1
|
Wang X, Li J, Ge H, Pan S, Li P, Guo L, Yang L, Peng Z, Wang B, Wang Z, Wang C, Liu L. Plant traits mediate foliar uptake of deposited nitrogen by mature woody plants. PLANT, CELL & ENVIRONMENT 2024; 47:4870-4885. [PMID: 39101480 DOI: 10.1111/pce.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Increased atmospheric nitrogen (N) deposition significantly disturbs ecosystem N cycle. Although foliar interception and uptake of N deposition can provide an important alternative N supply to forest ecosystems, the mechanisms regulating foliar N uptake from wet deposition are not fully understood. Here, we selected 19 woody species with a wide range of plant traits from different functional groups and conducted a 15N isotope labelling experiment through brushing 15NH4 + and 15NO3 - solution on canopy leaves. Our findings demonstrate that leaves can directly absorb N from wet deposition within a few hours. The average leaf 15N recoveries were 10% and 28% under 15NH4 + and 15NO3 - treatments across species, respectively, while twig N recoveries were only 1%-7% of leaf N recoveries. Differences in foliar N uptake efficiency among species were closely associated with leaf traits but were little influenced by meteorological conditions or soil nutrient status. Specifically, plants with higher leaf N concentration, larger specific leaf area and lower wax concentration exhibited higher leaf N recovery. Our results indicated that tree canopies could directly absorb N from atmospheric deposition. We highlight the critical role of leaf traits in determining canopy foliar N uptake, which may consequently influence plant competition under elevated N deposition.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Heng Ge
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Shengnan Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, School of Life Sciences, Ningde Normal University, Ningde, Fujian, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang W, Qin J, Feng JQ, Dong XM, Hu H, Zhang SB. A mycoheterotrophic orchid uses very limited soil inorganic nitrogen in its natural habitat. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154367. [PMID: 39369620 DOI: 10.1016/j.jplph.2024.154367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Mycoheterotrophic plants acquire nitrogen (N) directly from the soil and through their symbiotic fungi. The fungi-derived N has received considerable attention, but the contribution of soil-derived N has been largely overlooked. We investigated how the leafless, rootless, and almost mycoheterotrophic orchid Cymbidium macrorhizon obtains soil N by applying 15N-labeled ammonium nitrate in its natural habitat, and tracking metabolite accumulation and mycorrhizal fungal association after N application. The decline of N in the rhizome from flowering to fruiting indicated a transfer of N from the rhizome to fruits. At current dose of N application (0.6 g NH4NO3 each plant), only 1.5% of the plant's N was derived from fertilizer, resulting in a low nitrogen use efficiency of 0.27%. The majority of those newly absorbed N (88.89%) was found sank in the rhizome. Amino acids (or their derivatives) and alkaloids were predominant differentially accumulated nitrogenous metabolites after N application, with amino acids occurring in both fruits and the rhizome, and alkaloids primarily in the fruits. The addition of N did not alter the richness of mycorrhizal fungi, but did affect their relative abundance. Our findings suggest that Cymbidium macrorhizon uses very limited soil inorganic nitrogen in its natural habitat, and the root-like rhizome primarily stores N rather than absorbs its inorganic forms, offering new insights into how mycoheterotrophic plants utilize soil N, and the influence of nutrient availability on the orchid-fungi association.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Jiao Qin
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Jing-Qiu Feng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Ruiz-Checa R, Pérez-Jordán H, García-Gómez H, Prieto-Benítez S, Gónzalez-Fernández I, Alonso R. Foliar nitrogen uptake in broadleaf evergreen Mediterranean forests: Fertilisation experiment with labelled nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171865. [PMID: 38518824 DOI: 10.1016/j.scitotenv.2024.171865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Atmospheric nitrogen (N) deposition in Mediterranean sclerophyllous forests of Holm oak (Quercus rotundifolia, Q. ilex) in Spain often exceeds empirical critical loads established for ecosystem conservation. There are still uncertainties on the capacity of canopy retention and uptake of the atmospheric N deposited of these forests. Studying and analysing all the forest nitrogen-cycle processes is essential to understand the potential effect of N deposition in these ecosystems. This study conducted a year-long short-term fertilisation experiment with labelled ammonium (15N-NH4) and nitrate (15N-NO3) to estimate foliar N absorption rates and assess the influence of leaf phenology and meteorological seasonal variations. Fertilising solutions were prepared to simulate low and high wet N deposition concentration, based on data reported from previous studies. Additionally, ecophysiological and meteorological measurements were collected to explore potential relationships between absorption rates, plant activity, and weather conditions. The results showed that Holm oak leaves were able to absorb both oxidised and reduced N compounds, with higher rates of NH4+ absorption. N recovery of both NH4+ and NO3- was higher in the low concentration treatments, suggesting reduced effectiveness of absorption as concentration increases. Foliar absorption rates were leaf-age dependent, with the highest values observed in young developing leaves. Foliar uptake showed seasonal changes with a clear reduction during the summer, linked to drought and dry weather conditions, and showing also smaller leaf net assimilation and stomatal conductance. During the rest of the year, foliar N absorption was not clearly associated to plant physiological activity but with environmental conditions. Our findings suggest that Holm oak canopies could absorb an important part of the incoming N deposition, but this process is compound, season and leaf phenology dependent. Further research is therefore needed to better understand and model this part of the N cycle.
Collapse
Affiliation(s)
- Raquel Ruiz-Checa
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain; Dept. of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles 28933, Madrid, Spain.
| | - Hugo Pérez-Jordán
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | - Héctor García-Gómez
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | - Samuel Prieto-Benítez
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | | | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| |
Collapse
|
4
|
Quassi de Castro SA, Sermarini RA, Rossi ML, Linhares de Castro RR, Trivelin PCO, Linhares FS. Optimizing foliar N-fertilization in sugarcane depends on plant genotype and nitrogen concentration. PHYSIOLOGIA PLANTARUM 2023; 175:e14085. [PMID: 38148209 DOI: 10.1111/ppl.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 12/28/2023]
Abstract
Foliar N-fertilization (FNf) has emerged as a promising approach to synchronize plant nitrogen (N) demands and application timing, reducing the N losses to the environment associated with traditional soil-based fertilization methods. However, limited information exists regarding the effectiveness of FNf in sugarcane. This study aimed to optimize FNf in sugarcane by evaluating N-fertilizer recovery by the plant (NRP) and assessing potential toxicity effects. Four sugarcane genotypes were subjected to FNf using 15 N-urea at five nitrogen concentrations. NRP was assessed at five time points for roots, stalk, old leaves, 15 N-urea-fertilized leaves (15 NL), and unexpanded leaves (UEL). Leaf scorching, indicating FNf toxicity, was analyzed using morpho-anatomical and histochemical techniques. The results showed that FNf promoted high NRP, with an average recovery of 62.3%. Surprisingly, the redistribution of 15 N-urea did not follow the nitrogen uptake rate by sugarcane leaves, with an average of 41.3% of the total-NRP. The stalk emerged as the primary sink for 15 N-urea, followed by the UEL. Genotypes differed in the leaf scorching intensity, which increased with higher concentration of 15 N-urea. Genotypes also differed in the 15 N-urea uptake rate, down-regulated by the N content in the 15 NL. These findings emphasize that by carefully choosing the appropriate genotype and nitrogen concentration, FNf can significantly enhance N-fertilizer uptake, resulting in potential environmental and economic benefits.
Collapse
Affiliation(s)
- Saulo Augusto Quassi de Castro
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- Laboratory of Stable Isotopes, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Renata Alcarde Sermarini
- Department of Math, Chemistry and Statistics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Monica Lanzoni Rossi
- Laboratory of Plant of Developmental and Structural Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Paulo Cesar Ocheuze Trivelin
- Laboratory of Stable Isotopes, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Francisco Scaglia Linhares
- Laboratory of Plant of Developmental and Structural Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
5
|
Tian Y, Wang J, Zhou L, Tao L, Lin Y, Hui D, Ren H, Lu H. Nitrogen budgets of a lower subtropical forest as affected by 6 years of over-canopy and understory nitrogen additions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158546. [PMID: 36067860 DOI: 10.1016/j.scitotenv.2022.158546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Although tropical and subtropical regions have replaced temperate regions as the global-change hotspots for increased atmosphere nitrogen (N) deposition, whether the regional forests reach N saturation is still unclear. Understory or floor N addition has been commonly used in N-deposition studies, but the results of such studies have recently been challenged because they fail to account for canopy interception, assimilation, and leaching processes. Here, we conducted a field experiment to quantify the effects of over-canopy and understory N addition on N budgets in a lower subtropical monsoon evergreen broadleaved (LSMEB) forest. We found that the LSMEB forest was not N saturated after receiving additional N at 25 and 50 kg ha-1 yr-1 for 6 years. Plants were able to absorb the added N by increasing the N concentrations in their organs, with 120-412 % increasing trend of plant N pools under N-addition treatments. Canopy absorption of N resulting from over-canopy N addition led to increases in N concentrations in tree organs but not to increases in tree biomass. Understory N addition could underestimate the effects of N deposition in forests due to neglecting canopy N interception and canopy effects on N redistribution. Additional experiments using over-canopy N addition are needed to assess the true effects of N deposition on different forest ecosystems in different climate zones.
Collapse
Affiliation(s)
- Yang Tian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jun Wang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lang Zhou
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Forestry Comprehensive Affairs Center of Baiyun District, Guangzhou 510540, China
| | - Libin Tao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Yongbiao Lin
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Hai Ren
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hongfang Lu
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
6
|
Ferraretto D, Nair R, Shah NW, Reay D, Mencuccini M, Spencer M, Heal KV. Forest canopy nitrogen uptake can supply entire foliar demand. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. Ferraretto
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| | - R. Nair
- Department Biogeochemical Integration Max Planck Institute for Biogeochemistry Jena Germany
| | - N. W. Shah
- Forest Research Northern Research Station Roslin Midlothian EH25 9SY UK
| | - D. Reay
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| | - M. Mencuccini
- CREAF Bellaterra (Cerdanyola del Vallès) 08193 Spain
- ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain
| | - M. Spencer
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| | - K. V. Heal
- School of GeoSciences University of Edinburgh Crew Building Edinburgh EH9 3FF UK
| |
Collapse
|
7
|
Wang X, Wang B, Wang C, Wang Z, Li J, Jia Z, Yang S, Li P, Wu Y, Pan S, Liu L. Canopy processing of N deposition increases short-term leaf N uptake and photosynthesis, but not long-term N retention for aspen seedlings. THE NEW PHYTOLOGIST 2021; 229:2601-2610. [PMID: 33112419 DOI: 10.1111/nph.17041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Forest canopies can retain nitrogen (N) from atmospheric deposition. However, most empirical and modeling studies do not consider the processing of the N deposited in the canopy. To assess whether N deposition through canopy will alter the plant's N uptake and retention, we conducted a 3-yr mesocosm experiment by applying (15 NH4 )2 SO4 solution to aspen sapling canopies or directly to the soil. We found that 15 N-NH4+ applied to the canopy was directly taken up by leaves. Compared with the soil N application, the canopy N application resulted in higher photosynthesis but lower N retention of the plant-soil system in the first growing season. Plant biomass, N concentration, and leaf N resorption were not significantly different between the canopy and soil N applications. The partitioning of retained 15 N among plant components and soil layers was similar between the two treatments 3 yr after the N application. Our findings indicated that the canopy N processing could alter leaf N supply and photosynthesis in the short term but not N retention in the long term. Under natural conditions, the chronic N deposition could continuously refill the canopy N pool, causing a sustained increase in canopy carbon uptake. Canopy N processing needs to be considered for accurately predicting the impact of N deposition.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Schreel JDM, Steppe K. Foliar Water Uptake in Trees: Negligible or Necessary? TRENDS IN PLANT SCIENCE 2020; 25:590-603. [PMID: 32407698 DOI: 10.1016/j.tplants.2020.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Foliar water uptake (FWU) has been identified as a mechanism commonly used by trees and other plants originating from various biomes. However, many questions regarding the pathways and the implications of FWU remain, including its ability to mitigate climate change-driven drought. Therefore, answering these questions is of primary importance to adequately address and comprehend drought stress responses and associated growth. In this review, we discuss the occurrence, pathways, and consequences of FWU, with a focus predominantly on tree species. Subsequently, we highlight the tight coupling between FWU and foliar fertilizer applications, discuss FWU in a changing climate, and conclude with the importance of including FWU in mechanistic vegetation models.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
9
|
Interspecific Differences in Canopy-Derived Water, Carbon, and Nitrogen in Upland Oak-Hickory Forest. FORESTS 2019. [DOI: 10.3390/f10121121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oaks (Quercus) are a dominant forest species throughout much of the eastern United States. However, oak regeneration failure due to a myriad of issues (e.g., suppression of natural fire, excess nitrogen deposition, pressure from herbivore activity) is leading to a decline in oak dominance. This change may alter forest hydrology and nutrients through variation in species characteristics. Throughfall (TF) and stemflow (SF) quantity and chemistry were sampled during storm events under oak and non-oak (hickory, Carya) species to quantify differences in canopy-derived water and nutrients from an upland oak-hickory forest in Mississippi. Stemflow partitioning was 86% higher in hickory species compared to oak species (394.50 L m−2; p < 0.001). Across all species, dissolved organic carbon (DOC) was 1.5 times greater in throughfall (p = 0.024) and 8.7 times greater in stemflow (p < 0.001) compared to rainfall. White oak DOC concentrations (TF: 22.8 ± 5.5 mg L−1; SF: 75.1 ± 9.5 mg L−1) were greater compared to hickory species (TF: 21.0 ± 18.3 mg L−1; SF: 34.5 ± 21.0 mg L−1) (p = 0.048). Results show that while smoother-barked hickory species generate more stemflow volume, rougher-barked oak species generate stemflow that is more enriched in nutrients, which is a function of the canopy characteristics of each species. Within a single stand, this study demonstrates how variable water and nutrient fluxes may be and provide insights into species-level variability in oak-hickory forest types that may be undergoing compositional changes.
Collapse
|
10
|
Meyer M, Schröder W, Nickel S, Leblond S, Lindroos AJ, Mohr K, Poikolainen J, Santamaria JM, Skudnik M, Thöni L, Beudert B, Dieffenbach-Fries H, Schulte-Bisping H, Zechmeister HG. Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:600-610. [PMID: 26318813 DOI: 10.1016/j.scitotenv.2015.07.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0mgg(-1) inside and 11.9mgg(-1) outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.
Collapse
Affiliation(s)
- Michaela Meyer
- University of Vechta, Driverstraße 22, 49377 Vechta, Germany.
| | | | - Stefan Nickel
- University of Vechta, Driverstraße 22, 49377 Vechta, Germany.
| | - Sébastien Leblond
- Muséum National d'Histoire Naturelle, 57 rue Cuvier, Case 39, 75005 Paris, France.
| | | | - Karsten Mohr
- Landwirtschaftskammer Niedersachsen, Mars-la-Tour Str. 1-13, 26121 Oldenburg, Germany.
| | - Jarmo Poikolainen
- Natural Resources Institute Finland, P.O. Box 413, FI-90014, University of Oulu, Finland.
| | | | - Mitja Skudnik
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Lotti Thöni
- FUB Research Group for Environmental Monitoring, Alte Jonasstraße 83, CH-8640 Rapperswil, Switzerland.
| | - Burkhard Beudert
- Nationalparkverwaltung Bayerischer Wald, Freyunger Straße 2, 94481 Grafenau, Germany.
| | | | | | | |
Collapse
|
11
|
Guerrieri R, Vanguelova EI, Michalski G, Heaton THE, Mencuccini M. Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. GLOBAL CHANGE BIOLOGY 2015; 21:4613-4626. [PMID: 26146936 DOI: 10.1111/gcb.13018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 05/28/2023]
Abstract
This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep ) for four forests in the United Kingdom subjected to different Ndep : Scots pine and beech stands under high Ndep (HN, 13-19 kg N ha(-1) yr(-1) ), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha(-1) yr(-1) ). Changes of NO3 -N and NH4 -N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ(18) O, Δ(17) O and δ(15) N in NO3 (-) and δ(15) N in NH4 (+) , were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4 -N and NO3 -N concentrations in RF compared to the LN sites. Similar values of δ(15) N-NO3 (-) and δ(18) O in RF suggested similar source of atmospheric NO3 (-) (i.e. local traffic), while more positive values for δ(15) N-NH4 (+) at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N-forms changed after interacting with tree canopies. Indeed, (15) N-enriched NH4 (+) in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ(18) O and Δ(17) O, we quantified for the first time the proportion of NO3 (-) in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ(17) O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ(17) O.
Collapse
Affiliation(s)
- Rossella Guerrieri
- Earth Systems Research Center, University of New Hampshire, Morse Hall, 8 College Rd, Durham, NH, 03824, USA
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
| | - Elena I Vanguelova
- Centre of Ecosystem, Society and Biosecurity, Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Greg Michalski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mell Drive, West Lafayette, IN, 47907, USA
| | - Timothy H E Heaton
- NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
- ICREA at CREAF, Cerdanyola del Valles, 08023, Barcelona, Spain
| |
Collapse
|