1
|
Liu K, Li Z, Liang X, Xu Y, Cao Y, Wang R, Li P, Li L. Biosynthesis and genetic engineering of phenazine-1-carboxylic acid in Pseudomonas chlororaphis Lzh-T5. Front Microbiol 2023; 14:1186052. [PMID: 37168109 PMCID: PMC10165110 DOI: 10.3389/fmicb.2023.1186052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Phenazine-1-carboxylic acid (PCA) is a biologically active substance with the ability to prevent and control crop diseases. It was certified as a pesticide by the Ministry of Agriculture of China in 2011 and was named "Shenzimycin." Lzh-T5 is a Pseudomonas chlororaphis strain found in the rhizosphere of tomatoes. This strain can produce only 230 mg/L of PCA. We used LDA-4, which produces the phenazine synthetic intermediate trans-2,3-dihydro-3-hydroxyanthranilic acid in high amounts, as the starting strain. By restoring phzF and knocking out phzO, we achieved PCA accumulation. Moreover, PCA production was enhanced after knocking out negative regulators, enhancing the shikimate pathway, and performing fed-batch fermentation, thus resulting in the production of 10,653 mg/L of PCA. It suggested that P. chlororaphis Lzh-T5 has the potential to become an efficiency cell factory of biologically active substances.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhenghua Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaoli Liang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanpeng Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yufei Cao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ling Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Ling Li,
| |
Collapse
|
2
|
Alleviation of Chlorpyrifos Toxicity in Maize ( Zea mays L.) by Reducing Its Uptake and Oxidative Stress in Response to Soil-Applied Compost and Biochar Amendments. PLANTS 2021; 10:plants10102170. [PMID: 34685979 PMCID: PMC8538628 DOI: 10.3390/plants10102170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022]
Abstract
Chlorpyrifos (CP) is a pesticide used extensively in agricultural crops. Residual CP has been found in a variety of soils, vegetables and fruits indicating a serious danger to humans. Therefore, it is necessary to restrict its entry into agricultural products for food safety. A wire-house pot experiment was conducted with maize plants in biochar- and compost-amended soil (at 0.25% and 0.50%, respectively, in weight-by-weight composition) contaminated with 100 and 200 mg kg−1 of CP, respectively. Results indicated toxicity at both CP levels (with 84% growth reduction) at CP 200 mg kg−1. However, application of compost and biochar at the 0.50% level improved the fresh weight (2.8- and 4-fold, respectively). Stimulated superoxide dismutase (SOD) and peroxidase (POX) activities and depressed catalase (CAT) activity were recorded in response to CP contamination and were significantly recovered by the amendments. Both amendments significantly decreased the CP phytoavailability. With biochar, 91% and 76% reduction in the CP concentration in maize shoots and with compost 72% and 68% reduction was recorded, at a 0.50% level in 100 and 200 mg kg−1 contaminated treatments respectively. Compost accelerated the CP degradation in postharvest soil. Therefore, biochar and compost amendments can effectively be used to decrease CP entry in agricultural produce by reducing its phytoavailability.
Collapse
|
3
|
Screening of Rice Endophytic Biofertilizers with Fungicide Tolerance and Plant Growth-Promoting Characteristics. SUSTAINABILITY 2019. [DOI: 10.3390/su11041133] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The application of pesticides is unavoidable in conventional agricultural practice. To develop effective biofertilizers, bacterial strains with both pesticide tolerance and plant growth-promoting (PGP) traits were isolated for further testing. Seedlings of rice (Oryza sativa) were planted in soil with 1, 5, or 10 times the recommended rates of the fungicides etridiazole, metalaxyl, and tricyclazole. Endophytic bacteria were isolated from roots of rice seedlings. The bacterial 16S rDNA sequences and related PGP characteristics including potential nitrogen fixation, phosphorus-solubilizing and indole acetic acid (IAA) production ability were further examined. In all, 17 different strains were obtained from rice seedling roots; five strains with both nitrogen fixation potential and IAA production ability included Rhizobium larrymoorei E2, Bacillus aryabhattai E7, Bacillus aryabhattai MN1, Pseudomonas granadensis T6, and Bacillus fortis T9. Except for T9, all strains could tolerate two or more fungicides. We inoculated rice roots with the endophytic bacteria and all conferred rice growth-promoting ability. Bacillus aryabhattai MN1 was further tested and showed high tryptophan dose-dependent IAA production ability, tolerance towards etridiazole and metalaxyl application and should be considered a potential bacterial biofertilizer.
Collapse
|
4
|
Meng Z, Chen X, Guan L, Xu Z, Zhang Q, Song Y, Liu F, Fan T. Dissipation kinetics and risk assessments of tricyclazole during Oryza sativa L. growing, processing and storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35249-35256. [PMID: 30341752 DOI: 10.1007/s11356-018-3445-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Because of the increase of people's attention to food safety, monitoring the residue of pesticide in rice is becoming more and more important. Commercial and home processing techniques have been used to transform paddy rice into rice products for human or animal consumption, which may reduce the pesticide content in rice. The degradation of tricyclazole during different stages of commercial and home processing and storage was assessed in this paper. Many researches studying the occurrence and distribution of pesticide residues during rice cropping and processing have been reported. Rice samples were extracted with acetonitrile, the extracts were enriched, and then residues were analyzed by liquid chromatography/tandem mass spectrometry method. The dissipation dynamics of tricyclazole in rice plant, soil, and paddy water fitted the first-order kinetic equations. The dissipation half-lives of tricyclazole in the rice plant, water, and soil at dosage of 300~450 g a.i. hm -2 were 4.84~5.16, 4.64~4.85, and 3.57~3.82 days, respectively. The residue levels of tricyclazole gradually reduced with different processing procedures. What is more, decladding process could effectively remove the residues of tricyclazole in raw rice, and washing process could further remove the residues of tricyclazole in polished rice. Degradation dynamic equations of tricyclazole in the raw rice and polished rice were based on the first-order reaction dynamic equations, and the half-lives of the degradation of tricyclazole was 43.32~58.24 days and 46.83~56.35 days in raw rice and polished rice. These results provide information regarding the fate of tricyclazole in the rice food chain, while it provides a theoretical basis for systematic evaluation of the potential residual risk of tricyclazole.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Lingjun Guan
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhiying Xu
- Yangzhou Polytechnic University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Qingxia Zhang
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yueyi Song
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Fang Liu
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tianle Fan
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Xi B, Zhao X, He X, Huang C, Tan W, Gao R, Zhang H, Li D. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. BIORESOURCE TECHNOLOGY 2016; 219:204-211. [PMID: 27494101 DOI: 10.1016/j.biortech.2016.07.120] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Humic-reducing microorganisms (HRMs) could utilize humic substances (HS) as terminal electron mediator to promote the biodegradation of recalcitrant pollutants. However, the dynamics of HRMs during composting has not been explored. Here, high throughput sequencing technology was applied to investigate the patterns of HRMs during three composting systems. A total of 30 main genera of HRMs were identified in three composts, with Proteobacteria being the largest phylum. HRMs were detected with increased diversity and abundance and distinct patterns during composting, which were significantly associated with dissolved organic carbon, dissolved organic nitrogen and germination index. Regulating key physical-chemical parameters is a process control of HRMs community composition, thus promoting the redox capability of the compost. The redox capability of HRMs were strengthened during composting, suggesting that HRMs of the compost may play an important role on pollutant degradation of the compost or when they are applied to the contaminated soils.
Collapse
Affiliation(s)
- Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China.
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China
| | - Rutai Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China
| | - Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China
| | - Dan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing 100012, China
| |
Collapse
|
6
|
Wei Y, Wei Z, Cao Z, Zhao Y, Zhao X, Lu Q, Wang X, Zhang X. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. BIORESOURCE TECHNOLOGY 2016; 211:610-617. [PMID: 27043056 DOI: 10.1016/j.biortech.2016.03.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
This study was conducted to assess the abundance, incidence and diversity of the culturable phosphate-solubilizing bacteria (PSB) community during different organic wastes composting. The key PSB affecting different phosphorus (P) fractions and their relationship with environmental variables were analyzed by redundancy analysis (RDA). The results showed that there were distinct differences in amounts, incidence and community composition of PSB for the composts from different sources. Regression analysis demonstrated significant corrections between the density and incidence of PSB and pH, temperature, OM and DOC/DON. Most of culturable PSB showed high percentages of identity with the phyla of Firmicutes and Proteobacteria. There were thirteen key PSB correlated closely (p<0.05) with different P fractions variation. Conclusively, we suggested a process control method to regulate the distribution of P fractions during composting based on the relationship between the key PSB and P fractions as well as environmental parameters.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhenyu Cao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- Laboratory of Water Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xueqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|