1
|
Chaka B, Osano AM, Nyaigoti OW, Forbes PBC. Investigations into the occurrence of polycyclic aromatic hydrocarbons in surface waters of the Narok and Bomet counties of Kenya. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240019. [PMID: 39439576 PMCID: PMC11495373 DOI: 10.1098/rsos.240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of emerging chemical pollutants that pose severe health challenges and toxicity to people and aquatic organisms exposed to these pollutants. This study sought to assess the types and levels of PAHs and their eco-toxicity indices in surface waters of Narok and Bomet counties of Kenya, which have witnessed an increase in charcoal-burning activities and vehicular emissions near water bodies. Sampling was done in eight regions of the two counties based on their proximity to PAH sources. Extraction of the water samples was done via a solid-phase mmethod. Seven US Environmental Protection Agency (US EPA) priority PAHs were detected. The concentrations of these PAHs varied from below the limits of detection up to 31.42 µg l-1 for dibenzo[a,h]anthracene. The majority of the PAHs from Narok County were pyrogenic, while those from Bomet were petrogenic based on PAH diagnostic ratios. The surface waters were significantly polluted with dibenzo[a,h]anthracene, with risk quotients above 1.0 in the surface waters, and were found to be hazardous, with hazard quotients above 10.0, thus indicating potential environmental risks. The findings indicate the need for stringent measures to be put in place to mitigate the risks posed by these PAHs.
Collapse
Affiliation(s)
- Bakari Chaka
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Aloys M. Osano
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Omwoyo Wesley Nyaigoti
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Patricia B. C. Forbes
- Department of Chemistry, Faculty of Agriculture and Natural Sciences, University of Pretoria, Pretoria0001, South Africa
| |
Collapse
|
2
|
Zhang F, Zhang D, Lou H, Li X, Fu H, Sun X, Sun P, Wang X, Bao M. Distribution, sources and ecological risks of PAHs and n-alkanes in water and sediments of typically polluted estuaries: Insights from the Xiaoqing River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121471. [PMID: 38878581 DOI: 10.1016/j.jenvman.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Xiaoyue Li
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Fan YH, Qin SB, Mou XX, Li XS, Qi SH. Accurate prediction bioaccessibility of PAHs in soil-earthworm system by novel magnetic solid phase extraction technique. CHEMOSPHERE 2024; 355:141821. [PMID: 38548073 DOI: 10.1016/j.chemosphere.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
Conventional chemical extraction methods may lead to overestimate or underestimate bioaccessibility due to their inability to provide realistic kinetic information regarding PAHs in soils. In this study, we propose the use of magnetic solid phase extraction (MSPE) technique for assessing the bioaccessibility of PAHs in the soil-earthworm system. Firstly, a novel polydopamine-coated magnetic core-shell microspheres (Fe3O4-C16@PDA) was developed by a one-pot sol-gel and self-polymerization method. The PDA coatings not only enhance the hydrophilicity of material surfaces but also exhibit excellent biocompatibility. The maximum adsorption capacity of Fe3O4-C16@PDA for 16 PAHs was 52.72 mg g-1, indicating that the proposed material fulfills the assessment requirements for highly contaminated soil. To compare the measurement of PAHs and their uptake by earthworms (Eisenia fetida), experiments were conducted using four different soils with varying properties. The desorption kinetics data obtained from these experiments demonstrated that the capability of the MSPE in accurately predicting the bioavailable portions of PAHs. After a 28-day exposure, the best predictor of bioavailable PAHs in earthworms was MSPE method exhibited the highest correlation coefficient (R2 > 0.90), and its slopes in the four soils were 0.972, 0.961, 1.012, and 0.962, respectively, all close to 1. These results demonstrate that the MSPE method successfully mimics the conditions encountered in soil-earthworm systems and effectively assess bioaccessibility of PAHs in soils.
Collapse
Affiliation(s)
- Yu-Han Fan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Xiao-Xuan Mou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Jesus F, Pereira JL, Campos I, Santos M, Ré A, Keizer J, Nogueira A, Gonçalves FJM, Abrantes N, Serpa D. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153282. [PMID: 35066033 DOI: 10.1016/j.scitotenv.2022.153282] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds, found ubiquitously in all environmental compartments. PAHs are considered hazardous pollutants, being of concern to both the environmental and human health. In the aquatic environment, PAHs tend to accumulate in the sediment due to their high hydrophobicity, and thus sediments can be considered their ultimate sink. Concurrently, sediments comprise important habitats for benthic species. This raises concern over the toxic effects of PAHs to benthic communities. Despite PAHs have been the subject of several reviews, their toxicity to freshwater benthic species has not been comprehensively discussed. This review aimed to provide an overview on PAHs distribution in freshwater environments and on their toxicity to benthic fauna species. The distribution of PAHs between sediments and the overlying water column, given by the sediment-water partition coefficient, revealed that PAHs concentrations were 2 to 4 orders of magnitude higher in sediments than in water. The sediment-water partition coefficient was positively correlated to PAHs hydrophobicity. Toxicity of PAHs to benthic fauna was addressed through Species Sensitivity Distributions. The derived hazardous concentration for 5% of the species (HC5) decreased as follows: NAP (376 μg L-1) > PHE > PYR > FLT > ANT (0.854 μg L-1), varying by 3 orders of magnitude. The hazardous concentrations (HC5) to benthic species were inversely correlated to the hydrophobicity of the individual PAHs. These findings are pertinent for environmental risk assessment of these compounds. This review also identified future challenges regarding the environmental toxicity of PAHs to freshwater benthic communities, namely the need for updating the PAHs priority list and the importance of comprehensively and more realistically assess the toxicity of PAHs in combination with other stressors, both chemical and climate-related.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martha Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Ré
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jacob Keizer
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Nogueira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Ranjbar Jafarabadi A, Mashjoor S, Riyahi Bakhtiari A, Cappello T. Ecotoxico Linking of Phthalates and Flame-Retardant Combustion Byproducts with Coral Solar Bleaching. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5970-5983. [PMID: 33886295 DOI: 10.1021/acs.est.0c08730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Persian Gulf coral reefs are unique biota communities in the global sunbelts in being able to survive in multiple stressful fields during summertime (>36 °C). Despite the high-growth emerging health-hazard microplastic additive type of contaminants, its biological interactions with coral-algal symbiosis and/or its synergistic effects linked to solar-bleaching events remain unknown. This study investigated the bioaccumulation patterns of polybrominated diphenyl ether (PBDE) and phthalate ester (PAE) pollutants in six genera of living/bleached corals in Larak Island, Persian Gulf, and their ambient abiotic matrixes. Results showed that the levels of ∑18PBDEs and ∑13PAEs in abiotic matrixes followed the order of SPMs > surface sediments > seawater, and the cnidarian POP-uptake patterns (soft corals > hard corals) were as follows: coral mucus (138.49 ± 59.98 and 71.57 ± 47.39 ng g-1 dw) > zooxanthellae (82.05 ± 28.27 and 20.14 ± 12.65 ng g-1 dw) ≥ coral tissue (66.26 ± 21.42 and 34.97 ± 26.10 ng g-1 dw) > bleached corals (45.19 ± 8.73 and 13.83 ± 7.05 ng g-1 dw) > coral skeleton (35.66 ± 9.58 and 6.47 ± 6.47 ng g-1 dw, respectively). Overall, findings suggest that mucus checking is a key/facile diagnostic approach for fast detection of POP bioaccumulation (PB) in tropical corals. Although studied corals exhibited no consensus concerning hazardous levels of PB (log BSAF < 3.7), our bleaching evidence showed soft corals as the ultimate "summer winners" due to their flexibility/recovering ability.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Li Q, Long Z, Wang H, Zhang G. Functions of constructed wetland animals in water environment protection - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144038. [PMID: 33348153 DOI: 10.1016/j.scitotenv.2020.144038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWLs) are widely used for water environment protection. In some cases, CWL animals can help improve CWL treatment efficiency and contribute to CWL maintenance and management. However, while plants, microorganisms, and substrates in CWLs have received much attention, animals have been largely ignored. Therefore, the aims of this review are to determine the roles wetland animals play in the water environmental protection of CWLs. This study introduced species of wetland animals and the main factors that can affect their survival. The way in which CWL animals affect pollutants was discussed in detail from four perspectives: adsorption and bioaccumulation, bioturbation, and the influence of CWL animals on plants and microorganisms. The characteristics of CWL animals that can be used for biological monitoring are summarized, and the use of CWLs for the protection of wetland biodiversity is also discussed. Finally, some prospects are proposed for future research. This study will help researchers better understand the role of CWL animals in CWLs and encourage researchers to focus on studies of wetland animals.
Collapse
Affiliation(s)
- Qiangang Li
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Zeqing Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongjie Wang
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
7
|
Belháčová-Minaříková M, Smedes F, Rusina TP, Vrana B. Application of equilibrium passive sampling to profile pore water and accessible concentrations of hydrophobic organic contaminants in Danube sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115470. [PMID: 33254663 DOI: 10.1016/j.envpol.2020.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Total concentrations of hydrophobic organic contaminants (HOCs) in sediment present a poor quality assessment parameter for aquatic organism exposure and environmental risk because they do not reflect contaminant bioavailability. The bioavailability issue of HOCs in sediments can be addressed by application of multi-ratio equilibrium passive sampling (EPS). In this study, riverbed sediment samples were collected during the Joint Danube Survey at 9 locations along the Danube River in 2013. Samples were ex-situ equilibrated with silicone passive samplers. Desorption isotherms were constructed, yielding two endpoints: pore water (CW:0) and accessible (CAS:0) concentration of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers in sediment. CW:0 concentrations of DDT and its breakdown products exhibited elevated levels in the low Danube, with the maximum in the river delta. Other investigated HOCs did not show any clear spatial trends along the river, and only a moderate CW:0 variability. CAS:0 in sediment ranged from 10 to 90% of the total concentration in sediment. CW:0 was compared with freely dissolved concentration in the overlaying surface water, measured likewise by passive sampling. The comparison indicated potential compound release from sediment to the water phase for PAHs with less than four aromatic rings, and for remaining HOCs either equilibrium between sediment and water, or potential compound deposition in sediment. Sorption partition coefficients of HOC to organic carbon correlated well with octanol-water partition coefficients (KOW), showing stronger sorption of PAHs to sediment than that of PCBs and OCPs having equal logKOW. Comparison of CW:0 values with European environmental quality standards indicated potential exceedance for hexachlorobenzene, fluoranthene and benzo[a]pyrene at several sites. The study demonstrates the utility of passive sampling as an innovative approach for risk-oriented monitoring of HOCs in river catchments.
Collapse
Affiliation(s)
| | - Foppe Smedes
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tatsiana P Rusina
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Branislav Vrana
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Ndabambi M, Kwon JH. Benzalkonium ion sorption to peat and clays: Relative contributions of ion exchange and van der Waals interactions. CHEMOSPHERE 2020; 247:125924. [PMID: 31978661 DOI: 10.1016/j.chemosphere.2020.125924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Due to their use in various domestic and industrial formulations, benzalkonium compounds have been isolated in many environmental matrices. Sorption to soil components has been shown to play a key role in their environmental fate. Whereas sorption of benzalkonium compounds to soils is attributed to cation exchange and van der Waals forces, the relative contributions of these two mechanisms at environmental levels have not been clearly defined. In this study a previously reported algal toxicity assay-based method was employed to determine the distribution coefficients (Kd) of benzalkonium compounds between water and soil components, at environmental concentrations. Cation exchange capacity corrected Kd values for organic matter and clays were all within one order of magnitude. This implies that ion exchange is the dominant mechanism of sorption for benzalkonium compounds. When the sorption data were used to compute sorption energies for four homologues of benzalkonium ions, the magnitude of the free energy change of sorption increased with size of the molecule. The increase in sorption energy could be partly explained by increased energy of hydration with addition of methylene groups to the alkyl chain. A model that predicts sorption coefficients of benzalkonium compounds to soils using organic carbon content and cation exchange capacity was also defined. When tested using an artificial soil, the model estimates were all within one order of magnitude of the experimental values.
Collapse
Affiliation(s)
- Mlamuli Ndabambi
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, 63 Beon-gil, Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Jonker MTO, Burgess RM, Ghosh U, Gschwend PM, Hale SE, Lohmann R, Lydy MJ, Maruya KA, Reible D, Smedes F. Ex situ determination of freely dissolved concentrations of hydrophobic organic chemicals in sediments and soils: basis for interpreting toxicity and assessing bioavailability, risks and remediation necessity. Nat Protoc 2020; 15:1800-1828. [PMID: 32313252 DOI: 10.1038/s41596-020-0311-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022]
Abstract
The freely dissolved concentration (Cfree) of hydrophobic organic chemicals in sediments and soils is considered the driver behind chemical bioavailability and, ultimately, toxic effects in benthic organisms. Therefore, quantifying Cfree, although challenging, is critical when assessing risks of contamination in field and spiked sediments and soils (e.g., when judging remediation necessity or interpreting results of toxicity assays performed for chemical safety assessments). Here, we provide a state-of-the-art passive sampling protocol for determining Cfree in sediment and soil samples. It represents an international consensus procedure, developed during a recent interlaboratory comparison study. The protocol describes the selection and preconditioning of the passive sampling polymer, critical incubation system component dimensions, equilibration and equilibrium condition confirmation, quantitative sampler extraction, quality assurance/control issues and final calculations of Cfree. The full procedure requires several weeks (depending on the sampler used) because of prolonged equilibration times. However, hands-on time, excluding chemical analysis, is approximately 3 d for a set of about 15 replicated samples.
Collapse
Affiliation(s)
- Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Robert M Burgess
- Atlantic Coastal Environmental Science Division, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Philip M Gschwend
- RM Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Hale
- Geotechnics and Environment, Norwegian Geotechnical Institute, Oslo, Norway
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, and Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Keith A Maruya
- Chemistry Department, Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Danny Reible
- Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Foppe Smedes
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Li JY, Yu W, Yin J, Chen Y, Wang Q, Jin L. Reduced bioavailability and ecological risks of polycyclic aromatic hydrocarbons in Yangshan port of East China Sea: Remediation effectiveness in the transition from construction to operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:679-686. [PMID: 31220721 DOI: 10.1016/j.scitotenv.2019.06.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
To assess the remediation effectiveness of ecological restoration in the transition period from construction to operation of Yangshan Port, the largest deepwater port of East China Sea, we employed equilibrium passive sampling and partitioning theory to assess the changing bioavailability and flux of polycyclic aromatic hydrocarbons (PAHs) in relation to bioaccumulation and ecological risks in marine organisms. Due to the ecological restoration efforts, both the bulk and bioavailable concentrations of PAHs in sediment and surface seawater samples decreased dramatically after the port entered the operation phase, as compared with those reported during the last construction phase. PAH concentrations in the marine organisms also showed a dramatic decline, and corresponded to the change in the freely dissolved fractions of PAHs in sediment/surface water according to their thermodynamic potential for bioaccumulation. While trophic magnification of ΣPAHs was observed in the pelagic communities, concentrations of PAHs in benthic species were relatively consistent across multiple trophic levels, and were generally higher than those in pelagic species. The differing bioaccumulation between benthic and pelagic species may be related to the habitat-specific bioavailability of PAHs and the prey-predator relations among different species. The incremental lifetime cancer risks (ILCR) of PAHs in marine organisms also dropped by nearly three orders of magnitude, and were lower than the guideline (1 × 10-6) proposed by the U.S. EPA, except for several species at higher trophic levels. Overall, our study highlights an integrated use of passive sampling and equilibrium partitioning theory as a robust tool that can be applied to assess the effectiveness of ecological remediation in the port environment with quantitative, mechanistic insights from bioavailability to bioaccumulation.
Collapse
Affiliation(s)
- Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjian Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
McGrath JA, Joshua N, Bess AS, Parkerton TF. Review of Polycyclic Aromatic Hydrocarbons (PAHs) Sediment Quality Guidelines for the Protection of Benthic Life. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:505-518. [PMID: 30945428 PMCID: PMC6852300 DOI: 10.1002/ieam.4142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/02/2019] [Accepted: 03/04/2019] [Indexed: 05/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in sediments can pose harm to the benthic community. Numerous sediment quality guidelines (SQGs) for the protection of benthic life are available to assess the risk of individual PAHs and PAH mixtures in sediments. Sediment quality guidelines are derived using empirical or mechanistic approaches. Empirically based guidelines are derived using databases of paired sediment chemistry and biological responses and relating sediment concentration to the frequency of an adverse response. Mechanistically based SQGs are derived by considering the inherent aqueous toxicity of the chemical to different biota coupled with site-specific sediment characteristics (i.e., organic C) known to influence PAH bioavailability. Additionally, SQGs are derived to be either protective or predictive of adverse effects in benthic organisms. The objective of this critical review was to evaluate SQGs for use in screening-level risk assessments to identify sediments that may pose a risk to the benthic community. SQGs for PAHs were compiled and compared, and performance evaluated for predicting the presence and absence of toxicity using an extensive field data set. Furthermore, a 2-carbon equilibrium partitioning model and direct measurement of porewater via passive sampling were evaluated for improved performance in higher tiered risk assessments. Recommendations for the use of SQGs in screening evaluations, enhancements to current approaches, and opportunities to refine site risk estimate assessments using passive sampling measurements are discussed. Integr Environ Assess Manag 2019;15:505-518. © 2019 SETAC.
Collapse
|
12
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Hedouin L, Shadmehri Toosi A, Cappello T. Spatio-temporal variability, distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in reef surface sediments of Kharg and Lark coral reefs, Persian Gulf, Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:307-322. [PMID: 30056345 DOI: 10.1016/j.ecoenv.2018.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution, particularly oil pollution, has been a long-standing problem in marine areas. With the aim to assess the pollution status in the Persian Gulf, Iran, herein surface sediments were collected from Kharg and Lark coral reefs, in summer (dry season) and winter (wet season), to evaluate the spatio-temporal variations of n-alkanes and PAHs. The mean total organic carbon (TOC) contents of sediments showed a significantly dramatic variation (p < 0.05) in both seasons at both Islands, with high values recorded at sites located near pollutant inputs. The total mean percent of clay grain-sized sediments at Kharg were 26.57% and 28.86% in dry and wet seasons, respectively, while in Lark were 26.73% in summer and 24.57% in winter. Additionally, at Kharg the mean ∑25n-alkanes and ∑30PAHs ranged from 81.35 to 573 µg g-1 dw and 60.25-491 ng g-1 dw in dry season, and 171-754 µg g-1 dw and 41.61-693 ng g-1 dw in winter, respectively. At Lark, the average ∑25n-alkanes and ∑30PAHs varied from 31.18 to 272 µg g-1 dw and 41.25-196 ng g-1 dw in summer, whilst oscillated from 57.99 to 332 µg g-1 dw and 16.56-487 ng g-1 dw in wet season, respectively. The lowest mean level of the examined pollutants were spanned in offshore sites, while the highest average concentrations indicated that contaminated sediments were at onshore stations at both Islands in both seasons. Significant seasonal variations (p < 0.05) were observed at most sampling sites for all pollutants. Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) indicated that n-alkanes and PAHs had mostly a petrogenic source. The compositional profile of PAHs showed that 2 and 3-ring PAHs were abundant at both sampling sites. Significant positive correlation (r > 0.76) was observed between ∑25n-alkanes and ∑30PAHs at Kharg and Lark sediments with TOC content, especially for the sites with high total pollutant concentrations. Based on the potential impact and ecological risk of n-alkanes and PAHs in surface sediments, it is, therefore, necessary in future studies to focus on their effects on corals and other marine organisms within this ecosystem.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University (TMU), Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University (TMU), Noor, Mazandaran, Iran.
| | - Laetitia Hedouin
- Department of Marine Biology, Faculty of Sciences, Perpignan, France
| | - Amirhossein Shadmehri Toosi
- Department of Civil & Environmental Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Roubalová R, Dvořák J, Procházková P, Škanta F, Navarro Pacheco NI, Semerád J, Cajthaml T, Bilej M. The role of CuZn- and Mn-superoxide dismutases in earthworm Eisenia andrei kept in two distinct field-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:363-371. [PMID: 29778984 DOI: 10.1016/j.ecoenv.2018.04.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), together with polycyclic aromatic hydrocarbons (PAHs), represent highly toxic and persistent organic environmental pollutants, especially due to their capability for bioaccumulation in fatty tissues. To observe the environmentally relevant effect of these compounds on earthworms, two soils naturally contaminated with PCDD/Fs and PAHs were used in our experiments. We focused on the role of CuZn- and Mn-superoxide dismutases. We assembled a full-length sequences of these molecules from Eisenia andrei earthworm and confirmed their activity. We demonstrated the significant reduction of CuZn-SOD on both mRNA and enzyme activity levels and increased levels of reactive oxygen species in earthworms kept in PCDD/F-polluted soil, which corresponds to the observed histopathologies of the earthworm intestinal wall and adjacent chloragogenous tissue. The results show an important role of CuZn-SOD in earthworm tissue damage caused by PCDD/Fs present in soil. We did not detect any significant changes in the mRNA expression or activity of Mn-SOD in these earthworms. In earthworms maintained in PAH-polluted soil the activity of both CuZn-SOD and Mn-SOD significantly increased. No histopathological changes were detected in these worms, however significant decrease of coelomocyte viability was observed. This reduced viability was most likely independent of oxidative stress.
Collapse
Affiliation(s)
- Radka Roubalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Jiří Dvořák
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Petra Procházková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - František Škanta
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | | | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic.
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| |
Collapse
|
14
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Laetitia H, Shadmehri Toosi A, Yap CK. First report of bioaccumulation and bioconcentration of aliphatic hydrocarbons (AHs) and persistent organic pollutants (PAHs, PCBs and PCNs) and their effects on alcyonacea and scleractinian corals and their endosymbiotic algae from the Persian Gulf, Iran: Inter and intra-species differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:141-157. [PMID: 29426136 DOI: 10.1016/j.scitotenv.2018.01.185] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
The coral reefs of the Persian Gulf are the most diverse systems of life in the marine environment of the Middle East. Unfortunately, they are highly threatened by local and global stressors, particularly oil pollutants. This is the first quantitative and qualitative study aimed at assessing the concentration and sources of n-alkanes and POPs (PAHs, PCBs and PCNs) in coral tissues, symbiotic algae (zooxanthellae), reef sediments and seawaters in coral reefs of Lark and Kharg in the Persian Gulf, Iran. This work was conducted on eight species of six genera and three families of hard corals and one family of soft coral. A significant variation in the concentration of ∑30n-alkanes and POPs (∑40PAHs, ∑22PCBs and 20PCNs) was found in the decreasing order: zooxanthellae > coral tissue > skeleton > reef sediment > seawater. The bioaccumulation of these compounds was 2-times higher in ahermatypic than in hermatypic corals, among which significant variations were observed in both sites. In Kharg, Porites lutea had the highest mean concentration of ∑30n-alkanes and ∑40PAHs in soft tissue, whereas the lowest values were in Platygyra daedalea. A contrasting trend was documented for ∑22PCBs and 20PCNs, with the highest level reported in soft tissue of P. daedalea and the lowest in P. lutea at Kharg. Compositional pattern of AHs and PAHs demonstrated the predominance of LMW-PAHs and n-alkanes. In skeleton and reef sediments, tetra, penta and tri-CBs were the most abundant PCBs congeners followed by di-CB > hexa-CB > hepta-CB > octa-CB,whiletri-CB > di-CB > tetra-CB > penta-CB > hexa-CB > hepta-CB > octa-CB was observed for soft tissue, zooxanthellae and seawater. The results of RAD test indicated significantly negative correlation between total concentration of these compounds with zooxanthellae density, the chlorophyll-a and C2 in corals at both reefs. This is the first report on levels, health assessment and source apportionments of POPs in zooxanthellae and a first step in the implementation of specific coral reef management measures.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mansour Aliabadian
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad (FUM), Iran
| | - Hédouin Laetitia
- USR3278 EPHE CNRS UPVD-CRIOBE, BP1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence, BP1013, 98729 Papetoai, Moorea, French Polynesia
| | - Amirhossein Shadmehri Toosi
- Department of Civil and environmental engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Brennan AA, Johnson NW. The utility of solid-phase microextraction in evaluating polycyclic aromatic hydrocarbon bioavailability during habitat restoration with dredged material at moderately contaminated sites. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:212-223. [PMID: 29045050 DOI: 10.1002/ieam.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/11/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
The over- or underprediction of risk in moderately contaminated sediments can have a large impact on the nature of applied management strategies given that concentrations border on being toxic or not toxic. Project managers should give significant consideration as to how moderate levels of contaminants in native sediments and dredged material used for restoration will impact recovery of habitat. Total solid-phase (Ctotal ) and porewater (Cfree ) polycyclic aromatic hydrocarbons (PAHs) were quantified in native sediments and dredged material to determine if the predictions of risk from Ctotal are consistent with those based on Cfree . The sediment matrix phase in which PAHs were quantified resulted in disparate conclusions regarding the predicted reduction in contamination following restoration. Total solid-phase PAH concentrations suggested a significant decrease following restoration, whereas little to no change was observed in measured Cfree . Risk metrics based on Ctotal gave inconclusive estimates for toxicity, whereas measured Cfree suggested toxicity is unlikely, a conclusion consistent with toxicity testing. The incorporation of black carbon (BC) into model estimates for Cfree gave predictions more consistent with measured Cfree , suggesting that geochemical conditions (especially BC) play an important part in predicting toxicity at moderately contaminated sites. In addition to the use of Cfree in toxicity evaluation, in-situ Cfree measurements provided a constraint on diffusive PAH loads from sediment relative to ongoing stream loads. If passive sampling had been employed during the sampling designs and site evaluations, the costs of toxicity testing would not have been incurred, given that Cfree suggested little to no toxicity. The results from the project highlight the benefits to be gained by moving beyond inconclusive, screening-level Ctotal metrics and implementing more sensitive and accurate Cfree metrics in assessments of risk in moderately contaminated sediments. Integr Environ Assess Manag 2018;14:212-223. © 2017 SETAC.
Collapse
Affiliation(s)
- Amanda A Brennan
- Water Resources Science, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Nathan W Johnson
- Water Resources Science, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
16
|
Guo JY, Chen JA, Wang JF, Wu FC. Bound PAHs in Sediment and Related Environmental Significance. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:530-539. [PMID: 28343339 DOI: 10.1007/s00244-017-0393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Extractable polycyclic aromatic hydrocarbons (EPAHs) and bound PAHs (BPAHs) were measured in a sediment core using conventional Soxhlet extraction and a more astringent extraction method, with the objectives of determining the influence of BPAHs on the historical reconstruction of PAHs and exploring the formation of BPAHs and long-term behaviors of PAHs in sediment. The results indicated that the formation of BPAHs was clearly sediment-depth and molecular-size dependent. BPAHs represents an important portion of PAHs in sediment and cannot be extracted by conventional Soxhlet extraction. This suggests that the previously developed vertical profile of PAHs is not the real chronology of PAHs and the plausible interpretation derived from the sedimentary records of PAHs needs reexamination. Based on the previous findings, a biphase model was proposed and the formation of BPAHs was predicted. Due to the different nature of geosorbents in sediment, redistribution of PAHs among these geosorbents logically leads to the formation of BPAHs and is kinetically favorable for smaller molecular PAHs. This is consistent with the obtained results. Many factors may influence the formation of BPAHs, such as the physicochemical structure of sediment and environmental conditions. There is still a long way to reveal the thermodynamical characteristics in action during the formation of BPAHs.
Collapse
Affiliation(s)
- Jian-Yang Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jing-An Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Jing-Fu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Feng-Chang Wu
- State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|