem. The hazards associated with Uranium pollution includes the cancer in bones, liver, and lungs. The toxicological properties of Uranium are discussed in detail. Although there are many methods to eliminate those hazards, this research work is aimed to describe the application of bioremediation methods. Bioremediation methods involve elimination of the hazards of uranium, by transforming into low oxidation form using natural microbes and plants. This study deeply elucidates the methods as bioleaching, biosorption, bioreduction and phytoremediation. Bioleaching process involves bio-oxidation of tetravalent uranium when it gets in contact with acidophilic metal bacterial complex to obtain leach liquor. In biosorption, chitin/chitosan derived sorbents act as chelators and binds with uranium by electrostatic attraction. Bio reduction employs a bacterial transformation into enzymes which immobilize and reduce uranium. Phytoremediation includes phytoextraction and phytotranslocation of uranium through xylems from soil to roots and shoots of plants. The highest uranium removal and uptake reported using the different methods are listed as follows: bioleaching (100% uranium recovery), biosorption (167 g kg-1 uranium uptake), bioreduction (98.9% uranium recovery), and phytoremediation (49,639 mg kg-1 uranium uptake). Among all the techniques mentioned above, bioleaching has been proved to be the most efficient for uranium remediation.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - V C Vadivel Raja
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Metal Removal Kinetics, Bio-Accumulation and Plant Response to Nutrient Availability in Floating Treatment Wetland for Stormwater Treatment. WATER 2022. [DOI: 10.3390/w14111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Floating treatment wetland (FTW) is a recent innovation to remove nutrients from stormwater, but little is known about its effectiveness for metal removal. This study aims to test the hypothesis that the metal removal performance of FTWs will be affected by nutrient (NH3-N, NO3-N, and PO4-P) availability in stormwater. Two experiments were carried out in nutrient-deficient tap water, and two experiments were carried out in nutrient-rich lake water using four native Australian plants, namely Carex fascicularis, Juncus kraussii, Eleocharis acuta, and Baumea preissii. Up to 81% Cu and 44.9% Zn removal were achieved by the plants in 16 days in tap water. A reduction in Cu and Zn removal of 28.4–57.3% and 1.0–19.7%, respectively, was observed in lake water compared with tap water for the same duration. The kinetic analysis also confirmed that plant metal uptake rates slowed down in lake water (0.018–0.088 L/mg/day for Cu and 0.005–0.018 L/mg/day for Zn) compared to tap water (0.586–0.825 L/mg/day for Cu and 0.025–0.052 L/mg/day for Zn). A plant tissue analysis revealed that E. acuta and B. preissii bioaccumulated more than 1000 mg/kg of both metals in their tissue, indicating high metal accumulation capacities. To overcome the slower metal uptake rate problem due to nutrient availability, future studies can investigate multi-species plantations with nutrient stripping plants and metal hyper-accumulator plants.
Collapse
|
9
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
10
|
Yan L, Le QV, Sonne C, Yang Y, Yang H, Gu H, Ma NL, Lam SS, Peng W. Phytoremediation of radionuclides in soil, sediments and water. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124771. [PMID: 33388721 DOI: 10.1016/j.jhazmat.2020.124771] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Soil and water contaminated with radionuclides threaten the environment and public health during leaks from nuclear power plants. Remediation of radionuclides at the contaminated sites uses mainly physical and chemical methods such as vitrification, chemical immobilization, electro-kinetic remediation and soil excavation, capping and washing being among the preferred methods. These traditional technologies are however costly and less suitable for dealing with large-area pollution. In contrast to this, cost-effective and environment-friendly alternatives such as phytoremediation using plants to remove radionuclides from polluted sites in situ represent promising alternatives for environmental cleanup. Understanding the physiology and molecular mechanisms of radionuclides accumulation in plants is essential to optimize and improve this new remediation technology. Here, we give an overview of radionuclide contamination in the environment and biochemical characteristics for uptake, transport, and compartmentation of radionuclides in plants that characterize phytoextraction and its efficiency. Phytoextraction is an eco-friendly and efficient method for environmental removal of radionuclides at contaminated sites such as mine tailings. Selecting the most proper plant for the specific purpose, however, is important to obtain the best result together with, for example, applying soil amendments such as citric acid. In addition, using genetic engineering and optimizing agronomic management practices including regulation of atmospheric CO2 concentration, reasonable measures of fertilization and rational water management are important as well. For future application, the technique needs commercialization in order to fully exploit the technique at mining activities and nuclear industries.
Collapse
Affiliation(s)
- Lijun Yan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Christian Sonne
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, Roskilde DK-4000, Denmark.
| | - Yafeng Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Han Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Nyuk Ling Ma
- Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Burger A, Weidinger M, Baumann N, Vesely A, Lichtscheidl I. The response of the accumulator plants Noccaea caerulescens, Noccaea goesingense and Plantago major towards the uranium. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 229-230:106544. [PMID: 33556790 DOI: 10.1016/j.jenvrad.2021.106544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Uranium (U) is a naturally occurring metal; its environmental levels can be increased due to processes in the nuclear industry and fertilizer production. The transfer of U in the food chain from plants is associated with deleterious chemical and radiation effects. To date, limited information is available about U toxicity on plant physiology. This study investigates the responses of metal-accumulating plants to different concentrations of U. The plants Noccaea caerulescens and Noccaea goesingense are known as metal hyperaccumulators and therefore could serve as candidates for the phytoremediation of radioactive hotspots; Plantago major is a widely used pharmaceutical plant that pioneers polluted grounds and therefore should not contain high concentrations of toxic elements. The experimental plants were grown hydroponically at U concentrations between 1 μM and 10 mM. The content of U and essential elements was analyzed in roots and leaves by ICP-MS. The amount of accumulated U was influenced by its concentration in the hydroponics. Roots contained most of the metal, whereas less was transported up to the leaves, with the exception of N. goesingense in a medium concentration of U. U also influenced the nutrient profile of the plants. We localized the U in plant tissues using EDX in the SEM. U was evenly distributed in roots and leaves of Noccaea species, with one exception in the roots of N. goesingense, where the central cylinder contained more U than the cortex. The toxicity of U was assessed by measuring growth and photosynthetic parameters. While root biomass of N. caerulescens was not affected by U, root biomass of N. goesingense decreased significantly at high U concentrations of 0.1 and 10 mM and root biomass of P. major decreased at 10 mM U. Dry weight of leaves was decreased at different U concentrations in the three plant species; a promotive effect was observed in N. caerulescens at lowest concentration offered. Chlorophyll a fluorescence was not affected or negatively affected by U in both Noccaea species, whereas in Plantago also positive effects were observed. Our results show that the impact of U on Plantago and Noccaea relates to its external concentration and to the plant species. When growing in contaminated areas, P. major should not be used for medicinal purpose. Noccaea species and P. major could immobilize U in their rhizosphere in hotspots contaminated by U, and they could extract limited amounts of U into their leaves.
Collapse
Affiliation(s)
- Anna Burger
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Marieluise Weidinger
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Nils Baumann
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andreas Vesely
- Nuclear Engineering Seibersdorf GmbH, 2444, Seibersdorf, Austria
| | - Irene Lichtscheidl
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
12
|
Monaci F, Ancora S, Bianchi N, Bonini I, Paoli L, Loppi S. Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141669. [PMID: 33182204 DOI: 10.1016/j.scitotenv.2020.141669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Abandoned mine sites are a cause of great environmental concern, being potential sources of toxic elements for adjacent aquatic ecosystems with intrinsic difficulties for their management (i.e. episodic nature of pollution, technical difficulties and high costs of monitoring, remoteness). Aquatic macrophytes can find effective application in these situations, providing cost-effective data for instream water quality assessment. In this study, native and transplanted specimens of the aquatic moss Platyhypnidium riparioides were used to evaluate metal(loid) contamination in a river receiving multiple acidic and metalliferous drainages from sulphide mineralized areas and derelict mines. Analysis of native P. riparioides thalli was used to identify, in the upland course of the river, the pattern of contamination (As, Cd, Cu, Pb and Zn) which was related to the geo-environmental features of the watershed and the nearby historical mining areas. Attenuation of metal(loid) availability in the lowland river, apparently due to eco-hydrological and physic-chemical processes, was also highlighted by spatial trends of concentrations data of native and transplanted moss. The latter, deployed for 21 days at specific stretches of the river and in a tributary hydrologically connected with a dismissed mine, supported the identification of point sources (i.e. mine effluents, metallurgical waste piles amassed on the banks of the river) and the reckoning of their quantitative impact on different segments of the watercourse. By exploring multi-elemental and native-to-transplant relationships, differences in metal(loid) accumulative capacities were recognized between sampled thalli and exposed moss bags in relation to the severity of the contamination. The observed discrepancy in the accumulation of As, Fe, Ni and Pb in highly contaminated areas between native and transplanted moss of P. riparioides raises questions on the possible competing mechanisms of element uptake and retention. These findings prompt studies to discern possible limitations of the transplanting moss technique under extreme stream-quality conditions.
Collapse
Affiliation(s)
- Fabrizio Monaci
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Stefania Ancora
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Nicola Bianchi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Ilaria Bonini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Luca Paoli
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
13
|
Tan WF, Li Y, Guo F, Wang YC, Ding L, Mumford K, Lv JW, Deng QW, Fang Q, Zhang XW. Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106202. [PMID: 32063554 DOI: 10.1016/j.jenvrad.2020.106202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Uranium mining and milling activities for many years resulted in release of uranium into the adjoining soil in varying degrees. Bioremediation approaches (i.e., immobilization via the action of bacteria) resulting in uranium bearing solid is supposed as an economic and clean in-situ approach for the treatment of uranium contaminated sites. This study purposes to determine the immobilization efficiency of uranium in soil by Leifsonia sp. The results demonstrated that cells have a good proliferation ability under the stress of uranium and play a role in retaining uranium in soil. Residual uranium in active Leifsonia-medium group (66%) was higher than that in the controls, which was 31% in the deionised water control, 46% in the Leifsonia group, and 47% in the medium group, respectively. This indicated that Leifsonia sp. facilitates the immobilization efficiency of uranium in soil by converting part of the reducible and oxidizable fraction of uranium into the residual fraction. X-ray photoelectron fitting results showed that tetravalent states uranium existed in the soil samples, which indicated that the hexavalent uranium was converted into tetravalent by cells. This is the first report of effect of Leifsonia sp. on uranium immobilization in soil. The findings implied that Leifsonia sp. could, to some extent, prevent the migration and diffusion of uranium in soil by changing the chemical states into less toxicity and less risky forms.
Collapse
Affiliation(s)
- Wen-Fa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Yuan Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Feng Guo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ya-Chao Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Lei Ding
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Kathryn Mumford
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Australia
| | - Jun-Wen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qin-Wen Deng
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiao-Wen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Montgomery DA, Martinez NE. Dosimetric modeling of Tc-99, Cs-137, Np-237, and U-238 in the grass species Andropogon Virginicus: Development and comparison of stylized, voxel, and hybrid phantom geometry. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106075. [PMID: 31627053 DOI: 10.1016/j.jenvrad.2019.106075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This paper discusses the development, comparison, and application of three anatomically representative computational phantoms for the grass species Andropogon virginicus, an indigenous grass species in the Southeastern United States. Specifically, the phantoms developed in this work are: (1) a stylized phantom where plant organs (roots or shoots) are represented by simple geometric shapes, (2) a voxel phantom developed from micro-CT imagery of a plant specimen, and (3) a hybrid phantom resulting from the refinement of (2) by use of non-uniform rational basis spline (NURBS) surfaces. For each computational phantom, Monte Carlo dosimetric modeling was utilized to determine whole-organism and organ specific dose coefficients (DC) associated with external and internal exposure to 99Tc, 137Cs, 237Np, and 238U for A. virginicus. Model DCs were compared to each other and to current values for the ICRP reference wild grass in order to determine if noteworthy differences resulted from the utilization of more anatomically realistic phantom geometry. Modeled internal DCs were comparable with ICRP values. However, modeled external DCs were more variable with respect to ICRP values; this is proposed to be primarily due to differences in organism and source geometry definitions. Overall, the three anatomical phantoms were reasonably consistent. Some noticeable differences in internal DCs were observed between the stylized model and the voxel or hybrid models for external DCs for shoots and for cases of crossfire between plant organs. Additionally, uptake data from previous hydroponic (HP) experiments was applied in conjunction with hybrid model DCs to determine dose rates to the plant from individual radionuclides as an example of practical application. Although the models within are applied to a small-scale, hypothetical scenario as proof-of-principle, the potential, real-world utility of such complex dosimetric models for non-human biota is discussed, and a fit-for purpose approach for application of these models is proposed.
Collapse
Affiliation(s)
- Dawn A Montgomery
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA.
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA
| |
Collapse
|
15
|
Yang H, Ding H, Zhang X, Luo X, Zhang Y. Immobilization of dopamine on Aspergillus niger microspheres (AM/PDA) and its effect on the U(VI) adsorption capacity in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Bhatti SG, Tabinda AB, Yasin F, Mehmood A, Salman M, Yasar A, Rasheed R, Wajahat R. Ecological risk assessment of metals in sediments and selective plants of Uchalli Wetland Complex (UWC)-a Ramsar site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19136-19152. [PMID: 30972684 DOI: 10.1007/s11356-019-04711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Wetlands act as kidneys of land and facilitate remediation of metals and other harmful pollutants through uptake by aquatic macrophytes. The aim of the present study was to investigate metal concentrations in sediments and plants, sources of metal origin, and contamination level in Uchalli Wetland Complex. Sediment samples were collected from 15 randomly selected sites. Metal concentrations (Cd, Pb, Ni, Cu, Zn, Cr, As, Mn) in sediments and macrophytes were determined during summer and winter seasons using the inductively coupled plasma technique. Metal concentrations in sediments during summer and winter seasons were in the order as follows: As > Mn > Zn > Cr > Ni > Cd > Pb > Cu and As > Mn > Zn > Cr > Ni > Pb > Cd >Cu respectively. All analyzed metals were within European Union (EU) limits. In macrophytes, these metals were in the order as follows: Mn > As > Ni > Zn > Cr > Cd > Cu > Pb and As > Mn > Zn > Ni > Cr > Cd > Pb during summer and winter seasons respectively. Contamination degree (Cd) (1.023-5.309) for these lakes showed low contamination during both seasons; mCd values (below 1.5) showed very little contamination degree, while the pollution load index (0.012 to 0.0386) indicated no metal pollution in these lakes. PCA applied on sediment showed that Pb, Zn, Cr, Cu, and Cd had anthropogenic sources of origin. As and Mn were due to natural processes while Ni could be resultant of both anthropogenic and natural sources. PCA on macrophytes showed that Ni, Pb, Cr, Zn, Cu; Cd, As; Mn had anthropogenic, natural, and anthropogenic + natural sources of origin. The study concluded that metal concentrations in sediments were not up to dangerous level.
Collapse
Affiliation(s)
- Sumera Gull Bhatti
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Faisal Yasin
- Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
| | - Adeel Mehmood
- Government College Women University, Sialkot, Pakistan
| | - Muhammad Salman
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Rizwan Rasheed
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Rabia Wajahat
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| |
Collapse
|
17
|
Li C, Wang M, Luo X. Uptake of uranium from aqueous solution by Nymphaea tetragona Georgi: The effect of the accompanying heavy metals. Appl Radiat Isot 2019; 150:157-163. [PMID: 31151070 DOI: 10.1016/j.apradiso.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/30/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
This study evaluated the application value of Nymphaea tetragona Georgi (N. tetragona) in the remediation of water co-contaminated with U and the U-accompanying heavy metals (UAHMs). Under greenhouse conditions, a 5-factor quadratic regression orthogonal rotation combination design (QRORCD) was employed to set up a hydroponic experiment to evaluate the effect of U and UAHMs on the enrichment of U from water in N. tetragona. The results showed that the coexisting U and UAHMs tend to inhibit the amount of U enriched in the whole plant. Under co-contaminated conditions, Mn and Hg can increase the enrichment of U from water in N. tetragona, while Pb and As usually inhibit it. The predicted amount of U enriched in the whole plant (UWP) was 57,131.32 μg (1938.66 mg•kg-1 D.W.), and the validation result of the optimization scheme was 53,285.88 μg. A single-factor effect analysis showed that the influence of the 5 types of contamination on the UWP was in the order of U > Hg > Pb > Mn > As. The interactive effects analysis showed that the concentrations of U and As, Mn and As, and Pb and Hg all had significant interactive effects on the UWP, and the change trend exhibited a basin or saddle shape.
Collapse
Affiliation(s)
- Chen Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, PR China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Maolin Wang
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, Sichuan, 621010, PR China.
| |
Collapse
|
18
|
Li C, Wang M, Luo X, Liang L, Han X, Lin X. Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: Potential application to phytoremediation and environmental monitoring. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 198:43-49. [PMID: 30590332 DOI: 10.1016/j.jenvrad.2018.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/12/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
This study analyzed the ability of Nymphaea tetragona Georgi (N. tetragona) to accumulate water-borne uranium and any effects this could exert on this plant species. In accumulation experiments, N. tetragona was exposed (21 d) to different concentrations of uranium (0-55 mg L-1) and the content of uranium was determined in water and plant tissues (leaves, submerged position and plant) to determine the translocation factor (TF) and bioconcentration factor (BCF). The content of uranium in the plant and plant tissues showed concentration-dependent uptake, leaves were the predominant tissue for uranium accumulation, and TF and BCF values were both affected by the concentration of uranium in the water. In this research, the uranium content and BCF value in the leaves of N. tetragona were upto 3446 ± 155 mg kg-1 and 73 ± 3, respectively. In physiological experiments, uranium treatment boosted the activity of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in the leaves, and increasing uranium concentrations aggravated damage to the cell membrane system. Uranium contamination significantly inhibited the content of soluble protein, as well as chlorophyll-a, chlorophyll-b and carotene in the leaves, indicating the structure and function of chloroplast were destroyed, reducing the photosynthetic performance of plants. These results indicate that the macrophyte N. tetragona can accumulate uranium while showing a stress response via metabolic mechanisms under uranium exposure, and it may be a suitable bioremediation candidate for aquatic marine contamination.
Collapse
Affiliation(s)
- Chen Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, PR China.
| | - Maolin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, Sichuan, 621010, PR China.
| | - Lili Liang
- Sichuan Preschool Educator College, Jiangyou, Sichuan, 621070, PR China
| | - Xu Han
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, Sichuan, 621010, PR China
| | - Xiaoyan Lin
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, Sichuan, 621010, PR China
| |
Collapse
|
19
|
Imran M, Hu S, Luo X, Cao Y, Samo N. Phytoremediation through Bidens pilosa L., a nonhazardous approach for uranium remediation of contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:752-759. [PMID: 30656944 DOI: 10.1080/15226514.2018.1556594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A few plant species are recognized for uranium bioaccumulation, particularly as upper accumulator. Uranium has a dynamic impact on the physiological, biochemical, and photochemical reactions. Therefore, the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), soluble sugar, protein, photochemical reactions, and accumulation of uranium characteristics were studied in Bidens pilosa L. while applying altered concentrations of uranium in the form of C4H6O6U. It was done to measure the capacity of B. pilosa L. to remediate uranium from wastewater. In this study, the results showed that B. pilosa L. not only has the ability of uranium accumulation but it can accumulate in the upper parts i.e. leaves and stem. Overall it can accumulate as much as 1538 mg/kg on a dry weight basis. Uranium accumulation is a complex process which changes both physiological and biochemical index in plant species under different treatments. SOD decreased in leaves and stem in response to all treatments whereas POD and CAT increased at treatment 3 and 72 h up to 1335 μ/g-FW and 47 μ/g-FW at 72 h, respectively. This increase was followed by a downward trend. The correlation coefficient between fluorescence ratio Fv/Fm and the concentrations of uranium treatment were significantly negative i.e. -0.928. The Fourier transform infrared spectroscopy (FTIR) analysis also highlighted that uranium does not change the basic chemical composition of B. pilosa L., but has an effect on the contents of chemical constituents. From the study, it is concluded that B. Pilosa L. has shown a capacity for uranium enrichment, especially as an upper accumulator.
Collapse
Affiliation(s)
- Muhammad Imran
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Shanglian Hu
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Xuegang Luo
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Ying Cao
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Naseem Samo
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| |
Collapse
|
20
|
Biosorption of U(VI) by active and inactive Aspergillus niger: equilibrium, kinetic, thermodynamic and mechanistic analyses. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06420-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Simon O, Gagnaire B, Sommard V, Pierrisnard S, Camilleri V, Carasco L, Gilbin R, Frelon S. Uranium transfer and accumulation in organs of Danio rerio after waterborne exposure alone or combined with diet-borne exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:90-98. [PMID: 30284317 DOI: 10.1002/etc.4283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Uranium (U) toxicity patterns for fish have been mainly determined under laboratory-controlled waterborne exposure conditions. Because fish can take up metals from water and diet under in situ exposure conditions, a waterborne U exposure experiment (20 μg L-1 , 20 d) was conducted in the laboratory to investigate transfer efficiency and target organ distribution in zebrafish Danio rerio compared with combined waterborne exposure (20 μg L-1 ) and diet-borne exposure (10.7 μg g-1 ). 233 Uranium was used as a specific U isotope tracer for diet-borne exposure. Bioaccumulation was examined in the gills, liver, kidneys, intestine, and gonads of D. rerio. Concentrations in the organs after waterborne exposure were approximately 500 ng g-1 fresh weight, except in the intestine (> 10 μg g-1 fresh wt) and the kidneys (200 ng g-1 fresh wt). No significant difference was observed between waterborne and diet-borne conditions. Trophic U transfer in organs was found but at a low level (< 10 ng g-1 fresh wt). Surprisingly, the intestine appeared to be the main target organ after both tested exposure modalities. The gonads (57% at 20 d) and the liver (41% at 20 d) showed the highest accumulated relative U burdens. Environ Toxicol Chem 2019;38:90-98. © 2018 SETAC.
Collapse
Affiliation(s)
- Olivier Simon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Vivien Sommard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Sylvie Pierrisnard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Loic Carasco
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Rodolphe Gilbin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| |
Collapse
|
22
|
Korotasz AM, Bryan AL. Accumulation of 137Cs by Carnivorous Aquatic Macrophytes (Utricularia spp.) on the Savannah River Site. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:273-277. [PMID: 29299657 DOI: 10.1007/s00244-017-0498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Plants are an important mode of transfer of contaminants from sediments into food webs. In aquatic ecosystems, contaminant uptake by macrophytes can vary by path of nutrient uptake (roots vs. absorption from water column). Carnivorous plants likely have additional exposure through consumption of small aquatic organisms. This study expanded on previous research suggesting that bladderworts (Genus Utricularia) accumulate radiocesium (137Cs) and examined for (1) a potential association between sediment and plant concentrations and (2) differences in 137Cs accumulation among rooted and free floating Utricularia species. A strong correlation was found between average 137Cs concentrations in all Utricularia species (combined) and sediments (rs = 0.9, p = 0.0374). Among three bladderwort species at common sites, Utricularia floridana, the only rooted species, had higher mean 137Cs concentrations than Utricularia purpurea, and U. purpurea had a greater mean 137Cs concentration than Utricularia inflata.
Collapse
Affiliation(s)
- Alexis M Korotasz
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Albert L Bryan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
| |
Collapse
|
23
|
Hoang TK, Probst A, Orange D, Gilbert F, Elger A, Kallerhoff J, Laurent F, Bassil S, Duong TT, Gerino M. Bioturbation effects on bioaccumulation of cadmium in the wetland plant Typha latifolia: A nature-based experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1284-1297. [PMID: 29132718 DOI: 10.1016/j.scitotenv.2017.09.237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The development of efficient bioremediation techniques to reduce aquatic pollutant load in natural sediment is one of the current challenges in ecological engineering. A nature-based solution for metal bioremediation is proposed through a combination of bioturbation and phytoremediation processes in experimental indoor microcosms. The invertebrates Tubifex tubifex (Oligochaeta Tubificidae) was used as an active ecological engineer for bioturbation enhancement. The riparian plant species Typha latifolia was selected for its efficiency in phyto-accumulating pollutants from sediment. Phytoremediation efficiency was estimated by using cadmium as a conservative pollutant known to bio-accumulate in plants, and initially introduced in the overlying water (20μg Cd/L of cadmium nitrate - Cd(NO3)2·4H2O). Biological sediment reworking by invertebrates' activity was quantified using luminophores (inert particulates). Our results showed that bioturbation caused by tubificid worms' activity followed the bio-conveying transport model with a downward vertical velocity (V) of luminophores ranging from 16.7±4.5 to 18.5±3.9cm·year-1. The biotransport changed the granulometric properties of the surface sediments, and this natural process was still efficient under cadmium contamination. The highest value of Cd enrichment coefficient for plant roots was observed in subsurface sediment layer (below 1cm to 5cm depth) with tubificids addition. We demonstrated that biotransport changed the distribution of cadmium across the sediment column as well as it enhanced the pumping of this metal from the surface to the anoxic sediment layers, thereby increasing the bioaccumulation of cadmium in the root system of Typha latifolia. This therefore highlights the potential of bioturbation as a tool to be considered in future as integrated bioremediation strategies of metallic polluted sediment in aquatic ecosystems.
Collapse
Affiliation(s)
- Trung Kien Hoang
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France; Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
| | - Anne Probst
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France
| | - Didier Orange
- Eco&Sols, University of Montpellier, UMR210-IRD, INRA, CIRAD, Supagro, Montpellier, France; USTH, Vietnam France University, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France
| | - Arnaud Elger
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France
| | - Jean Kallerhoff
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France
| | | | - Sabina Bassil
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam; USTH, Vietnam France University, Vietnam Academy of Science and Technology, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Viet Nam
| | - Magali Gerino
- Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France; USTH, Vietnam France University, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
24
|
Kaszycki P, Dubicka-Lisowska A, Augustynowicz J, Piwowarczyk B, Wesołowski W. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8928-8942. [PMID: 29332274 PMCID: PMC5854755 DOI: 10.1007/s11356-017-1067-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/18/2017] [Indexed: 05/19/2023]
Abstract
Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) → Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.
Collapse
Affiliation(s)
- Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Aleksandra Dubicka-Lisowska
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Joanna Augustynowicz
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Barbara Piwowarczyk
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Wojciech Wesołowski
- Unit of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
25
|
Favas PJC, Pratas J, Rodrigues N, D'Souza R, Varun M, Paul MS. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. CHEMOSPHERE 2018; 194:158-170. [PMID: 29202268 DOI: 10.1016/j.chemosphere.2017.11.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Aquatic bryophytes can accumulate extremely high levels of chemical elements because of their unique morphology and physiology which is markedly different from vascular plants. Four aquatic mosses-Fontinalis squamosa, Brachythecium rivulare, Platyhypnidium riparioides, Thamnobryum alopecurum-and a freshwater red alga Lemanea fluviatilis along with water samples from the streams of Góis mine region in Central Portugal were analyzed for 46 elements. Despite being below detection levels in the water samples, the elements Zr, V, Cr, Mo, Ru, Os, Rh, Ir, Pt, Ag, Ge and Bi were obtained in the plant samples. The moss T. alopecurum had the highest mean concentrations of 19 elements followed by B. rivulare (15 elements). Maximum accumulation of Rb, Ta and Au, however, was seen in the alga L. fluviatilis. Bioconcentration factors > 106 were obtained for a few metals. The investigation confirms that aquatic bryophytes can be suitable for water quality biomonitoring and biogeochemical prospecting in fresh water bodies owing to their high accumulative capacity of multi-elements from their aquatic ambient.
Collapse
Affiliation(s)
- Paulo J C Favas
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal; University of Trás-os-Montes e Alto Douro, UTAD, School of Life Sciences and the Environment, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - João Pratas
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal; Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401, Coimbra, Portugal; Instituto do Petróleo e Geologia (Institute of Petroleum and Geology), Rua Delta 1, Aimutin Comoro, Dili, Timor-Leste
| | - Nelson Rodrigues
- Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401, Coimbra, Portugal
| | - Rohan D'Souza
- Department of Botany, St. John's College, Agra, 282 002, India
| | - Mayank Varun
- Department of Botany, St. John's College, Agra, 282 002, India
| | - Manoj S Paul
- Department of Botany, St. John's College, Agra, 282 002, India
| |
Collapse
|
26
|
Varun M, Ogunkunle CO, D'Souza R, Favas P, Paul M. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:867-873. [PMID: 28456824 DOI: 10.1007/s00128-017-2094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
A pot experiment was carried out to assess Cd uptake and accumulation efficiency of Sesbania sesban. Plants were grown in soil spiked with 25, 50, 100, 150, 200, 250, and 300 mg/kg Cd. After 120 days, plants were harvested and analyzed for Cd content. A steady increase in Cd accumulation with increasing metal concentration in soil was observed for all treatments. Accumulation of Cd was greatest in roots (86.7 ± 6.3 mg/kg), followed by stem (18.59 ± 1.9 mg/kg), and leaf (3.16 ± 1.1 mg/kg). Chlorophyll content declined with increasing Cd concentration, while proline and protein content increased as compared to control. At higher Cd levels, root, shoot length, and biomass were all significantly reduced (p ≤ 0.001). An increase in total protein along with greater A250/A280 value suggested an increase in metal-protein complexes. Considering the rapid growth, high biomass, accumulation efficiency, and adaptive properties, this plant could be used as a valuable tool for the phytoremediation of Cd contaminated soils.
Collapse
Affiliation(s)
- Mayank Varun
- Department of Botany, St. John's College, Agra, Uttar Pradesh, 282 002, India.
| | - Clement O Ogunkunle
- Environmental Biology Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003, Nigeria
| | - Rohan D'Souza
- Department of Botany, St. John's College, Agra, Uttar Pradesh, 282 002, India
| | - Paulo Favas
- School of Life Sciences and the Environment, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
- Faculty of Sciences and Technology, MARE - Marine and Environmental Sciences Centre, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Manoj Paul
- Department of Botany, St. John's College, Agra, Uttar Pradesh, 282 002, India
| |
Collapse
|
27
|
Wang P, Du L, Tan Z, Su R, Li T. Effects of Organic Acids and Sylvite on Phytoextraction of 241Am Contaminated Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:407-412. [PMID: 27999882 DOI: 10.1007/s00128-016-2004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Contamination of soil with Americium (241Am) at nuclear sites in China poses a serious problem. We screened six plants, from five families, for their 241Am-enrichment potential. Europium (Eu), which is morphologically and chemically similar to the highly toxic 241Am, was used in its place. Moreover, the effects of sylvite, citric acid (CA), malic acid (MA), and humic acid (HA) on the absorption of 241Am by the plants, and its transport within them, were evaluated along with their effect on plant biomass and 241Am extraction volume. Barley and cabbage showed relatively stronger Eu accumulation capacities. Citric acid promoted the absorption of 241Am by barley roots and its transport within the plants. The effects of sylvite were not obvious and those of HA were the weakest in case of sunflower; HA, however, maximally increased the biomass of the plants. Our results could provide the basis for future radionuclide phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China.
| | - Liang Du
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| | - Rongbo Su
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| | - Taowen Li
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| |
Collapse
|
28
|
Deng QW, Wang YD, Ding DX, Hu N, Sun J, He JD, Xu F. Construction of the Syngonium podophyllum-Pseudomonas sp. XNN8 Symbiotic Purification System and Investigation of Its Capability of Remediating Uranium Wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5134-5143. [PMID: 27023802 DOI: 10.1007/s11356-016-6392-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The endophyte Pseudomonas sp. XNN8 was separated from Typha orientalis which can secrete indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase and siderophores and has strong resistance to uranium it was then colonized in the Syngonium podophyllum; and the S. podophyllum-Pseudomonas sp. XNN8 symbiotic purification system (SPPSPS) for uranium-containing wastewater was constructed. Afterwards, the hydroponic experiments to remove uranium from uranium-containing wastewater by the SPPSPS were conducted. After 24 days of treatment, the uranium concentrations of the wastewater samples with uranium concentrations between 0.5 and 5.0 mg/L were lowered to below 0.05 mg/L. Furthermore, the uranium in the plants was assayed using Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The Pseudomonas sp. XNN8 was found to generate substantial organic groups in the roots of the Syngonium podophyllum, which could improve the complexing capability of S. podophyllum for uranium. The uranium in the roots of S. podophyllum was found to be the uranyl phosphate (47.4 %) and uranyl acetate (52.6 %).
Collapse
Affiliation(s)
- Qin-Wen Deng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Yong-Dong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - De-Xin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China.
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Jing Sun
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Jia-Dong He
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Fei Xu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
29
|
Huang Z, Tang S, Zhang L, Ma L, Ding S, Du L, Zhang D, Jin Y, Wang R, Huang C, Xia C. Interaction between U and Th on their uptake, distribution, and toxicity in V S. alfredii based on the phytoremediation of U and Th. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2996-3005. [PMID: 27848132 DOI: 10.1007/s11356-016-8037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Variant Sedum alfredii Hance (V S. alfredii) could simultaneously take up U and Th from water with the highest concentrations recorded as 1.84 × 104 and 6.72 × 103 mg/kg in the roots, respectively. Th stimulated U uptake by V S. alfredii roots at Th10 (10 μM of Th), however, the opposite was observed at Th100 (100 μM of Th). A similar result was found in the effect of U on the uptake of Th by V S. alfredii. Subcellular fractionation studies of V S. alfredii indicated that U and Th were mainly stored in cell wall fraction, and much less was found in organelle and soluble fractions. Chemical form examination results showed that water-soluble U and Th were the predominant chemical forms in this plant. Addition of the other radionuclide in aqueous solutions altered the concentration and percentage of U or Th in cell wall fraction and in water-soluble form, resulting in the change of the uptake capacity of U or Th by V S. alfredii roots. Comparing with single U or Th treatment, the plant cells revealed more swollen chloroplasts and enhanced thickening in cell walls under the U100 + Th100 treatment, as observed by TEM. Those results collectively displayed that V S. alfredii may be utilized as a potential plant to simultaneously remove U and Th from aqueous solutions (rhizofiltration).
Collapse
Affiliation(s)
- Zhenling Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Siqun Tang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lu Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Songdong Ding
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Liang Du
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Dong Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| | - Chao Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
30
|
Chen A, Shang C, Shao J, Zhang J, Huang H. The application of iron-based technologies in uranium remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1291-1306. [PMID: 27720254 DOI: 10.1016/j.scitotenv.2016.09.211] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Remediating uranium contamination is of worldwide interest because of the increasing release of uranium from mining and processing, nuclear power leaks, depleted uranium components in weapons production and disposal, and phosphate fertilizer in agriculture activities. Iron-based technologies are attractive because they are highly efficient, inexpensive, and readily available. This paper provides an overview of the current literature that addresses the application of iron-based technologies in the remediation of sites with elevated uranium levels. The application of iron-based materials, the current remediation technologies and mechanisms, and the effectiveness and environmental safety considerations of these approaches were discussed. Because uranium can be reduced and reoxidized in the environment, the review also proposes strategies for long-term in situ remediation of uranium. Unfortunately, iron-based materials (nanoscale zerovalent iron and iron oxides) can be toxic to microorganisms. As such, further studies exploring the links among the fates, ecological impacts, and other environmentally relevant factors are needed to better understand the constraints on using iron-based technologies for remediation.
Collapse
Affiliation(s)
- Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
31
|
Gupta DK, Chatterjee S, Datta S, Voronina AV, Walther C. Radionuclides: Accumulation and Transport in Plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:139-160. [PMID: 27300012 DOI: 10.1007/398_2016_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.
Collapse
Affiliation(s)
- D K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude, 4113, 30419, Hannover, Germany.
| | - S Chatterjee
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur, 784001, Assam, India
| | - S Datta
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur, 784001, Assam, India
| | - A V Voronina
- Department of Radiochemistry and Applied Ecology, Physical Technology Institute, Ural Federal University, Mira str., 19, Ekaterinburg, Russia
| | - C Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude, 4113, 30419, Hannover, Germany
| |
Collapse
|
32
|
Sasmaz M, Obek E, Sasmaz A. Bioaccumulation of Uranium and Thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag Tailing Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:832-837. [PMID: 27663445 DOI: 10.1007/s00128-016-1929-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
This study focused on the ability of Lemna minor and Lemna gibba to remove U and Th in the tailing water of Keban, Turkey. These plants were placed in tailing water and individually fed to the reactors designed for these plants. Water and plant samples were collected daily from the mining area. The plants were ashed at 300°C for 1 day and analyzed by ICP-MS for U and Th. U was accumulated as a function of time by these plants, and performances between 110 % and 483 % for L. gibba, and between 218 % and 1194 % for L. minor, were shown. The highest Th accumulations in L. minor and L. gibba were observed at 300 % and 600 % performances, respectively, on the second day of the experiment. This study indicated that both L. gibba and L. minor demonstrated a high ability to remove U and Th from tailing water polluted by trace elements.
Collapse
Affiliation(s)
- Merve Sasmaz
- Department of Environmental Engineering, Firat University, 23119, Elazığ, Turkey
| | - Erdal Obek
- Department of Bioengineering, Firat University, 23119, Elazığ, Turkey
| | - Ahmet Sasmaz
- Department of Bioengineering, Firat University, 23119, Elazığ, Turkey.
- Department of Geological Engineering, Firat University, 23119, Elazığ, Turkey.
| |
Collapse
|
33
|
Lourenço J, Mendo S, Pereira R. Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:503-542. [PMID: 27343869 DOI: 10.1016/j.jhazmat.2016.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/26/2016] [Accepted: 06/08/2016] [Indexed: 05/24/2023]
Abstract
Concerns about the impacts on public health and on the natural environment have been raised regarding the full range of operational activities related to uranium mining and the rest of the nuclear fuel cycle (including nuclear accidents), nuclear tests and depleted uranium from military ammunitions. However, the environmental impacts of such activities, as well as their ecotoxicological/toxicological profile, are still poorly studied. Herein, it is discussed if organisms can be used as bioindicators of human health effects, posed by lifetime exposure to radioactively contaminated areas. To do so, information was gathered from several studies performed on vertebrates, invertebrate species and humans, living in these contaminated areas. The retrieved information was compared, to determine which are the most used bioindicators and biomarkers and also the similarities between human and non-human biota responses. The data evaluated are used to support the proposal for an early warning scheme, based on bioindicator species and on the most sensitive and commonly shared biomarkers, to perform a screening evaluation of radioactively contaminated sites. This scheme could be used to support decision-making for a deeper evaluation of risks to human health, making it possible to screen a large number of areas, without disturbing and alarming local populations.
Collapse
Affiliation(s)
- Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ruth Pereira
- Department of Biology, Faculty of Sciences of the University of Porto & CIIMAR - Interdisciplinary Centre of Marine and Environmental Research & GreenUP/CITAB-UP, Porto, Portugal
| |
Collapse
|
34
|
Favas PJC, Pratas J, Mitra S, Sarkar SK, Venkatachalam P. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:350-368. [PMID: 27314898 DOI: 10.1016/j.scitotenv.2016.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/04/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
The present study highlights the uranium (U) concentrations in water-soil-plant matrices and the efficiency considering a heterogeneous assemblage of terrestrial and aquatic native plant species to act as the biomonitor and phytoremediator for environmental U-contamination in the Sevilha mine (uraniferous region of Beiras, Central Portugal). A total of 53 plant species belonging to 22 families was collected from 24 study sites along with ambient soil and/or water samples. The concentration of U showed wide range of variations in the ambient medium: 7.5 to 557mgkg(-1) for soil and 0.4 to 113μgL(-1) for water. The maximum potential of U accumulation was recorded in roots of the following terrestrial plants: Juncus squarrosus (450mgkg(-1) DW), Carlina corymbosa (181mgkg(-1) DW) and Juncus bufonius (39.9mgkg(-1) DW), followed by the aquatic macrophytes, namely Callitriche stagnalis (55.6mgkg(-1) DW) Lemna minor (53.0mgkg(-1) DW) and Riccia fluitans (50.6mgkg(-1) DW). Accumulation of U in plant tissues exhibited the following decreasing trend: root>leaves>stem>flowers/fruits and this confirms the unique efficiency of roots in accumulating this radionuclide from host soil/sediment (phytostabilization). Overall, the accumulation pattern in the studied aquatic plants (L. minor, R. fluitans, C. stagnalis and Lythrum portula) dominated over most of the terrestrial counterpart. Among terrestrial plants, the higher mean bioconcentration factor (≈1 in roots/rhizomes of C. corymbosa and J. squarrosus) and translocation factor (31 in Andryala integrifolia) were encountered in the representing families Asteraceae and Juncaceae. Hence, these terrestrial plants can be treated as the promising candidates for the development of the phytostabilization or phytoextraction methodologies based on the accumulation, abundance and biomass production.
Collapse
Affiliation(s)
- Paulo J C Favas
- University of Trás-os-Montes e Alto Douro, UTAD, School of Life Sciences and the Environment, Quinta de Prados, 5000-801 Vila Real, Portugal; MARE, Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - João Pratas
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal; University of Coimbra, Faculty of Sciences and Technology, Department of Earth Sciences, 3001-401 Coimbra, Portugal; Instituto de Geologia e Petróleo de Timor Leste, Timor-Leste
| | - Soumita Mitra
- University of Calcutta, Department of Marine Science, 35, Ballygunge Circular Road, Calcutta 700019, West Bengal, India
| | - Santosh Kumar Sarkar
- University of Calcutta, Department of Marine Science, 35, Ballygunge Circular Road, Calcutta 700019, West Bengal, India
| | | |
Collapse
|
35
|
Yan X. Uptake of radionuclide thorium by twelve native plants grown in uranium mill tailings soils from south part of China. NUCLEAR ENGINEERING AND DESIGN 2016. [DOI: 10.1016/j.nucengdes.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Cordeiro C, Favas PJC, Pratas J, Sarkar SK, Venkatachalam P. Uranium accumulation in aquatic macrophytes in an uraniferous region: Relevance to natural attenuation. CHEMOSPHERE 2016; 156:76-87. [PMID: 27164268 DOI: 10.1016/j.chemosphere.2016.04.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Phytoremediation potential of uranium (U) was investigated by submerged, free-floating and rooted emergent native aquatic macrophytes inhabiting along the streams of Horta da Vilariça, a uraniferous geochemical region of NE Portugal. The work has been undertaken with the following objectives: (i) to relate the U concentrations in water-sediment-plant system; and (ii) to identify the potentialities of aquatic plants to remediate U-contaminated waters based on accumulation pattern. A total of 25 plant species culminating 233 samples was collected from 15 study points along with surface water and contiguous sediments. Concentrations of U showed wide range of variations both in waters (0.61-5.56 μg L(-1), mean value 1.98 μg L(-1)) and sediments (124-23,910 μg kg(-1), mean value 3929 μg kg(-1)) and this is also reflected in plant species examined. The plant species exhibited the ability to accumulate U several orders of magnitude higher than the surrounding water. Maximum U concentrations was recorded in the bryophyte Scorpiurium deflexifolium (49,639 μg kg(-1)) followed by Fontinalis antipyretica (35,771 μg kg(-1)), shoots of Rorippa sylvestris (33,837 μg kg(-1)), roots of Oenanthe crocata (17,807 μg kg(-1)) as well as in Nasturtium officinale (10,995 μg kg(-1)). Scorpiurium deflexifolium displayed a high bioconcentration factor (BF) of ∼2.5 × 10(4) (mean value). The species Fontinalis antipyretica, Nasturtium officinale (roots) and Rorippa sylvestris (shoots) exhibited the mean BFs of 1.7 × 10(4), 5 × 10(3) and 4.8 × 10(3) respectively. Maximum translocation factor (TF) was very much pronounced in the rooted perennial herb Rorippa sylvestris showing extreme ability to transport U for the shoots and seems to be promising candidate to be used as bioindicator species.
Collapse
Affiliation(s)
- Cristina Cordeiro
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Paulo J C Favas
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal; University of Trás-os-Montes e Alto Douro, UTAD, School of Life Sciences and the Environment, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - João Pratas
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal; University of Coimbra, Faculty of Sciences and Technology, Department of Earth Sciences, 3001-401, Coimbra, Portugal; Instituto de Geologia e Petróleo de Timor Leste, Timor Leste
| | - Santosh Kumar Sarkar
- University of Calcutta, Department of Marine Science, 35, Ballygunge Circular Road, Calcutta, 700019, West Bengal, India
| | | |
Collapse
|
37
|
Du L, Feng X, Huang Z, Liu B, Jin Y, Fang Z, Zhang D, Liu N, Wang R, Xia C. The effect of U speciation in cultivation solution on the uptake of U by variant Sedum alfredii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9964-9971. [PMID: 26865480 DOI: 10.1007/s11356-016-6226-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
In the present study, five plant species were screened for uranium uptake using a hydroponic experimental set-up. The effect of the U concentration, pH, as well as the presence of carbonates, phosphates, and organic acids (lactic acid, malic acid, citric acid) on the uptake of U by variant S. alfredii (V S. alfredii) and wild S. alfredii (W S. alfredii) were investigated. Results showed that V S. alfredii exhibited higher U content in the roots than the other four plants and with the increase of U concentration in the solution, the U uptake by V S. alfredii and W S. alfredii increased. The results also showed that different U speciation in different cultivation solution took an important role on the uptake of U in variant Sedum alfredii: at pH 6.5, U hydrolysis species (UO2)3(OH)5 (+)is predominant and the U concentrations in V S. alfredii roots reached a maximum value (3.7 × 10(4) mg/kg). U complexation with carbonates, phosphates, and some organic acids in the solution resulted in a decrease in the U content in the roots except for lactic acid. Our researches highlight the correlations between U speciation and the uptake on V S. Alfredii, which will be helpful for improved removal of U from the groundwater using phytoremediation method.
Collapse
Affiliation(s)
- Liang Du
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Xiaojie Feng
- Logistic Engineering University, Chongqing, 401311, China
| | - Zhenling Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Borui Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhenggang Fang
- Logistic Engineering University, Chongqing, 401311, China
| | - Dong Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| | - Chuanqin Xia
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
38
|
Srivastava S, Bhainsa KC. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 167:124-129. [PMID: 26618901 DOI: 10.1016/j.jenvman.2015.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - K C Bhainsa
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
39
|
Nie X, Dong F, Liu M, Sun S, Yang G, Zhang W, Qin Y, Ma J, Huang R, Gong J. Removel of Uranium from Aqueous Solutions by Spirodela Punctata as the Mechanism of Biomineralization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.proenv.2016.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Horemans N, Van Hees M, Saenen E, Van Hoeck A, Smolders V, Blust R, Vandenhove H. Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:427-37. [PMID: 26187266 DOI: 10.1016/j.jenvrad.2015.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 05/21/2023]
Abstract
Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 μM up to 150 μM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 μM, 7.7-16.4 μM and 19.4-37.2 μM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan gebouw D, B-3590, Diepenbeek, Belgium.
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Arne Van Hoeck
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Valérie Smolders
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Ronny Blust
- Department of Biology, University of Antwerp (UA), Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | | |
Collapse
|
41
|
Mânzatu C, Nagy B, Ceccarini A, Iannelli R, Giannarelli S, Majdik C. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants. MARINE POLLUTION BULLETIN 2015; 101:605-611. [PMID: 26515993 DOI: 10.1016/j.marpolbul.2015.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/29/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the concentrations and pollution levels of heavy metals, organochlorine pesticides, and polycyclic aromatic hydrocarbons in marine sediments from the Leghorn Harbor (Italy) on the Mediterranean Sea. The phytoextraction capacity of three aquatic plants Salvinia natans, Vallisneria spiralis, and Cabomba aquatica was also tested in the removal of lead and copper, present in high concentration in these sediments. The average detectable concentrations of metals accumulated by the plants in the studied area were as follows: >3.328 ± 0.032 mg/kg dry weight (DW) of Pb and 2.641 ± 0.014 mg/kg DW of Cu for S. natans, >3.107 ± 0.034 g/kg DW for V. spiralis, and >2.400 ± 0.029 mg/kg DW for C. aquatica. The occurrence of pesticides was also analyzed in the sediment sample by gas chromatography coupled with mass spectrometry (GC/MS). Due to its metal and organic compound accumulation patterns, S. natans is a potential candidate in phytoextraction strategies.
Collapse
Affiliation(s)
- Carmen Mânzatu
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, 11 Arany János st., 400028 Cluj Napoca, Romania
| | - Boldizsár Nagy
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, 11 Arany János st., 400028 Cluj Napoca, Romania
| | - Alessio Ceccarini
- University of Pisa, Department of Chemistry and Industrial Chemistry, 3 Giuseppe Moruzzi st., 56124 Pisa, Italy.
| | - Renato Iannelli
- University of Pisa, Department of Civil and Industrial Engineering, 22 C.F Gabba st., 56122 Pisa, Italy
| | - Stefania Giannarelli
- University of Pisa, Department of Chemistry and Industrial Chemistry, 3 Giuseppe Moruzzi st., 56124 Pisa, Italy
| | - Cornelia Majdik
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, 11 Arany János st., 400028 Cluj Napoca, Romania.
| |
Collapse
|
42
|
Sasmaz M, Arslan Topal EI, Obek E, Sasmaz A. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 163:246-253. [PMID: 26332457 DOI: 10.1016/j.jenvman.2015.08.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
This study was designed to investigate removal efficiencies of Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey by Lemna gibba L. and Lemna minor L. These plants were placed in the gallery water of Keban Pb-Zn ore deposits and adapted individually fed to the reactors. During the study period (8 days), the plant and water samples were collected daily and the temperature, pH, and electric conductivity of the gallery water were measured daily. The plants were washed, dried, and burned at 300 °C for 24 h in a drying oven. These ash and water samples were analyzed by ICP-MS to determine the amounts of Cu, Pb, Zn, and As. The Cu, Pb, Zn and As concentrations in the gallery water of the study area detected 67, 7.5, 7230, and 96 μg L(-1), respectively. According to the results, the obtained efficiencies in L. minor L. and L. gibba L. are: 87% at day 2 and 36% at day 3 for Cu; 1259% at day 2 and 1015% at day 2 for Pb; 628% at day 3 and 382% at day 3 for Zn; and 7070% at day 3 and 19,709% at day 2 for As, respectively. The present study revealed that both L. minor L. and L. gibba L. had very high potential to remove Cu, Pb, Zn, and As in gallery water contaminated by different ores.
Collapse
Affiliation(s)
- Merve Sasmaz
- Firat University, Dept. of Environmental Engineering, Elazığ 23119, Turkey.
| | | | - Erdal Obek
- Firat University, Dept. of Bioengineering, Elazığ 23119, Turkey.
| | - Ahmet Sasmaz
- Firat University, Dept. of Geological Engineering, Elazığ 23119, Turkey.
| |
Collapse
|