1
|
Fodor I, Matsubara S, Osugi T, Shiraishi A, Kawada T, Satake H, Pirger Z. Lack of membrane sex steroid receptors for mediating rapid endocrine responses in molluscan nervous systems. Front Endocrinol (Lausanne) 2024; 15:1458422. [PMID: 39188914 PMCID: PMC11345136 DOI: 10.3389/fendo.2024.1458422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Despite the lack of endogenous synthesis and relevant nuclear receptors, several papers have been published over the decades claiming that the physiology of mollusks is affected by natural and synthetic sex steroids. With scant evidence for the existence of functional steroid nuclear receptors in mollusks, some scientists have speculated that the effects of steroids might be mediated via membrane receptors (i.e. via non-genomic/non-classical actions) - a mechanism that has been well-characterized in vertebrates. However, no study has yet investigated the ligand-binding ability of such receptor candidates in mollusks. The aim of the present study was to further trace the evolution of the endocrine system by investigating the presence of functional membrane sex steroid receptors in a mollusk, the great pond snail (Lymnaea stagnalis). We detected sequences homologous to the known vertebrate membrane sex steroid receptors in the Lymnaea transcriptome and genome data: G protein-coupled estrogen receptor-1 (GPER1); membrane progestin receptors (mPRs); G protein-coupled receptor family C group 6 member A (GPRC6A); and Zrt- and Irt-like protein 9 (ZIP9). Sequence analyses, including conserved domain analysis, phylogenetics, and transmembrane domain prediction, indicated that the mPR and ZIP9 candidates appeared to be homologs, while the GPER1 and GPRC6A candidates seemed to be non-orthologous receptors. All candidates transiently transfected into HEK293MSR cells were found to be localized at the plasma membrane, confirming that they function as membrane receptors. However, the signaling assays revealed that none of the candidates interacted with the main vertebrate steroid ligands. Our findings strongly suggest that functional membrane sex steroid receptors which would be homologous to the vertebrate ones are not present in Lymnaea. Although further experiments are required on other molluscan model species as well, we propose that both classical and non-classical sex steroid signaling for endocrine responses are specific to chordates, confirming that molluscan and vertebrate endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
2
|
Svigruha R, Fodor I, Padisak J, Pirger Z. Progestogen-induced alterations and their ecological relevance in different embryonic and adult behaviours of an invertebrate model species, the great pond snail (Lymnaea stagnalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59391-59402. [PMID: 33349911 PMCID: PMC8542004 DOI: 10.1007/s11356-020-12094-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
The presence of oral contraceptives (basically applying estrogens and/or progestogens) poses a challenge to animals living in aquatic ecosystems and reflects a rapidly growing concern worldwide. However, there is still a lack in knowledge about the behavioural effects induced by progestogens on the non-target species including molluscs. In the present study, environmental progestogen concentrations were summarised. Knowing this data, we exposed a well-established invertebrate model species, the great pond snail (Lymnaea stagnalis) to relevant equi-concentrations (1, 10, 100, and 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) for 21 days. Significant alterations were observed in the embryonic development time, heart rate, feeding, and gliding activities of the embryos as well as in the feeding and locomotion activity of the adult specimens. All of the mixtures accelerated the embryonic development time and the gliding activity. Furthermore, the 10, 100, and 500 ng L-1 mixtures increased the heart rate and feeding activity of the embryos. The 10, 100, and 500 ng L-1 mixtures affected the feeding activity as well as the 1, 10, and 100 ng L-1 mixtures influenced the locomotion of the adult specimens. The differences of these adult behaviours showed a biphasic response to the progestogen exposure; however, they changed approximately in the opposite way. In case of feeding activity, this dose-response phenomenon can be identified as a hormesis response. Based on the authors' best knowledge, this is the first study to investigate the non-reproductive effects of progestogens occurring also in the environment on molluscan species. Our findings contribute to the global understanding of the effects of human progestogens, as these potential disruptors can influence the behavioural activities of non-target aquatic species. Future research should aim to understand the potential mechanisms (e.g., receptors, signal pathways) of progestogens induced behavioural alterations.
Collapse
Affiliation(s)
- Reka Svigruha
- Department of Limnology, University of Pannonia, Veszprém, 8200, Hungary
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary
| | - Istvan Fodor
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary
| | - Judit Padisak
- Department of Limnology, University of Pannonia, Veszprém, 8200, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary.
| |
Collapse
|
3
|
Svigruha R, Fodor I, Győri J, Schmidt J, Padisák J, Pirger Z. Effects of chronic sublethal progestogen exposure on development, reproduction, and detoxification system of water flea, Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147113. [PMID: 33892323 DOI: 10.1016/j.scitotenv.2021.147113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The presence of sex steroid hormones in aquatic ecosystems is of rapidly growing concern worldwide since they can affect the different non-target species including cladocerans. Although data are available on the effects of estrogens on the well-established ecotoxicological model organism Daphnia magna, the molecular or behavioural alterations induced by environmentally relevant concentrations (from a few ng L-1 to a few hundred ng L-1 in average) of progestogens have not been investigated on this species. In the present study, we exposed neonates of D. magna to relevant equi-concentrations (1, 10, 100, 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) in short-term (6 days) and long-term (21 days) experiments. Significant alterations were observed at the molecular, cellular, and individual levels. During the short-term exposure, all of the mixtures increased the gene expression of glutathione S-transferase (GST) detoxification enzyme, moreover, the activity of GST was also significantly increased at the concentrations of 10, 100, and 500 ng L-1. In long-term exposure, the number of days until production of the first eggs was reduced at the 10 ng L-1 concentration compared to control, furthermore, the maximum egg number per individual increased at the concentrations of 1 and 10 ng L-1. Based on the authors' best knowledge, this is the first study to investigate the effects of progestogens in mixtures and at environmentally relevant concentrations on D. magna. Our findings contribute to the understanding of the possible physiological effects of human progestogens. Future research should be aimed at understanding the potential mechanisms (e.g., perception) underlying the changes induced by progestogens.
Collapse
Affiliation(s)
- Réka Svigruha
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200 Veszprém, Hungary; NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - János Győri
- Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200 Veszprém, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary.
| |
Collapse
|
4
|
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:11-28. [PMID: 30877957 DOI: 10.1016/j.scitotenv.2019.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 03/03/2019] [Indexed: 05/14/2023]
Abstract
Lymnaea stagnalis, also referred to as great or common pond snail, is an abundant and widespread invertebrate species colonizing temperate limnic systems. Given the species importance, studies involving L. stagnalis have the potential to produce scientifically relevant information, leading to a better understanding of the damage caused by aquatic contamination, as well as the modes of action of toxicants. Lymnaea stagnalis individuals are easily maintained in laboratory conditions, with a lifespan of about two years. The snails are hermaphrodites and sexual maturity occurs about three months after egg laying. Importantly, they can produce a high number of offspring all year round and are considered well suited for use in investigations targeting the identification of developmental and reproductive impairments. The primary aims of this review were two-fold: i) to provide an updated and insightful compilation of established toxicological measures determined in both chronic and acute toxicity assays, as useful tool to the design and development of future research; and ii) to provide a state of the art related to direct toxicant exposure and its potentially negative effects on this species. Relevant and informative studies were analysed and discussed. Knowledge gaps in need to be addressed in the near future were further identified.
Collapse
Affiliation(s)
- João Amorim
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Isabel Abreu
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Pedro Rodrigues
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Diogo Peixoto
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos Pinheiro
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Aurélia Saraiva
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Luis Oliva-Teles
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
5
|
Aquilino M, Martínez-Guitarte JL, García P, Beltrán EM, Fernández C, Sánchez-Argüello P. Combining the assessment of apical endpoints and gene expression in the freshwater snail Physa acuta after exposure to reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:180-189. [PMID: 29894877 DOI: 10.1016/j.scitotenv.2018.06.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Post-treatment wastewater reuses are diverse. Recreational and environmental restoration uses of reclaimed water (RW) can be potentially harmful to aquatic organisms. In this work the freshwater snail Physa acuta was exposed to RW (100%) and its dilution (RW 50%). A simple laboratory mixture of three emerging pollutants was used to address the complex problem of mixture toxicity of RW. Hence fortified reclaimed water (FRW), obtained by adding fluoxetine (400 μg FLX/L), perfluorooctane sulphonic acid (90 μg PFOS/L) and methylparaben (9 μg MP/L), was tested at two dilution percentages: 100% and 50%. The effects of the laboratory mixture of FLX, PFOS and MP on the test medium were also studied. Long-lasting effects, together with early molecular responses, were assessed. Fecundity (cumulative egg production) over 21 days and the hatching of produced eggs (F1) after another 21-day embryonic exposure were monitored. The gene expression of three genes was analysed after 24 h of exposure: two endocrine-related nuclear receptors (ERR and RXR) and one stress protein gene (Hsp70). This reproduction test, with additional assessments of the F1 recovered eggs' hatching success, showed that both RW and FRW significantly reduced fecundity. F1 hatching was affected only by FRW. The gene expression results showed that the RXR response was strikingly similar to the fecundity response, which suggests that this nuclear receptor is involved in the reproductive pathways of gastropods. ERR remained virtually unaltered. Hsp70 was overexpressed by the laboratory mixture in the test medium, but no effect was observed in the fortification of RW. This opposite effect and lack of response for F1 hatching produced by the laboratory mixture in the test medium highlighted the difficulty of predicting mixture effects. The experimental approach allowed us to test the effects caused by RW on P. acuta at different biological organisation levels. Thus, the combination of molecular biomarkers and ecological relevant endpoints is a good strategy to test complex mixtures like RW as it provides a framework to link mechanisms of action and whole organism effects when it is almost impossible to detect the pollutant(s) that cause toxic effects.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Jose Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Pilar García
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Eulalia Maria Beltrán
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Carlos Fernández
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Lee YH, Park JC, Hwang UK, Lee JS, Han J. Adverse effects of the insecticides chlordecone and fipronil on population growth and expression of the entire cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus plicatilis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:181-187. [PMID: 30055411 DOI: 10.1016/j.aquatox.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Chlordecone and fipronil are used as an insecticide and have been widely detected in the aquatic environments. However, their toxicity is still poorly investigated in aquatic invertebrates. In this study, we examined effects of chlordecone and fipronil on population growth and transcriptional regulation of the entire cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and the marine rotifer B. plicatilis. In B. calyciflorus, a 24 h-no observed effect concentration (NOEC-24 h) and a 24 h-median lethal concentration (LC50-24 h) of chlordecone were determined as 100 μg/L and 193.8 μg/L, respectively, while NOEC-24 h and LC50-24 h of fipronil were determined as 1000 μg/L and 2033.0 μg/L, respectively. In B. plicatilis, NOEC-24 h and LC50-24 h of chlordecone were 100 μg/L and 291.0 μg/L, respectively, while NOEC-24 h and LC50-24 h of fipronil were determined as 1000 μg/L and 5735.0 μg/L, respectively. Moreover, retardation in the population growth were observed in response to chlordecone and fipronil in both rotifer species, suggesting that chlordecone and fipronil have a potential adverse effects on life cycle parameters of two rotifer species. Additionally, modulation in the expressions of the entire CYP genes were demonstrated in response to chlordecone and fipronil at 24 h period. These results provide the better understanding on how chlordecone and fipronil can affect in population growth of two rotifers and CYP gene expressions in chlordecone- and fipronil-exposed rotifers.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Gismondi E, Fivet A, Joaquim-Justo C. Effects of cyproterone acetate and vertically transmitted microsporidia parasite on Gammarus pulex sperm production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23417-23421. [PMID: 28905182 DOI: 10.1007/s11356-017-0162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disruption compounds (EDCs) and parasitism can both interfere with the reproduction process of organisms. The amphipod Gammarus pulex is the host of the vertically transmitted microsporidia Dictyocoela duebenum, and this work was devoted to the investigation of the effect of an exposure to the anti-androgen compound, cyproterone acetate (CPA), and/or of the presence of D. duebenum on the spermatozoa production and length. Significant reduction of the spermatozoa production was observed when G. pulex males were uninfected and exposed to CPA. There also appeared a lower number of spermatozoa when D. duebenum infects G. pulex, whatever the exposure condition. Moreover, we highlighted that CPA has no effect on spermatozoa production when males are infected by D. duebenum, and no treatment has impacted the spermatozoa length. Our results suggest CPA and D. duebenum could impact the endocrine system of G. pulex and especially processes close to the spermatozoa production (e.g., androgenic gland, androgen gland hormone released, gonad-inhibiting hormone synthesized by X-organ). However, as no mechanism of action was highlighted, further testing need to be performed to improve the understanding of their impacts. Finally, results confirm that vertically transmitted microsporidia could be a confounding factor in the endocrine disruption assessments in Gammaridae.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium.
| | - Adeline Fivet
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| |
Collapse
|
8
|
Zrinyi Z, Maasz G, Zhang L, Vertes A, Lovas S, Kiss T, Elekes K, Pirger Z. Effect of progesterone and its synthetic analogs on reproduction and embryonic development of a freshwater invertebrate model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:94-103. [PMID: 28697460 DOI: 10.1016/j.aquatox.2017.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 05/14/2023]
Abstract
The presence of a mixture of progestogens at ng/L concentration levels in surface waters is a worldwide problem. Only a few studies explore the effect of progestogen treatment in a mixture as opposed to individual chemicals to shed light on how non-target species respond to these contaminants. In the present study, we used an invertebrate model species, Lymnaea stagnalis, exposed to a mixture of four progestogens (progesterone, levonorgestrel, drospirenone, and gestodene) in 10ng/L concentration for 3 weeks. Data at both physiological and cellular/molecular level were analyzed using the ELISA technique, stereomicroscopy combined with time lapse software, and capillary microsampling combined with mass spectrometry. The treatment of adult Lymnaeas caused reduced egg production, and low quality egg mass on the first week, compared to the control. Starting from the second week, the egg production, and the quality of egg mass were similar in both groups. At the end of the third week, the egg production and the vitellogenin-like protein content of the hepatopancreas were significantly elevated in the treated group. At the cellular level, accelerated cell proliferation was observed during early embryogenesis in the treated group. The investigation of metabolomic changes resulted significantly elevated hexose utilization in the single-cell zygote cytoplasm, and elevated adenylate energy charge in the egg albumen. These changes suggested that treated snails provided more hexose in the eggs in order to improve offspring viability. Our study contributes to the knowledge of physiological effect of equi-concentration progestogen mixture at environmentally relevant dose on non-target aquatic species.
Collapse
Affiliation(s)
- Zita Zrinyi
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, Tihany, Hungary
| | - Gabor Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, Tihany, Hungary
| | - Linwen Zhang
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, WA, District of Columbia 20052, USA
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, WA, District of Columbia 20052, USA
| | - Sandor Lovas
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, Tihany, Hungary
| | - Tibor Kiss
- MTA-ÖK BLI, Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, Tihany, Hungary
| | - Karoly Elekes
- MTA-ÖK BLI, Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, Tihany, Hungary
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, Tihany, Hungary.
| |
Collapse
|
9
|
Druart C, Gimbert F, Scheifler R, de Vaufleury A. A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:240-249. [PMID: 28395863 DOI: 10.1016/j.envpol.2017.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/14/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
A full life-cycle (240 days) bioassay using the terrestrial snail, Cantareus aspersus, allowing exposure during embryogenesis and/or the growth and reproduction phases, was used to assess the effects of Bypass®, a glyphosate-based herbicide (GlyBH), on a range of endpoints, including parameters under endocrine control. As a positive control, a mixture (R-A) made of diquat (Reglone®) and nonylphenols (NP, Agral®), known for its endocrine disrupting effects in other organisms, was tested. At environmental concentrations, both pesticides (R-A mixture and GlyBH) enhanced growth but reduced reproduction. The R-A mixture acted mainly on the fecundity through a delay in egg-laying of approximately 20 days and a strongly reduced number of clutches. This latter dysfunction may be caused by a permanent eversion of the penis, suggesting a disrupting effect at the neuro-endocrine level, which prevented normal mating. GlyBH acted on fertility, possibly due to a decrease in the fertilization of eggs laid by adults exposed during their embryonic development. These results, associated with the absence of observed effects on gonad histology of GlyBH exposed snails, suggested that the underlying mechanisms are neuro-endocrine.
Collapse
Affiliation(s)
- Coline Druart
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Frédéric Gimbert
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Renaud Scheifler
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Annette de Vaufleury
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| |
Collapse
|
10
|
Lafontaine A, Baiwir D, Joaquim-Justo C, De Pauw E, Lemoine S, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:306-314. [PMID: 28371731 DOI: 10.1016/j.ecoenv.2017.03.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans.
Collapse
Affiliation(s)
- Anne Lafontaine
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium.
| | - Dominique Baiwir
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Célia Joaquim-Justo
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Soazig Lemoine
- DYNECAR-UMR BOREA (MNHN/CNRS 7208/IRD207/UPMC/UA), University of the French West Indies, Campus de Fouillole, F-97110 Pointe-à-Pitre, Guadeloupe, France
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Eric Gismondi
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| |
Collapse
|
11
|
Lafontaine A, Hanikenne M, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20661-20671. [PMID: 27470247 DOI: 10.1007/s11356-016-7273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.
Collapse
Affiliation(s)
- Anne Lafontaine
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium.
| | - Marc Hanikenne
- Center for Protein Engineering, Functional Genomics and Plant Molecular Imaging, University of Liège, 27 Boulevard du Rectorat, 4000, Liège, Belgium
- PhytoSYSTEMS, University of Liège, 27 Boulevard du Rectorat, 4000, Liège, Belgium
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Lebon, 76058, Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Lebon, 76058, Le Havre, France
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre of Analytical Research and Technology (CART), University of Liège, 15 Allée du Six Aout, 4000, Liège, Belgium
| |
Collapse
|
12
|
Horie Y, Watanabe H, Takanobu H, Yagi A, Yamagishi T, Iguchi T, Tatarazako N. Development of anin vivoanti-androgenic activity detection assay using fenitrothion in Japanese medaka (Oryzias latipes). J Appl Toxicol 2016; 37:339-346. [DOI: 10.1002/jat.3365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshifumi Horie
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| | - Haruna Watanabe
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| | - Hitomi Takanobu
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| | - Ayano Yagi
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science; Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi Japan
- Nanobioscience; Yokohama City University; Yokohama Japan
| | - Norihisa Tatarazako
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Tsukuba Ibaraki Japan
| |
Collapse
|
13
|
Kaur S, Baynes A, Lockyer AE, Routledge EJ, Jones CS, Noble LR, Jobling S. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata. PLoS One 2016; 11:e0159852. [PMID: 27448327 PMCID: PMC4957768 DOI: 10.1371/journal.pone.0159852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- * E-mail:
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Catherine S. Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Leslie R. Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
14
|
Nedellec V, Rabl A, Dab W. Public health and chronic low chlordecone exposure in Guadeloupe, Part 1: hazards, exposure-response functions, and exposures. Environ Health 2016; 15:75. [PMID: 27406382 PMCID: PMC4942950 DOI: 10.1186/s12940-016-0160-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Inhabitants of Guadeloupe are chronically exposed to low dose of chlordecone via local food. The corresponding health impacts have not been quantified. Nevertheless the public authority implemented an exposure reduction program in 2003. We develop methods for quantifying the health impacts of chlordecone and present the results in 2 articles: 1. hazard identification, exposure-response functions (ERF) and exposure in Guadeloupe, 2. Health impacts and benefits of exposure reduction. Here is the first article. METHODS Relevant data are extracted from publications searched in Medline and Toxline. Available knowledges on mode of action and key-event hazards of chlordecone are used to identify effects of chlordecone that could occur at low dose. Then a linear ERF is derived for each possible effect. From epidemiological data, ERF is the delta relative risk (RR-1) divided by the corresponding delta exposure. From animal studies, ERF is the benchmark response (10 %) divided by the best benchmark dose modeled with BMDS2.4.0. Our goal is to obtain central values for the ERF slopes, applicable to typical human populations, rather than lower or upper bounds in the most sensitive species or sex. RESULTS We derive ERFs for 3 possible effects at chronic low chlordecone dose: cancers, developmental impairment, and hepatotoxicity. Neurotoxicity in adults is also a possible effect at low dose but we lack quantitative data for the ERF derivation. A renal toxicity ERF is derived for comparison purpose. Two ERFs are based on epidemiological studies: prostate cancer in men aged >44y (0.0019 per μg/Lblood) and altered neurodevelopment in boys (-0.32 QIpoint per μg/Lcord-blood). Two are based on animal studies: liver cancer (2.69 per mg/kg/d), and renal dysfunction in women (0.0022 per mg/kg/d). CONCLUSION The methodological framework developed here yields ERFs for central risk estimates for non-genotoxic effects of chemicals; it is robust with regard to models used. This framework can be used generally to derive ERFs suitable for risk assessment and for cost-benefit analysis of public health decisions.
Collapse
Affiliation(s)
- Vincent Nedellec
- />Consultant on Environmental risks and health safety, 23, rue André Masséna, 83000 Toulon, France
| | - Ari Rabl
- />Retired from Ecole des Mines/ARMINES, Paris, Consultant on Environmental Impacts, 6 av. Faidherbe, 91440 Bures sur Yvette, France
| | - William Dab
- />Conservatoire National des Arts et Métiers (CNAM), 292, rue Saint Martin, 75141 Paris cedex 03, France
| |
Collapse
|
15
|
Legrand E, Forget-Leray J, Duflot A, Olivier S, Thomé JP, Danger JM, Boulangé-Lecomte C. Transcriptome analysis of the copepod Eurytemora affinis upon exposure to endocrine disruptor pesticides: Focus on reproduction and development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:64-75. [PMID: 27111276 DOI: 10.1016/j.aquatox.2016.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/19/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Copepods-which include freshwater and marine species-represent the most abundant group of aquatic invertebrates. Among them, the calanoid copepod Eurytemora affinis is widely represented in the northern hemisphere estuaries and has become a species of interest in ecotoxicology. Like other non-target organisms, E. affinis may be exposed to a wide range of chemicals such as endocrine disruptors (EDs). This study investigated the gene expression variation in E. affinis after exposure to ED pesticides-chosen as model EDs-in order to (i) improve the knowledge on their effects in crustaceans, and (ii) highlight relevant transcripts for further development of potential biomarkers of ED exposure/effect. The study focused on the reproduction function in response to ED. Copepods were exposed to sublethal concentrations of pyriproxyfen (PXF) and chlordecone (CLD) separately. After 48h, males and females (400 individuals each) were sorted for RNA extraction. Their transcriptome was pyrosequenced using the Illumina(®) technology. Contigs were blasted and functionally annotated using Blast2GO(®). The differential expression analysis between ED- and acetone-exposed organisms was performed according to sexes and contaminants. Half of the 19,721 contigs provided by pyrosequencing were annotated, mostly (80%) from arthropod sequences. Overall, 2,566 different genes were differentially expressed after ED exposures in comparison with controls. As many genes were differentially expressed after PXF exposure as after CLD exposure. In contrast, more genes were differentially expressed in males than in females after both exposures. Ninety-seven genes overlapped in all conditions. Finally, 31 transcripts involved in reproduction, growth and development, and changed in both chemical exposures were selected as potential candidates for future development of biomarkers.
Collapse
Affiliation(s)
- Eléna Legrand
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Joëlle Forget-Leray
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Aurélie Duflot
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Stéphanie Olivier
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre for Analytical Research and Technology (CART), 4000 SART-Tilman, Belgium.
| | - Jean-Michel Danger
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Céline Boulangé-Lecomte
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| |
Collapse
|
16
|
Cunha DLD, Silva SMCD, Bila DM, Oliveira JLDM, Sarcinelli PDN, Larentis AL. Regulamentação do estrogênio sintético 17α-etinilestradiol em matrizes aquáticas na Europa, Estados Unidos e Brasil. CAD SAUDE PUBLICA 2016; 32:e00056715. [DOI: 10.1590/0102-311x00056715] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022] Open
Abstract
O estrogênio sintético 17α-etinilestradiol, principal componente utilizado em formulações de contraceptivos orais, tem sido apontado como um dos principais compostos responsáveis por provocar efeitos adversos no sistema endócrino de várias espécies. O objetivo deste estudo foi analisar o estado da arte dos dispositivos legais e normativos referentes ao controle desse estrogênio sintético nas águas da Europa e dos Estados Unidos, e traçar um paralelo com a realidade brasileira. No geral, os países têm buscado ampliar a regulamentação e monitoramento de alguns micropoluentes emergentes que antes não eram objeto de atenção por parte dos dispositivos legais. A Europa está mais avançada no que tange à qualidade dos corpos hídricos, enquanto que nos Estados Unidos esta substância é alvo de regulamentação apenas para a água destinada ao consumo humano. No Brasil, ainda não há nenhum dispositivo legal ou normativo que aborde esse estrogênio, o que pode ser associado a uma baixa maturidade do sistema brasileiro quanto ao controle de poluentes hídricos.
Collapse
|
17
|
Development and validation of an OECD reproductive toxicity test guideline with the pond snail Lymnaea stagnalis (Mollusca, Gastropoda). Regul Toxicol Pharmacol 2014; 70:605-14. [DOI: 10.1016/j.yrtph.2014.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 11/22/2022]
|