1
|
Zhang L, Zhou E, Liu C, Tian X, Xue B, Zhang K, Luo B. Avian influenza and gut microbiome in poultry and humans: A "One Health" perspective. FUNDAMENTAL RESEARCH 2024; 4:455-462. [PMID: 38933214 PMCID: PMC11197557 DOI: 10.1016/j.fmre.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 06/28/2024] Open
Abstract
A gradual increase in avian influenza outbreaks has been found in recent years. It is highly possible to trigger the next human pandemic due to the characteristics of antigenic drift and antigenic shift in avian influenza virus (AIV). Although great improvements in understanding influenza viruses and the associated diseases have been unraveled, our knowledge of how these viruses impact the gut microbiome of both poultry and humans, as well as the underlying mechanisms, is still improving. The "One Health" approach shows better vitality in monitoring and mitigating the risk of avian influenza, which requires a multi-sectoral effort and highlights the interconnection of human health with environmental sustainability and animal health. Therefore, monitoring the gut microbiome may serve as a sentinel for protecting the common health of the environment, animals, and humans. This review summarizes the interactions between AIV infection and the gut microbiome of poultry and humans and their potential mechanisms. With the presented suggestions, we hope to address the current major challenges in the surveillance and prevention of microbiome-related avian influenza with the "One Health" approach.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
- Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
| |
Collapse
|
2
|
Veronesi G, De Matteis S, Calori G, Pepe N, Ferrario MM. Long-term exposure to air pollution and COVID-19 incidence: a prospective study of residents in the city of Varese, Northern Italy. Occup Environ Med 2022; 79:192-199. [PMID: 35012995 PMCID: PMC8764713 DOI: 10.1136/oemed-2021-107833] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the association between long-term exposure to airborne pollutants and the incidence of SARS-CoV-2 up to March 2021 in a prospective study of residents in Varese city. METHODS Citizens of Varese aged ≥18 years as of 31 December 2019 were linked by residential address to 2018 average annual exposure to outdoor concentrations of PM2.5, PM10, NO2, NO and ozone modelled using the Flexible Air quality Regional Model (FARM) chemical transport model. Citizens were further linked to regional datasets for COVID-19 case ascertainment (positive nasopharyngeal swab specimens) and to define age, sex, living in a residential care home, population density and comorbidities. We estimated rate ratios and additional numbers of cases per 1 µg/m3 increase in air pollutants from single- and bi-pollutant Poisson regression models. RESULTS The 62 848 residents generated 4408 cases. Yearly average PM2.5 exposure was 12.5 µg/m3. Age, living in a residential care home, history of stroke and medications for diabetes, hypertension and obstructive airway diseases were independently associated with COVID-19. In single-pollutant multivariate models, PM2.5 was associated with a 5.1% increase in the rate of COVID-19 (95% CI 2.7% to 7.5%), corresponding to 294 additional cases per 100 000 person-years. The association was confirmed in bi-pollutant models; excluding subjects in residential care homes; and further adjusting for area-based indicators of socioeconomic level and use of public transportation. Similar findings were observed for PM10, NO2 and NO. Ozone was associated with a 2% decrease in disease rate, the association being reversed in bi-pollutant models. CONCLUSIONS Long-term exposure to low levels of air pollutants, especially PM2.5, increased the incidence of COVID-19. The causality warrants confirmation in future studies; meanwhile, government efforts to further reduce air pollution should continue.
Collapse
Affiliation(s)
- Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Sara De Matteis
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Marco M Ferrario
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Xie W, Zhao H, Shu C, Wang B, Zeng W, Zhan Y. Association between ozone exposure and prevalence of mumps: a time-series study in a Megacity of Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64848-64857. [PMID: 34318412 PMCID: PMC8315250 DOI: 10.1007/s11356-021-15473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we aim to evaluate the delayed and cumulative effect of ozone (O3) exposure on mumps in a megacity with high population density and high humidity. We took Chongqing, a megacity in Southwest China, as the research area and 2013-2017 as the research period. A total of 49,258 confirmed mumps cases were collected from 122 hospitals of Chongqing. We employed the distributed lag nonlinear models with quasi-Poisson link to investigate the relationship between prevalence of mumps and O3 exposure after adjusting for the effects of meteorological conditions. The results show that the effect of O3 exposure on mumps was mainly manifested in the lag of 0-7 days. The single-day ;lag effect was the most obvious on the 4th day, with the relative risk (RR) of mumps occurs of 1.006 (95% CI: 1.003-1.007) per 10 μg/m3 in the O3 exposure. The cumulative RR within 7 days was 1.025 (95% CI: 1.013-1.038). Our results suggest that O3 exposure can increase the risk of mumps infection, which fills the gap of relevant research in mountainous areas with high population density and high humidity.
Collapse
Affiliation(s)
- Wenjun Xie
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Han Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Chang Shu
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China
| | - Wen Zeng
- Sichuan University-the Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, Sichuan, China.
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, China.
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China.
| |
Collapse
|
4
|
Nozza E, Valentini S, Melzi G, Vecchi R, Corsini E. Advances on the immunotoxicity of outdoor particulate matter: A focus on physical and chemical properties and respiratory defence mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146391. [PMID: 33774291 DOI: 10.1016/j.scitotenv.2021.146391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter (PM) is acknowledged to have multiple detrimental effects on human health. In this review, we report literature results on the possible link between outdoor PM and health outcomes with a focus on pulmonary infections and the mechanisms responsible for observed negative effects. PM physical and chemical properties, such as size and chemical composition, as well as major emission sources are described for a more comprehensive view about the role played by atmospheric PM in the observed adverse health effects; to this aim, major processes leading to the deposition of PM in the respiratory tract and how this can pave the way to the onset of pathologies are also presented. From the literature works here reviewed, two ways in which PM can threaten human health promoting respiratory infectious diseases are mostly taken into account. The first pathway is related to an enhanced susceptibility and here we will also report on molecular mechanisms in the lung immune system responsible for the augmented susceptibility to pathogens, such as the damage of mechanical defensive barriers, the alteration of the innate immune response, and the generation of oxidative stress. The second one deals with the relationship between infectious agents and PM; here we recall that viruses and bacteria (BioPM) are themselves part of atmospheric PM and are collected during sampling together with particles of different origin; so, data should be analysed with caution in order to avoid any false cause-effect relation. To face these issues a multidisciplinary approach is mandatory as also evident from the ongoing research about the mechanisms hypothesized for the SARS-CoV-2 airborne spreading, which is still controversial and claims for further investigation. Therefore, we preferred not to include papers dealing with SARS-CoV-2.
Collapse
Affiliation(s)
- E Nozza
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy
| | - S Valentini
- Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy
| | - G Melzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - R Vecchi
- Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy.
| | - E Corsini
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
5
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
6
|
Williams LJ, Tristram SG, Zosky GR. Iron Oxide Particles Alter Bacterial Uptake and the LPS-Induced Inflammatory Response in Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010146. [PMID: 33379200 PMCID: PMC7794962 DOI: 10.3390/ijerph18010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Exposure to geogenic (earth-derived) particulate matter (PM) is linked to severe bacterial infections in Australian Aboriginal communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of silica and iron oxide on the inflammatory response and bacterial phagocytosis in macrophages. THP-1 and peripheral blood mononuclear cell-derived macrophages were exposed to iron oxide (haematite or magnetite) or silica PM with or without exposure to lipopolysaccharide. Cytotoxicity and inflammation were assessed by LDH assay and ELISA respectively. The uptake of non-typeable Haemophilus influenzae by macrophages was quantified by flow cytometry. Iron oxide increased IL-8 production while silica also induced significant production of IL-1β. Both iron oxide and silica enhanced LPS-induced production of TNF-α, IL-1β, IL-6 and IL-8 in THP-1 cells with most of these responses replicated in PBMCs. While silica had no effect on NTHi phagocytosis, iron oxide significantly impaired this response. These data suggest that geogenic particles, particularly iron oxide PM, cause inflammatory cytokine production in macrophages and impair bacterial phagocytosis. These responses do not appear to be linked. This provides a possible mechanism for the link between exposure to these particles and severe bacterial infection.
Collapse
Affiliation(s)
- Lewis J. Williams
- Tasmanian School of Medicine, University of Tasmania, 7000 Hobart, Australia;
| | - Stephen G. Tristram
- School of Health Sciences, University of Tasmania, 7250 Launceston, Australia;
| | - Graeme R. Zosky
- Tasmanian School of Medicine, University of Tasmania, 7000 Hobart, Australia;
- Menzies Institute for Medical Research, University of Tasmania, 7000 Hobart, Australia
- Correspondence: ; Tel.: +61-3-6226-6921
| |
Collapse
|
7
|
Han H, Oh EY, Lee JH, Park JW, Park HJ. Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model. Tuberc Respir Dis (Seoul) 2020; 84:55-66. [PMID: 33253518 PMCID: PMC7801812 DOI: 10.4046/trd.2020.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Particulate matter 10 (PM10; airborne particles <10 μm) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.
Collapse
Affiliation(s)
- Heejae Han
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Eun-Yi Oh
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mishra R, Krishnamoorthy P, Gangamma S, Raut AA, Kumar H. Particulate matter (PM 10) enhances RNA virus infection through modulation of innate immune responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115148. [PMID: 32771845 PMCID: PMC7357538 DOI: 10.1016/j.envpol.2020.115148] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 05/07/2023]
Abstract
Sensing of pathogens by specialized receptors is the hallmark of the innate immunity. Innate immune response also mounts a defense response against various allergens and pollutants including particulate matter present in the atmosphere. Air pollution has been included as the top threat to global health declared by WHO which aims to cover more than three billion people against health emergencies from 2019 to 2023. Particulate matter (PM), one of the major components of air pollution, is a significant risk factor for many human diseases and its adverse effects include morbidity and premature deaths throughout the world. Several clinical and epidemiological studies have identified a key link between the PM existence and the prevalence of respiratory and inflammatory disorders. However, the underlying molecular mechanism is not well understood. Here, we investigated the influence of air pollutant, PM10 (particles with aerodynamic diameter less than 10 μm) during RNA virus infections using Highly Pathogenic Avian Influenza (HPAI) - H5N1 virus. We thus characterized the transcriptomic profile of lung epithelial cell line, A549 treated with PM10 prior to H5N1infection, which is known to cause severe lung damage and respiratory disease. We found that PM10 enhances vulnerability (by cellular damage) and regulates virus infectivity to enhance overall pathogenic burden in the lung cells. Additionally, the transcriptomic profile highlights the connection of host factors related to various metabolic pathways and immune responses which were dysregulated during virus infection. Collectively, our findings suggest a strong link between the prevalence of respiratory illness and its association with the air quality.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Pandikannan Krishnamoorthy
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - S Gangamma
- National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru, 575025, Karnataka, India; Centre for Water Food and Environment, IIT Ropar, Rupnagar, 140001, Punjab, India
| | - Ashwin Ashok Raut
- Pathogenomics Laboratory, ICAR - National Institute of High Security Animal Diseases (NIHSAD), OIE Reference Laboratory for Avian Influenza, Bhopal, 462021, MP, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India; WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan.
| |
Collapse
|
9
|
Smit AJ, Fitchett JM, Engelbrecht FA, Scholes RJ, Dzhivhuho G, Sweijd NA. Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5634. [PMID: 32764257 PMCID: PMC7459895 DOI: 10.3390/ijerph17165634] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 virus infections in humans were first reported in December 2019, the boreal winter. The resulting COVID-19 pandemic was declared by the WHO in March 2020. By July 2020, COVID-19 was present in 213 countries and territories, with over 12 million confirmed cases and over half a million attributed deaths. Knowledge of other viral respiratory diseases suggests that the transmission of SARS-CoV-2 could be modulated by seasonally varying environmental factors such as temperature and humidity. Many studies on the environmental sensitivity of COVID-19 are appearing online, and some have been published in peer-reviewed journals. Initially, these studies raised the hypothesis that climatic conditions would subdue the viral transmission rate in places entering the boreal summer, and that southern hemisphere countries would experience enhanced disease spread. For the latter, the COVID-19 peak would coincide with the peak of the influenza season, increasing misdiagnosis and placing an additional burden on health systems. In this review, we assess the evidence that environmental drivers are a significant factor in the trajectory of the COVID-19 pandemic, globally and regionally. We critically assessed 42 peer-reviewed and 80 preprint publications that met qualifying criteria. Since the disease has been prevalent for only half a year in the northern, and one-quarter of a year in the southern hemisphere, datasets capturing a full seasonal cycle in one locality are not yet available. Analyses based on space-for-time substitutions, i.e., using data from climatically distinct locations as a surrogate for seasonal progression, have been inconclusive. The reported studies present a strong northern bias. Socio-economic conditions peculiar to the 'Global South' have been omitted as confounding variables, thereby weakening evidence of environmental signals. We explore why research to date has failed to show convincing evidence for environmental modulation of COVID-19, and discuss directions for future research. We conclude that the evidence thus far suggests a weak modulation effect, currently overwhelmed by the scale and rate of the spread of COVID-19. Seasonally modulated transmission, if it exists, will be more evident in 2021 and subsequent years.
Collapse
Affiliation(s)
- Albertus J. Smit
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town 7535, South Africa
- Elwandle Coastal Node, South African Environmental Observation Network (SAEON), Port Elizabeth 6031, South Africa
| | - Jennifer M. Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Francois A. Engelbrecht
- Global Change Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.A.E.); (R.J.S.)
| | - Robert J. Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.A.E.); (R.J.S.)
| | - Godfrey Dzhivhuho
- Department of Microbiology, Immunology and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, VA 22903, USA;
| | - Neville A. Sweijd
- Alliance for Collaboration on Climate and Earth Systems Science (ACCESS), Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa;
| |
Collapse
|
10
|
Nanomaterial Effects on Viral Infection. INTERACTION OF NANOMATERIALS WITH THE IMMUNE SYSTEM 2020. [PMCID: PMC7122331 DOI: 10.1007/978-3-030-33962-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potential for environmental and occupational exposures of populations to nanomaterials (NMs) has fostered concerns of associated adverse health effects, with a particular emphasis on pulmonary injury and disease. Many studies have revealed that several types of NMs can evoke a variety of biological responses, such as pulmonary inflammation and oxidative stress, which contribute to allergy, fibrosis, and granuloma formation. Less attention has been paid to health effects that may result from exposure to NMs and additional stressors such as pathogens, with a particular focus on susceptibility to viral infection. This chapter will summarize the current body of literature related to NMs and viral exposures with a primary focus on immune modulation. A summary of the studies performed and major findings to date will be discussed, highlighting proposed molecular mechanisms behind NM-driven host susceptibility, challenges, limitations, and future research needs. Specific mechanisms discussed include direct interaction between NMs and biological molecules, activation of pattern recognition receptors (PRRs) and related signaling pathways, production of oxidative stress and mitochondrial dysfunction, inflammasome activation, and modulation of lipid signaling networks.
Collapse
|
11
|
The Contribution of Geogenic Particulate Matter to Lung Disease in Indigenous Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152636. [PMID: 31344807 PMCID: PMC6696434 DOI: 10.3390/ijerph16152636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Indigenous children have much higher rates of ear and lung disease than non-Indigenous children, which may be related to exposure to high levels of geogenic (earth-derived) particulate matter (PM). The aim of this study was to assess the relationship between dust levels and health in Indigenous children in Western Australia (W.A.). Data were from a population-based sample of 1077 Indigenous children living in 66 remote communities of W.A. (>2,000,000 km2), with information on health outcomes derived from carer reports and hospitalisation records. Associations between dust levels and health outcomes were assessed by multivariate logistic regression in a multi-level framework. We assessed the effect of exposure to community sampled PM on epithelial cell (NuLi-1) responses to non-typeable Haemophilus influenzae (NTHi) in vitro. High dust levels were associated with increased odds of hospitalisation for upper (OR 1.77 95% CI [1.02–3.06]) and lower (OR 1.99 95% CI [1.08–3.68]) respiratory tract infections and ear disease (OR 3.06 95% CI [1.20–7.80]). Exposure to PM enhanced NTHi adhesion and invasion of epithelial cells and impaired IL-8 production. Exposure to geogenic PM may be contributing to the poor respiratory health of disadvantaged communities in arid environments where geogenic PM levels are high.
Collapse
|
12
|
Popovic I, Soares Magalhaes RJ, Ge E, Marks GB, Dong GH, Wei X, Knibbs LD. A systematic literature review and critical appraisal of epidemiological studies on outdoor air pollution and tuberculosis outcomes. ENVIRONMENTAL RESEARCH 2019; 170:33-45. [PMID: 30557690 DOI: 10.1016/j.envres.2018.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Ambient air pollution is the leading environmental risk factor for disease globally. Air pollutants can increase the risk of some respiratory infections, but their effects on tuberculosis (TB) are unclear. In this systematic literature review, we aimed to assess epidemiological studies on the association between outdoor air pollutants and TB incidence, hospital admissions and death (collectively referred to here as 'TB outcomes'). We sought to consolidate available evidence on this topic and propose recommendations for future studies. Following PRISMA guidelines, we searched PubMed, Web of Science, Google Scholar, and Scopus with no restrictions imposed on year of publication. A total of 11 epidemiological studies, performed in Asia, Europe and North America, met our inclusion criteria (combined sample size: 215,337 people). We extracted key study characteristics from each eligible publication, including design, exposure assessment, analytical approaches and effect estimates. The studies were assessed for overall quality and risk of bias using standard criteria. The pollutant most frequently associated with statistically significant effects on TB outcomes was fine particulate matter ( < 2.5 µm; PM2.5); 6/11 studies assessed PM2.5, of which 4/6 demonstrated a significant association). There was some evidence of significant associations between PM10 ( < 10 µm), nitrogen dioxide (NO2) and sulfur dioxide (SO2) and TB outcomes, but these associations were inconsistent. The existing epidemiological evidence is limited and shows mixed results. However, it is plausible that exposure to air pollutants, particularly PM2.5, may suppress important immune defence mechanisms, increasing an individual's susceptibility to development of active TB and TB-related mortality. Considering the small number of studies relative to the demonstrably large global health burdens of air pollution and TB, further research is required to corroborate the findings in the current literature. Based on a critical assessment of existing evidence, we conclude with methodological suggestions for future studies.
Collapse
Affiliation(s)
- Igor Popovic
- School of Public Health, Faculty of Medicine, University of Queensland, Herston, Australia.
| | - Ricardo J Soares Magalhaes
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, University of Queensland, Gatton, Australia; Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Erjia Ge
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Guy B Marks
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia; Woolcock Institute of Medical Research, Sydney, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW, Australia
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Wei
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine, University of Queensland, Herston, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW, Australia
| |
Collapse
|
13
|
Williams LJ, Zosky GR. The Inflammatory Effect of Iron Oxide and Silica Particles on Lung Epithelial Cells. Lung 2019; 197:199-207. [DOI: 10.1007/s00408-019-00200-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
|
14
|
Hou T, Liao J, Zhang C, Sun C, Li X, Wang G. Elevated expression of miR-146, miR-139 and miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice. Int Immunopharmacol 2018; 54:68-77. [DOI: 10.1016/j.intimp.2017.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 01/26/2023]
|
15
|
Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, Bisesi JH, Das D, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J 2017; 14:242. [PMID: 29273069 PMCID: PMC5741862 DOI: 10.1186/s12985-017-0909-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023] Open
Abstract
Background Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host’s immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host’s response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection. Methods Male C57BL/6 mice were exposed to 20 μg of SWCNT or control vehicle by intratracheal instillation followed by intranasal exposure to 3.2 × 104 TCID50 IAV or PBS after 3 days. On day 7 mice were euthanized and near-infrared fluorescence (NIRF) imaging was used to track SWCNT in lung tissues. Viral titers, histopathology, and mRNA expression of antiviral and inflammatory genes were measured in lung tissue. Differential cell counts and cytokine levels were quantified in bronchoalveolar lavage fluid (BALF). Results Viral titers showed a 63-fold increase in IAV in SWCNT + IAV exposed lungs compared to the IAV only exposure. Quantitation of immune cells in BALF indicated an increase of neutrophils in the IAV group and a mixed profile of lymphocytes and neutrophils in SWCNT + IAV treated mice. NIRF indicated SWCNT remained in the lung throughout the experiment and localized in the junctions of terminal bronchioles, alveolar ducts, and surrounding alveoli. The dual exposure exacerbated pulmonary inflammation and tissue lesions compared to SWCNT or IAV single exposures. IAV exposure increased several cytokine and chemokine levels in BALF, but greater levels of IL-4, IL-12 (P70), IP-10, MIP-1, MIP-1α, MIP-1β, and RANTES were evident in the SWCNT + IAV group. The expression of tlr3, ifnβ1, rantes, ifit2, ifit3, and il8 was induced by IAV alone but several anti-viral targets showed a repressed trend (ifits) with pre-exposure to SWCNT. Conclusions These findings reveal a pronounced effect of SWCNT on IAV infection in vivo as evidenced by exacerbated lung injury, increased viral titers and several cytokines/chemokines levels, and reduction of anti-viral gene expression. These results imply that SWCNT can increase susceptibility to respiratory viral infections as a novel mechanism of toxicity. Electronic supplementary material The online version of this article (10.1186/s12985-017-0909-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Xiao Zheng
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Justine Nicholas
- Department of Physiological Sciences, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Dipesh Das
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - Navid B Saleh
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - William L Castleman
- Department of Infectious Diseases and Pathology, PO Box 110880, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Williams LJ, Chen L, Zosky GR. The respiratory health effects of geogenic (earth derived) PM10. Inhal Toxicol 2017; 29:342-355. [DOI: 10.1080/08958378.2017.1367054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lewis J. Williams
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Graeme R. Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| |
Collapse
|
17
|
Kim YH, Ko KP, Kang IG, Jung JH, Oh DK, Jang TY, Kim ST. Low Concentration PM 10 Had No Effect on Nasal Symptoms and Flow in Allergic Rhinitis Patients. Clin Exp Otorhinolaryngol 2016; 10:164-167. [PMID: 27903069 PMCID: PMC5426392 DOI: 10.21053/ceo.2016.01116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/24/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022] Open
Abstract
Objectives Since Korea is geographically close to China (the origin site for Asian sand dust [ASD]) the health influence of ASD event will be still greater in Korea. We aimed to evaluate the effect of PM10 (particulate matter with aerodynamic diameter <10 μm, below 150 μg/m3) on the clinical course of allergic rhinitis (AR). Methods We enrolled 47 healthy volunteers (group A) and 108 AR patients sensitized to house dust mites (group B). For 120 consecutive days (from February 1st to May 30th, 2012), all subjects reported their daily nasal symptoms and performed 2 peak flowmeter readings to measure peak nasal inspiratory flow (PNIF). We evaluated the correlation between the daily concentration of PM10, symptoms, and PNIF of patients. We also investigated changes in symptoms and PNIF 2 days before and after ‘dusty’ days (daily concentration of PM10 >100 μg/m3) Results There was no significant difference between group A and B in nasal symptoms and PNIF during the 120-day period. Changes in nasal symptoms and PNIF were not statistically significant before or after a PM10 concentration rise above 100 μg/m3. Conclusion Low concentration PM10 does not have significant effect on nasal symptoms and PNIF in AR patients.
Collapse
Affiliation(s)
- Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Korea
| | - Kwang Pil Ko
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Il Gyu Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Joo Hyun Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Dae Kyu Oh
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Tae Young Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Korea
| | - Seon Tae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
18
|
Effects of Meteorological Parameters and PM10 on the Incidence of Hand, Foot, and Mouth Disease in Children in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050481. [PMID: 27171104 PMCID: PMC4881106 DOI: 10.3390/ijerph13050481] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a globally-prevalent infectious disease. However, few data are available on prevention measures for HFMD. The purpose of this investigation was to evaluate the impacts of temperature, humidity, and air pollution, particularly levels of particulate matter with an aerodynamic diameter 10 micrometers (PM10), on the incidence of HFMD in a city in Eastern China. Daily morbidity, meteorological, and air pollution data for Ningbo City were collected for the period from January 2012 to December 2014. A total of 86,695 HFMD cases were enrolled in this study. We used a distributed lag nonlinear model (DLNM) with Poisson distribution to analyze the nonlinear lag effects of daily mean temperature, daily humidity, and found significant relationships with the incidence of HFMD; in contrast, PM10 level showed no relationship to the incidence of HFMD. Our findings will facilitate the development of effective preventive measures and early forecasting of HFMD outbreaks.
Collapse
|