1
|
Liu H, Rong X, Zhao H, Xia R, Li M, Wang H, Cui H, Wang X, Zhou J. Bioaccumulation of Atmospherically Deposited Cadmium in Soybean: Three-Year Field Experiment Combined with Cadmium Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17703-17716. [PMID: 39317642 DOI: 10.1021/acs.est.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atmospheric deposition plays a significant role in introducing cadmium (Cd) into agroecological systems; however, accurately determining its accumulation in crops through foliar and root uptake presents challenges. This study investigated the bioaccumulation of atmospherically deposited Cd in soybean using a three-year fully factorial atmospheric exposure experiment incorporating Cd isotope analysis. Results shown that atmospheric deposition accounted for 1-13% of soil Cd pools, yet contributed 11-72% of Cd to soybean tissues during the growing seasons. Over the course of soil exposure to atmospheric deposition ranging from 1 to 3 years, no notable variations were observed in Cd concentrations in soil solutions and soybean tissues, nor in isotope ratios. Newly deposited Cd was a major source in soybean plants, and the bioavailability of deposited Cd rapidly aged in soils. Atmospheric Cd enriched in lighter isotopes induced negative isotope shifts in soybean plants. By employing an optimized isotope mixing model in conjunction with a mass balance approach, foliar Cd uptake contributed 13-51%, 16-45%, and 21-56% to stem, leaf, and seed, respectively. This study highlights substantial contribution of foliar uptake of atmospheric deposition to Cd levels in soybean and controlling foliar uptake as a potential strategy in agroecological systems experiencing high atmospheric Cd deposition.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
2
|
Zeng H, Xu X, Ding M, Zhang H, Jiang Y, Wang P, Huang G. Differential response of heavy metal accumulation in freshwater aquatic organisms to organic matter pathway (δ 13C) and trophic level (δ 15N). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124981. [PMID: 39293655 DOI: 10.1016/j.envpol.2024.124981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The migration of heavy metals into aquatic ecosystems is a concern for the safety of aquatic organisms and human health. However, the migration of heavy metals from habitats to the food chain in freshwater ecosystems requires extensive exploration. We extensively investigated the levels of heavy metals in multiple media of freshwater ecosystems and explored their migration from freshwater habitats to the food chain. The results showed that the concentrations of Cr, Cu, Cd, Zn, Sb, and Pb in sediments, Cr in mollusks, and Cd in clams exceeded their standard limit values. Feeding habits, species, and body length considerably affected heavy metal levels in fish, whereas regional differences, body length, and weight considerably affected heavy metal levels in mollusks. The bioconcentration capacity (improved biotawater (sediment) accumulation factors) of the muscles was higher than that of the gills and visceral mass. Mollusks were strongly enriched in Cu, Cd, Zn, and Mn in their habitats, whereas fish were more favourable for the accumulation of Cu, Zn, and Cr. Heavy metals in sediments pose a higher risk to aquatic organisms than those in the overlying water. Trophic level (TL) (δ15N) considerably diluted levels of most metals, whereas Cu and Zn levels increased along the organic matter pathway (δ13C) in the entire aquatic food chain. The levels of typical pollutants, such as Cu, Zn, As, Cd, Pb, and Cr changed considerably along the organic matter pathway in mollusks. The levels of heavy metals in fish were not affected by TL or organic matter pathway, except for Cu. The potential risk of consuming aquatic organisms from Poyang Lake was ranked as clams > snails > fish for adults and children and As in aquatic organisms was the primary contributor to health risk.
Collapse
Affiliation(s)
- Huan Zeng
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xiang Xu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Lab of Poyang Lake Wetland and Watershed Research, Ministry of Education Jiangxi, Nanchang 330022, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Lab of Poyang Lake Wetland and Watershed Research, Ministry of Education Jiangxi, Nanchang 330022, China.
| | - Yinghui Jiang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Lab of Poyang Lake Wetland and Watershed Research, Ministry of Education Jiangxi, Nanchang 330022, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Lab of Poyang Lake Wetland and Watershed Research, Ministry of Education Jiangxi, Nanchang 330022, China
| |
Collapse
|
3
|
Ahmed B, Islam S, Quraishi SB, Alam MNE, Ahsan MS, Kabir A. A probabilistic risk assessment of heavy metal in water and sediment: An industrially affected urban river in Bangladesh. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11097. [PMID: 39155848 DOI: 10.1002/wer.11097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Human welfare and biodiversity are at risk due to the deterioration of water and sediment quality. Particularly, in last few decades, global water and sediment quality degraded due to the rapid industrialization and urbanization. This study aimed to determine the concentration of nine heavy metals and metalloid (Pb, Cr, Cd, Hg, As, Mn, Ni, Cu, and Zn) and assess the ecological risks using different pollution indices (e.g., heavy metal pollution index [HPI], Nemerow pollution index [NI], geo-accumulation index [Igeo], contamination factor [CF], degree of contamination [CD] and pollution load index [PLI], ecological risk index [ERI]) in water and sediment of the Shitalakshya River, an industrially affected urban river of Bangladesh. For the first time, 20 water and sediment samples were collected across a wider geographical area of the Shitalakshya River during both monsoon and dry seasons and analyzed using the atomic absorption spectrometer. Average concentrations of heavy metals and metalloid in water were within the Bangladesh standard except for Cr (51.69 ppb) and Mn (228.20 ppb) during monsoon season, portraying potential ecological and human health risks. Besides, average concentration of Mn (549.75 and 370.93 ppb), Ni (549.75 and 370.93 ppb), and Cu (45.34 and 36.09 ppb) in sediment during both seasons were above international standard, implying risk to aquatic sediment biota. The average HPI values indicated moderate to high contamination, whereas the NI values implied polluted water in monsoon season with severe pollution in port area of the river. Similarly, Igeo, CF, CD, and PLI elucidated different levels of contamination in the sediment, particularly during dry season. The ERI values also referred moderate ecological risk in the sediment during dry season. Overall, our findings highlight the alarming level of heavy metal pollution in the Shitalakshya River, necessitating immediate action to protect the aquatic environment, sediment biota, and human health. PRACTITIONER POINTS: This study determined the concentration of heavy metals and metalloid in water and sediment of the Shitalakshya River, Bangladesh. The study revealed that the average concentration of Cr and Mn in water exceeded national standard, whereas Mn, Ni, and Cu in sediment exceeded international limit. Potential ecological risk of heavy metals was also assessed using different pollution indices. Calculated pollution indices indicated different degree of pollution, implying critical ecological condition due to heavy metal pollution in aquatic environment and sediment biota.
Collapse
Affiliation(s)
- Booshra Ahmed
- Department of Ecology, Faculty of Environmental Science and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, Bangladesh
| | - Shamaila Islam
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, Bangladesh
| | | | | | - Md Sabbir Ahsan
- Nuclear Power Plant Company Bangladesh Limited, Dhaka, Bangladesh
| | - Alamgir Kabir
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, Bangladesh
| |
Collapse
|
4
|
Baidourela A, Cheng S, Halik Ü, Sun Q, Zhayimu K, Zhang C, Cui K, Liu L, Sun G, Baiketuerhan Y, Wang W. Bio-availability of potential trace elements in urban dust, soil, and plants in arid northwest China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1981-1995. [PMID: 38979644 DOI: 10.1080/15226514.2024.2371916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Potential trace elements pollution in cities poses a threat to the environment and human health. Bio-availability affects toxicity levels of potential trace elementss on organisms. This study focused on exploring the relationship between soil, plant, and atmospheric dust pollution in Urumqi, a typical city in western China. It aims to help reduce pollution and protect residents' health. The following conclusions were drawn: 1) potential trace elementss like Cr, Pb, As, and Ni are more prevalent in atmospheric dust and soil than in plants. Chromium was in the first group, Cadmium and Mercury were in the second, and Plumb, Arsenic, and Nickel were in the third. Atmospheric dust and soil exhibit a significantly higher heavy metal content than plants. For example, The atmospheric dust summary Chromium content was up to 88 mg/kg. 2) Soil, atmospheric dust, and plants have the highest amount of residual form. Residual form had the highest percentage average of 53.3%, whereas Organic matter bound form had the lowest percentage of just 7.7%. The plants contained less residual heavy metal than the soil and atmospheric dust. 3) The correlation coefficient between the carbonated form content of Cd of soil and atmospheric dust is 0.95, which is closely related. Other potential trace elements show similar correlations in their bio-available contents in soil, plants, and atmospheric dust. This study suggests that in urban area, the focus should be on converting potential trace elements into residual form instead of increasing plants' absorption of potential trace elements.
Collapse
Affiliation(s)
- Aliya Baidourela
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Sisi Cheng
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Ümüt Halik
- College of Ecology and Environment, Xinjiang University, Urumqi, P.R. China
| | - Qian Sun
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Kahaer Zhayimu
- College of Ecology and Environment, Xinjiang University, Urumqi, P.R. China
| | - Cuifang Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Kaixu Cui
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Li Liu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Guili Sun
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Yeerjiang Baiketuerhan
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Weixia Wang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| |
Collapse
|
5
|
El-Keblawy A, Almehdi AM, Elsheikh EAE, Abouleish MY, Sheteiwy MS, Galal TM. Native desert plants have the potential for phytoremediation of phytotoxic metals in urban cities: implications for cities sustainability in arid environments. Sci Rep 2024; 14:13761. [PMID: 38877054 PMCID: PMC11178880 DOI: 10.1038/s41598-024-62622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg-1, respectively, while Tetraena accumulated the highest concentration of Sr (1676.9 mg kg-1) in their stems. In contrast, Pennisetum recorded the lowest concentration of Sr (21.0 mg kg-1), while Tetraena exhibited the lowest concentrations of Fe and Zn (22.5 and 30.1 mg kg-1) in their leaves. The roots of Pennisetum, Brassica, and Tetraena demonstrated the potential to accumulate Zn from the soil, with concentration factors (CF) of 1.75, 1.09, and 1.09, respectively. Moreover, Brassica exhibited the highest CF for Sr, measuring 2.34. Pennisetum, however, could not translocate PTMs from its rhizomes to other plant organs, as indicated by a translocation factor (TF) of 1. In contrast, Brassica effectively translocated the studied PTMs from its roots to the stem and leaves (except for Sr in the leaves). Furthermore, Pennisetum exclusively absorbed Zn from the soil into its leaves and stems, with an enrichment factor (EF) greater than 1. Brassica showed the ability to uptake the studied PTMs in its stem and leaves (except for Fe), while Tetraena primarily absorbed Sr and Zn into its stems. Based on the CF and TF results, Pennisetum appears to be a suitable species for phytostabilization of both Fe and Zn, while Brassica is well-suited for Sr and Zn polluted soils. Tetraena shows potential for Zn phytoremediation. These findings suggest that these plants are suitable for PTMs phytoextraction. Furthermore, based on the EF results, these plants can efficiently sequester PTMs.
Collapse
Affiliation(s)
- Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Department of Biology, Faculty of Science, Al-Arish University, El-Arish, Egypt.
| | - Ahmed M Almehdi
- Department of Chemistry, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Elsiddig A E Elsheikh
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed Y Abouleish
- Biology, Chemistry and Environmental Sciences Department, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Tarek M Galal
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
| |
Collapse
|
6
|
Duan X, Gu H, Lam SS, Sonne C, Lu W, Li H, Chen X, Peng W. Recent progress on phytoremediation of urban air pollution. CHEMOSPHERE 2024; 349:140821. [PMID: 38042424 DOI: 10.1016/j.chemosphere.2023.140821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The rapid growth of population and economy has led to an increase in urban air pollutants, greenhouse gases, energy shortages, environmental degradation, and species extinction, all of which affect ecosystems, biodiversity, and human health. Atmospheric pollution sources are divided into direct and indirect pollutants. Through analysis of the sources of pollutants, the self-functioning of different plants can be utilized to purify the air quality more effectively. Here, we explore the absorption of greenhouse gases and particulate matter in cities as well as the reduction of urban temperatures by plants based on international scientific literature on plant air pollution mitigation, according to the adsorption, dust retention, and transpiration functions of plants. At the same time, it can also reduce the occurrence of extreme weather. It is necessary to select suitable tree species for planting according to different plant functions and environmental needs. In the context of tight urban land use, the combination of vertical greening and urban architecture, through the rational use of plants, has comprehensively addressed urban air pollution. In the future, in urban construction, attention should be paid to the use of heavy plants and the protection and development of green spaces. Our review provides necessary references for future urban planning and research.
Collapse
Affiliation(s)
- Xiaoyi Duan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, DK-4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| | - Wenjie Lu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Dinaki FK, Cheraghi M, Lorestani B, Sobhanardakani S, Chamani A. Sediment-connected Potentially Toxic Element Contamination and Phytoremediation Potential of Native Aquatic Macrophytes along the Jajrood River, Tehran Province, Iran. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:65. [PMID: 37904030 DOI: 10.1007/s00128-023-03823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
This study was conducted to analyze Cu, Fe, and Pb contamination in sediments and also phytoremediation ability of bulrush (Typha Latifolia) and one-rowed water-cress (Nasturtium microphyllum) along the Jajrood River, Iran in 2022. In so doing, a total of 60 sediment and macrophyte samples were collected from four sites. The contents of the analyzed elements were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Also, the values of pollution index (PI), pollution load index (PLI), bioconcentration factor (BCF), bioaccumulation factor (BAF), transfer factor (TF) and metal accumulation index (MAI) were calculated. The results demonstrated that the average contents of Cu, Fe, and Pb were lower than those in the background, which presumably demonstrated natural sources of these metals. The greatest concentrations of analyzed elements for all the sediment and macrophyte samples were observed in specimens collected from S4 located at the end of the river, indicating the impact of anthropogenic entries from upstream areas on elemental accumulation in downstream section of the river. The values of PI reflected slight contamination. The higher BCF and lower translocation TF values of Fe and Pb in T. Latifolia and also Cu in N. microphyllum imply that these species could be suitable for their phytostabilization of above-mentioned elements from the sediment. This study provides evidenceas to the efficiency of T. Latifolia and N. microphyllum in bioremediation of Cu, Fe, and Pb in contaminated aquatic environments.
Collapse
Affiliation(s)
- Fatemeh Kakouei Dinaki
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Atefeh Chamani
- Department of Environmental Science and Engineering, Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
8
|
Hu Y, Wang H, Zhou B, Li Z, Jia H, Deji P, Liu N, Wei J. Effects of cadmium stress on fruits germination and growth of two herbage species. Open Life Sci 2023; 18:20220544. [PMID: 37070076 PMCID: PMC10105554 DOI: 10.1515/biol-2022-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 04/19/2023] Open
Abstract
Cadmium (Cd) pollution is a global environmental problem. It is of great significance to find a kind of pasture that can grow normally in a cadmium environment, especially in the Tibetan Plateau. We studied the fruit germination and fruit growth of Elymus sinsubmuticus S.L. Chen and Elymus tangutorum (Nevski), native plants of the Tibetan Plateau, in different cadmium environments. The results showed that with increased cadmium stress, the fruit germination rate, final germination rate, fruit-vigor, average germination time, and germination-speed index for the two grass species gradually decreased, and the 50% germination time for the seed gradually increased. Root length, biomass, and the number of leaves decreased in both species. We quantified the fruit germination and growth of plants in the cadmium environment and found that E. sinosubmuticus S.L. Chen had better fruit germination and fruit growth, and it had the development potential of cadmium pollution control.
Collapse
Affiliation(s)
- Ying Hu
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Huichun Wang
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
- Key Lab. of Medicinal Animal and Plant Resources on the Qinghai–Tibet Plateau, Xi’ning 810008, China
- The south of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China
| | - Biyao Zhou
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Zhengke Li
- Qinghai Province Ecological Environment Monitoring Center, Xi’Ning 810007, China
| | - Huiping Jia
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Pengmao Deji
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Nian Liu
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
- Key Lab. of Medicinal Animal and Plant Resources on the Qinghai–Tibet Plateau, Xi’ning 810008, China
| | - Jingjing Wei
- College of Geographical Sciences, Qinghai Normal University, Xi’ning 810008, China
| |
Collapse
|
9
|
Li X, Xiao J, Salam MMA, Chen G. Evaluation of dendroremediation potential of ten Quercus spp. for heavy metals contaminated soil: A three-year field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158232. [PMID: 36007636 DOI: 10.1016/j.scitotenv.2022.158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Woody plants have gained considerable attention for remediating soils contaminated with heavy metals because of their cost-efficient and ecologically friendly nature. However, most studies on potential phytoremediation evaluation are limited to short-term experiments in greenhouse or field, meaning that differences may exist between laboratory results and application in natural environment. In this study, ten Quercus spp. were tested in a consecutive 3-year field trial (2018-2020) to assess their dendroremediation abilities for Cd and Zn contaminated soil. The results revealed that nine Quercus spp. demonstrated good survival ability without any stress, except for Quercus velutina Lam., in the 3-year growth period. In 2020, Quercus texana Buckley and Quercus fabri Hance plants produced the greatest biomass (2100 and 1880 g plant-1) among the nine Quercus spp. Quercus texana had the highest total Cd accumulation (39.3 mg plant-1) in 2020, which was 8.5 times higher than that in 2018, followed by Quercus pagoda Raf. (8.85 mg plant-1) and Q. fabri (8.07 mg plant-1) plants, respectively, whereas Cd accumulation increased by 7.4 times for Q. pagoda and 22 times for Q. fabri compared to 2018. The results from 2020 indicated that Q. fabri had the highest Zn accumulation (205 mg plant-1), followed by Quercus nigra L. (149 mg plant-1) and Q. texana (140 mg plant-1), respectively, and these values increased 14, 6.4, and 6.2 times in comparison to 2018. The comprehensive bioaccumulation index (CBAI) was proposed to evaluate the dendroremediation potential of Quercus spp., suggesting that Q. texana and Q. fabri had the most outstanding potential for remediation of Cd and Zn polluted soil, with the values of 0.82 and 0.60, respectively. In summary, Q. texana and Q. fabri are ideal for remediating Cd/Zn-contaminated soil, and long-term field trials and the CBAI method are helpful for comprehensively evaluating the remediation capacity of trees.
Collapse
Affiliation(s)
- Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100 Joensuu, Finland; Natural Resources Institute Finland (LUKE), Yliopistokatu 6B, 80100 Joensuu, Finland
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
10
|
Liu H, Zhou J, Li M, Xia R, Wang X, Zhou J. Dynamic Behaviors of Newly Deposited Atmospheric Heavy Metals in the Soil-Pak Choi System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12734-12744. [PMID: 35977088 DOI: 10.1021/acs.est.2c04062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic behaviors of the newly deposited atmospheric heavy metals in the soil-pak choi (Brassica chinensis L.) system are investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.5-year and 1.5-year atmospheric depositions. The results showed approximately 17-87%, 19-64%, and 43-84% of the Cu, Cd, and Pb in pak choi edible parts were contributed from the new depositions, respectively. For the newly deposited metals, foliar uptake was the key pathway of shoot bioaccumulation rather than from root uptake of the deposited metals in soils, resulting in no significant soil contribution differences between pak chois growing in 0.5-year and 1.5-year exposed soils. Indeed, highly bioavailable metals in atmospheric deposition significantly increased the soil plant-bioavailable Cu, Cd, and Pb fractions; however, soil aging resulted in similar percentages of the plant-bioavailable fractions in 0.5-year and 1.5-year exposed soils, which indicated the bioavailability of metals deposited into soils rapidly decreased with aging. The soil aging process of the deposited metals was well fitted with the first-order exponential decay model, and soil organic matter and clay were the major driving factors. Our findings highlight high plant bioaccumulation rates and the rapid soil aging process of newly deposited metals during the plant growth period.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts 01854, United States
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| |
Collapse
|
11
|
A Review of Air Pollution Mitigation Approach Using Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API). ATMOSPHERE 2022. [DOI: 10.3390/atmos13030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution is a global environmental issue, and there is an urgent need for sustainable remediation techniques. Thus, phytoremediation has become a popular approach to air pollution remediation. This paper reviewed 28 eco-friendly indigenous plants based on both the air pollution tolerance index (APTI) and anticipated performance index (API), using tolerance level and performance indices to evaluate the potential of most indigenous plant species for air pollution control. The estimated APTI ranged from 4.79 (Syzygium malaccense) to 31.75 (Psidium guajava) among the studied indigenous plants. One of the selected plants is tolerant, and seven (7) are intermediate to air pollution with their APTI in the following order: Psidium guajava (31.75) > Swietenia mahogany (28.08) > Mangifera indica L. (27.97) > Ficus infectoria L. (23.93) > Ficus religiosa L. (21.62) > Zizyphus Oenoplia Mill (20.06) > Azadirachta indica A. Juss. (19.01) > Ficus benghalensis L. (18.65). Additionally, the API value indicated that Mangifera indica L. ranges from best to good performer; Ficus religiosa L. and Azadirachta indica A. Juss. from excellent to moderate performers; and Cassia fistula L. from poor to very poor performer for air pollution remediation. The Pearson correlation shows that there is a positive correlation between API and APTI (R2 = 0.63), and this implies that an increase in APTI increases the API and vice versa. This paper shows that Mangifera indica L., Ficus religiosa L., and Azadirachta indica A. Juss. have good potential for sustainable reduction in air pollution for long-term management and green ecomanagement development.
Collapse
|
12
|
Liu Z, Yang Y, Ji S, Dong D, Li Y, Wang M, Han L, Chen X. Effects of Elevation and Distance from Highway on the Abundance and Community Structure of Bacteria in Soil along Qinghai-Tibet Highway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413137. [PMID: 34948747 PMCID: PMC8701971 DOI: 10.3390/ijerph182413137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022]
Abstract
In recent years, highway construction in the Qinghai-Tibet Plateau (QTP) has developed rapidly. When the highway passes through grassland, the soil, vegetation, and ecological environment along the line are disturbed. However, the impact on soil bacteria is still unclear. Soil bacteria play an important role in the ecological environment. The Qinghai-Tibet Highway (QTH) was selected as the research object to explore the changes in bacterial community structure, vegetation, soil, and other indicators. The results showed that the highway-related activities increased the degradation of vegetation along the road, significantly changed the physical and chemical properties of soil, and caused heavy metal pollution. These environmental factors affected the diversity and community structure of soil bacteria. This kind of disturbance shows a trend of gradually increasing from near to far from the highway. Gemmatimonas, Terrimonas, Nitrospira and Bacillus are more tolerant to environmental changes along the highway, while Barnesiella, and Blastococcus are more sensitive. The content of nitrate decreased and the content of ammonium nitrogen increased in the disturbed area, increasing the abundance of nitrifying bacteria. Therefore, the main factor of the disturbance of the QTH on the grassland is the decline of soil nutrient content, and the supplement of soil nutrients such as carbon and nitrogen should be taken into account in the process of ecological restoration of grassland along the line.
Collapse
Affiliation(s)
- Zhuocheng Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (Z.L.); (S.J.); (D.D.); (Y.L.); (M.W.)
- Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China;
| | - Yangang Yang
- Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China;
| | - Shuangxuan Ji
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (Z.L.); (S.J.); (D.D.); (Y.L.); (M.W.)
- Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China;
| | - Di Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (Z.L.); (S.J.); (D.D.); (Y.L.); (M.W.)
| | - Yinruizhi Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (Z.L.); (S.J.); (D.D.); (Y.L.); (M.W.)
| | - Mengdi Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (Z.L.); (S.J.); (D.D.); (Y.L.); (M.W.)
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (Z.L.); (S.J.); (D.D.); (Y.L.); (M.W.)
- Correspondence: (L.H.); (X.C.)
| | - Xueping Chen
- Environmental Protection and Soil and Water Conservation Research Center, China Academy of Transportation Sciences, Beijing 100029, China;
- Correspondence: (L.H.); (X.C.)
| |
Collapse
|
13
|
Anjum S, Hussain M, Hameed M, Ahmad R. Physiological, Biochemical and Defense System Responses of Roadside Vegetation to Auto-Exhaust Pollution. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:946-954. [PMID: 34626210 DOI: 10.1007/s00128-021-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
This study determined the effects of traffic pollutants on plants (Nerium oleander and Ricinus communis) growing along Faisalabad to Okara (R-1) and Okara to Lahore (R-2) roads in Pakistan. The photosynthetic pigments, photosynthetic rate, transpiration rate and total soluble proteins of roadside vegetation were significantly lower than control plants (50 m away from road). The average decrease in photosynthetic rate of Nerium oleander and Ricinus communis was 33.90% and 27.94% along R-1 and 41.85% and 32.409% along R-2 road, respectively. The decreased photosynthesis in roadside flora resulted in higher water use efficiency and substomatal CO2 concentration. However, higher antioxidant activity and free amino acid contents were noted in roadside plants that might be due to their defensive response to traffic pollutants. N. oleander was more affected by traffic pollutants and R. communis showed more resistance. Thus, N. oleander could be used for biomonitoring and R. communis for phytoremediation of vehicular pollution.
Collapse
Affiliation(s)
- Sumreen Anjum
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Mumtaz Hussain
- Department of Botany, Faculty of Sciences, University of Agricuture, Faisalabad, Pakistan
| | - Mansoor Hameed
- Department of Botany, Faculty of Sciences, University of Agricuture, Faisalabad, Pakistan
| | - Rashid Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Liu HL, Zhou J, Li M, Obrist D, Wang XZ, Zhou J. Chemical speciation of trace metals in atmospheric deposition and impacts on soil geochemistry and vegetable bioaccumulation near a large copper smelter in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125346. [PMID: 33621776 DOI: 10.1016/j.jhazmat.2021.125346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric deposition is an important source of trace metals to surface environments, but knowledge about plant bioavailability of recently deposited metals and their fate in the soil-plant system is limited. We performed a fully factorial soil and atmosphere exposure experiment with three vegetables (radish, lettuce, and soybean). Treatments included soil profiles collected from three sites located along a strong gradient of atmospheric deposition with each soil type deployed across the three sites for one year, which allowed to effectively distinguish impacts of recently deposited metals (<1 year) from longer-term trace metal exposures in soils. Results showed that recently deposited copper (Cu), cadmium (Cd), and lead (Pb) accounted for 0.5-15.2% of total soil Cu, Cd, and Pb pools at the site most heavily impacted by atmospheric deposition, while recent deposition contributed 15-76% of Cu, Cd, and Pb concentrations in edible parts of vegetables. In addition, soil geochemical extractions showed that bioavailable fractions of trace metals from recent deposition (52-73%) were higher compared to metals previously present in soils (7-42%). These findings highlight a preferential uptake and high rates of bioaccumulation of deposited metals in vegetables and suggest a high potential of environmental risks of food pollution under high atmospheric metal deposition.
Collapse
Affiliation(s)
- Hai-Long Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, PR China.
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Kaur M, Bhatti SS, Katnoria JK, Nagpal AK. Investigation of metal concentrations in roadside soils and plants in urban areas of Amritsar, Punjab, India, under different traffic densities. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:222. [PMID: 33763761 DOI: 10.1007/s10661-021-09001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Vehicular emissions containing traces of different heavy metals are known to cause significant contamination of roadside soils and plants. The present study was conducted to investigate the heavy metal concentrations in roadside soil and plant samples (Alstonia scholaris, Nerium oleander, Tabernaemontana divaricata, and Thevetia peruviana) collected from urban areas of Amritsar city of Punjab, India, under different traffic densities. The soil and plant samples were collected in pre- and post-monsoon seasons from seven roadside sites under varying levels of traffic density and analyzed for four heavy metals (Cd, Cu, Pb, and Zn). In addition to that, total protein and carotenoid contents in plant samples were also determined. pH and electrical conductivity analysis of roadside soil samples revealed slight to strongly alkaline and non-saline nature of soil. Significant reduction in contents of total proteins and carotenoids was observed in plants collected from sites with moderate to high traffic density. The trend of heavy metal contents in plants and their corresponding soil samples was observed to be Zn > Cu > Pb > Cd for both the seasons. Index of geo-accumulation indicated moderate contamination of soil with metals analyzed, while bio-accumulation factor (BAF) showed both absorption and accumulation of metals in plants under study. The study revealed significant contamination of roadside soil and plants of Amritsar city which was linked to vehicular emissions posing potential risk to human health.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Henan Key Laboratory of Earth System Observation and Modelling, Henan University, Kaifeng, 475004, China
- College of Environment and Planning, Jinming Campus, Henan University, Henan, China
| | - Sandip Singh Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
16
|
Xue Z, Wu M, Hu H, Kianpoor Kalkhajeh Y. Cadmium uptake and transfer by Sedum plumbizincicola using EDTA, tea saponin, and citric acid as activators. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1052-1060. [PMID: 33491471 DOI: 10.1080/15226514.2021.1874290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sedum plumbizincicola (S. plumbizincicola) is known as a sufficient plant for phytoremediation of cadmium (Cd) polluted soils. This study aimed to investigate the effects of ethylene diamine tetraacetic acid (EDTA), tea saponin (TS), and citric acid (CA) on Cd uptake and translocation by S. plumbizincicola. To do so, using a pot experiment, we set four concentration levels of activators (1, 3, 5, and 10 mmol L-1) and a control (CK). Results showed that none of the applied activators had significant impact on soil pH. Except for CA-10, the concentration of available Cd in Cd polluted soils increased by 65.8-72.9% compared with CK. The EDTA-1, CA-1, and TS-5 treatments caused significant increases of 52.3, 67.2, and 38.4%, respectively, in the biomass of aerial parts of S. plumbizincicola (p < 0.05) compared with CK. Except for CA-3, activators increased Cd accumulation in the aerial parts of plants by 47-124% compared with CK. Of all activators, EDTA-3 caused the highest Cd accumulation of 6.64 g pot-1 in the aerial plant tissues followed by CA-10 (6.25 g pot-1) and TS-1 (5.48 g pot-1). Finally, our results suggested that the application of S. plumbizincicola together with different activators sufficiently reduced soil total Cd by 4.64-48.4% compared with CK. These findings suggest that appropriate application of EDTA, TS, and CA can promote phytoremediation of Cd contaminated soils by hyper-accumulators. In particular, the combined use of EDTA and S. plumbizincicola is an affordable and promising strategy for remediation of Cd contaminated soil.Novelty statement: Sedum plumbizincicola (S. plumbizincicola) is a well-known hyper-accumulator plant for remediation of cadmium (Cd) and zinc (Zn) contaminated soils. In addition, low molecular rganic acids and macromolecular chelating agents can improve the solubility and leaching of soil heavy metals. In the present work, we examined the combined effects of three activators (EDTA, tea saponin, and citric acid) with S. plumbizincicola to remediate a Cd contaminated soil in Anhui Province, East China. Our results indicated the effectiveness of these activators to increase soil available Cd, as well as improving the biomass of S. plumbizincicola and its Cd uptake. We believe that this study provides an efficient approach to increase the uptake of Cd by S. plumbizincicola, restoring Cd contaminated soils. Nevertheless, excessive activators may have adverse effects on soil aggregates and soil microorganisms. Therefore, it is necessary to control the amount of chelating agents and subsequently the deterioration of soil quality.
Collapse
Affiliation(s)
- Zhongjun Xue
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Mengjun Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hongxiang Hu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yusef Kianpoor Kalkhajeh
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Effects of road traffic on photosynthetic pigments and heavy metal accumulation in tree species of Kumasi Metropolis, Ghana. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04027-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractThis study was undertaken to examine changes in the content of pigments and accumulation of metals from vehicular pollution in selected species of roadside trees under vehicular pollution. A major arterial road with heavy vehicle emissions in the Kumasi Metropolis was designated as the polluted site, while Kwame Nkrumah University of Science and Technology Campus was designated as the control site. Four tree species (Terminalia catappa, Mangifera indica, Ficus platyphylla and Polyalthia longifolia) selected for the study were well distributed and abundant in the polluted and control sites. Photosynthetic pigments and levels of heavy metals (Pb, Cu, Cd and zinc) were assessed in their leaves. Chlorophyll and carotenoid contents were determined by absorption spectrometry, while the metal accumulation index (MAI) was used to determine the total metal accumulation capacity of the tree species. We observed a reduction in photosynthetic pigments in the leaf samples from the polluted site. Ficus platyphylla had the maximum reduction in total chlorophyll (49.34%), whereas Terminalia catappa recorded the lowest reduction (33.88%). Similarly, the largest decrease (31.58%) of carotenoid content was found in Terminalia catappa trees and the lowest in Polyalthia longifolia (16.67%). The Polyalthia longifolia, Ficus platyphylla and Terminalia catappa leaf samples collected at the polluted site recorded a higher ratio of chlorophyll a/b. Heavy metal (Cu, Pb, Zn and Cd) accumulation in leaf samples was higher in the polluted site than in the control, as expected. The highest metal MAI value was recorded in Mangifera indica (5.35) followed by Polyalthia longifolia with 4.30. The findings from this study specifically demonstrate that air contamination induced by vehicles decreases the level of photosynthetic pigments in trees subjected to roadside emissions. It is clear that both chlorophyll a/b and chlorophyll/carotenoid ratios will act as very useful stress-level markers. Elevated heavy metal levels in the tree species along arterial roadsides indicate that they serve as heavy metals sink. The change in MAI resulting from different pollution burden is an indication that the removal capabilities of the tree species differ from each other. We therefore suggest M. indica and P. longifolia as potential species to be used in air pollution reduction plans in the city.
Collapse
|
18
|
Li X, Xiao J, Ma C, Salam MMA, Shi J, Chen G. The effect of particle size of bamboo biochar on the phytoremediation of Salix psammophila C. to multi-metal polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:658-668. [PMID: 33251831 DOI: 10.1080/15226514.2020.1849012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biochar shows great potential in soil remediation. The benefits of biochar on soil depend onits intrinsic properties and soil characteristics. However, the influence of particle sizes of biochar on soil remediation is not clear. In a pot experiment, we evaluated the effects of bamboo biochar (BBC) particle sizes (P1 < 0.15 mm, 0.15 mm < P2 < 0.25 mm, 0.25 mm < P3 < 0.50 mm) on phytoremediation efficiency of Salix psammophila C. cultivated in multi-metal polluted soil. We added the BBC at 3% (w/w) in tested soil. Next, the BBC was thoroughly mixed with soil and weighting to the pot, and S. psammophila cuttings were planted and grown for six months in the amended soil under model growth condition.Results revealed the addition of different sizes of BBC particles affected soil quality, plant growth, and HMs accumulation in plants. All sizes of BBC treatments improved Cd and Zn accumulation, whereas plants in P2 treatment showed the greatest accumulation, increased by 52.41 and 25.55% compared with the control (1,503 and 19,928 μg·plant-1). Overall, the results indicated BBC enhanced the phytoremediation efficiency of S. psammophila. Plants cultivated in P2 treatment showed the most significant effect on remediating contaminated soil.
Collapse
Affiliation(s)
- Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jiuxi Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Li X, Xiao J, Salam MMA, Ma C, Chen G. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:387-399. [PMID: 33174478 DOI: 10.1080/15226514.2020.1816893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigated the effects of bamboo biochar (BBC) as soil amendment on growth and phytoremediation potential of Salix psammophila in soil heavily polluted by Cd and Zn. Bamboo biochar was added to soil at ratios ranging from 1 to 7% (w/w), which significantly increased the organic matter, available potassium (K) content, while decreased the hydrolyzable nitrogen (N) content and the levels of total and bioavailable HMs in soil. The BBC amendment at ratios of 1% to 5% showed little effect on growth of plant, whereas at 7% ratio significantly decreased biomass compared to the control. BBC amendment stimulated the accumulation of Cu, Cd and Zn in plant tissues, meanwhile, Cd and Zn accumulation were more evident, especially in the BBC-3% treatment. BBC amendment improved the TF and BCF values of Cd, Zn and Cu compared to control. Higher BCF for Cd (BCF >1) and TF for Zn (TF >1) values indicate Salix psammophila have considerable potential for phytoremediation efficiency in BBC amended soil treatment. This study provides practical evidence of the efficient BBC-assisted phytoremediation capability of Salix psammophila and highlights its potential as a viable and inexpensive approach for in situ remediation.
Collapse
Affiliation(s)
- Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
20
|
Influence of Different Types of Land Use on the Contents of Potentially Toxic Elements and De-icing Salts in Roadside Soils and Trees in Urban Areas. SUSTAINABILITY 2020. [DOI: 10.3390/su12218985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to manage the urban environment and reduce pollution, it is essential to determine potentially toxic elements and de-icing salts in roadside soils and plants, which are major components of green infrastructure. A field study was conducted to elucidate the influence of land use on potentially toxic elements and de-icing salts in roadside soil and trees in urban areas. The effect of land use was determined in commercial, residential, industrial, and green areas of Cheongju city. The roadside soil and plant samples were collected from four different sites along a major roadway in the city. The chemical parameters determined were pH, electronic conductivity, potentially toxic elements (Cd, Cu, Zn, Cr, As, Pb, Ni), and de-icing salts (Na, Ca, Mg). The pH, electronic conductivity, potentially toxic elements (except copper), and de-icing salt values were significantly (p < 0.05) affected by the land use. On the other hand, the potentially toxic element (except zinc and nickel) levels in roadside tree leaves (Ginkgo biloba) were not affected by the different land use, whereas the de-icing salt levels were significantly different (p < 0.05). The enrichment factor (EF) of potentially toxic elements was found to be lower than that of de-icing salts with the highest values of sodium in green areas and of magnesium in commercial areas. These results provide information on the implications of land use, including the surrounding area of influenced roadside soil and plant chemistry for the urban ecosystem.
Collapse
|
21
|
Hosseini NS, Sobhanardakani S, Cheraghi M, Lorestani B, Merrikhpour H. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13301-13314. [PMID: 32020453 DOI: 10.1007/s11356-020-07874-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The present study was conducted to analyze the effects of traffic volumes on Cd, Cu, Pb, Ni, and Zn contents in roadside soils and in two dominant herbaceous species (Achillea wilhelmsii and Cardaria draba) along highways and to evaluate the dynamic characteristics of these elements and their accumulation by the aerial parts and roots of these herbaceous species. The plant samples were collected along 700 m of a 9-km segment of each of the three major highways in Hamedan Province (West Iran) with different traffic volumes: Hamedan-Goltapeh (HG), Hamedan-Razan (HR), and Hamedan-Kermanshah (HK). The results indicated that the mean contents of Cd, Cu, Pb, Ni, and Zn in the soil samples were 0.26, 18.74, 14.98, 18.21, and 62.25 mg kg-1, respectively. Furthermore, the mean contents of elements (mg kg-1) in aerial parts of A. wilhelmsii were 0.16 for Cd, 4.52 for Cu, 1.91 for Pb, 1.70 for Ni, and 44.80 for Zn, while in the aerial part samples of C. draba, the concentrations (mg kg-1) and the mean contents were 0.16, 2.29, 2.58, 1.60, and 31.29, respectively. This meant that the traffic volume affected the contents of the metals in the soil and the herbaceous species. The metal content in herbaceous tissues varied significantly between plant species. A. wilhelmsii tended to accumulate the metals in the roots while C. draba retained them mostly in the aerial parts. The significant positive correlations of Cd, Cu, Ni, and Zn content in root and aerial parts of the herbaceous plant with those found in the soil samples showed the potential of the studied species for application in biomonitoring studies. Comprehensive analysis (effect of traffic volumes and relationships between the content of elements in plant tissues and soil samples) indicated that Cu in both herbaceous plants was mainly derived from soil, while A. wilhelmsii absorbed Cd and C. draba absorbed Zn mainly through the stomata from atmospheric depositions. Without considering atmospheric depositions due to intense traffic volumes, in A. wilhelmsii, the translocation factor (TF) values of Cu and Zn were 1.06 and 1.44, respectively and in C. draba, the TF values of Cd, Cu, and Pb were 1.06, 1.09, and 1.13, respectively, thus suggesting that both herbaceous species had high potentials for transferring metals from the roots to aerial parts.
Collapse
Affiliation(s)
- Nayereh Sadat Hosseini
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hajar Merrikhpour
- Department of Agriculture, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| |
Collapse
|
22
|
Antoniadis V, Shaheen SM, Levizou E, Shahid M, Niazi NK, Vithanage M, Ok YS, Bolan N, Rinklebe J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. ENVIRONMENT INTERNATIONAL 2019; 127:819-847. [PMID: 31051325 DOI: 10.1016/j.envint.2019.03.039] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 05/22/2023]
Abstract
Trace elements (TEs) may have toxic effects to plants and humans; thus, countries and organizations impose maximum allowable regulation limits of their concentrations in soils. Usually such limits are placed in different categories according to soil use, soil properties or based on both attributes. However, some countries have regulation limits irrespective of differentiation in soil properties. In this review, we aimed at collecting TE regulation limits in soils from major countries and organizations around the globe, and critiquing them by assessing potential human health risks in the case of soils attaining the maximum allowable values. We explored the soil-to-human pathway and differentiated among three major exposures from TEs, i.e., residential, industrial and agricultural. We observed the existence of problems concerning TE regulation limits, among which the fact that limits across countries do not regulate the same TEs, not even a minimum number of TEs. This indicates that countries do not seem to agree on which regulation limits of TEs pose a high risk. Also, these regulation limits do not take into account TE mobility to neighbouring environment interphases such as plant, especially edible, and water matrices. Moreover, limits for same TEs are vastly diverse across countries; this indicates that those countries have conflicting information concerning TE-related health risks. Subsequently, we addressed this problem of diversity by quantifying resultant risks; we did that by calculating human health risk indices, taking into consideration the cases in which the highest allowable TE limits are attained in soil. Arsenic limits were found to generate a relatively high hazard quotient (HQi, accounting for human intake over the maximum allowable oral reference dose for that same TE), indicating that its risk tends to be underestimated. Other TE limits, such as those of Cd, Cu, Ni, Pb, and Zn typically result in low HQi, meaning that limits in their cases are rather overprotective. Our approach reveals the need of reducing diversity in regulation limits by drafting soil legislations of worldwide validity, since risks are common across countries. We suggest that new directions should strategically tend to (a) reduce limits of TEs with underestimated contribution to health risk (such as As), (b) cautiously increase limits of TEs that currently cause minor health risks, (c) quantify TE risks associated with uptake to edible plants and potable water, and (d) consider multi-element contamination cases, where risks are cumulatively enhanced due to TE synergism.
Collapse
Affiliation(s)
- Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, NSW, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Bernardino CAR, Mahler CF, Santelli RE, Freire AS, Braz BF, Novo LAB. Metal accumulation in roadside soils of Rio de Janeiro, Brazil: impact of traffic volume, road age, and urbanization level. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:156. [PMID: 30747380 DOI: 10.1007/s10661-019-7265-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Traffic-related metal emissions have become a global concern due to their deposition in roadside soils and potential hazardous effects. This study evaluates metal levels in soils adjoining four highways of Rio de Janeiro (Linha Vermelha, Via Dutra, BR-465, and Avenida Brasil), chosen for their diverse traffic volumes, age, and urban/rural settings. In addition to soil physicochemical properties, 11 elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, and Zn) were assessed on samples collected at different distances from the road (1, 3, 5, 10, 15 m) and soil depths (0-15 and 15-30 cm). Moreover, the geoaccumulation index was also computed to infer the soil contamination extent. The results indicate that soil metal levels at each highway are highly dependent on factors like traffic volume, distance to road, other anthropogenic sources of pollution, and their rural or urban location. The highways with greater traffic volume, Linha Vermelha and Avenida Brasil (154,000 and 126,000 vehicles day-1, respectively), clearly presented the highest soil metal concentrations. Still, as stressed by the principal component analysis, traffic volume alone fails to explain the distribution of metals in soils neighboring these highways. Thus, factors like their urban setting and larger exposure to anthropogenic activities may play a pivotal role. On the other hand, soils from Via Dutra and BR-465, both on a rural backdrop, were mostly influenced by traffic as their metal levels decreased with increasing distances from the road. Comparison with reference and preventive values for Brazilian soils and the assessment of the geoaccumulation index have shown that concentrations of Pb and V have reached concerning thresholds at Linha Vermelha and Avenida Brasil.
Collapse
Affiliation(s)
- Cassiano A R Bernardino
- Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio F Mahler
- Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo E Santelli
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline S Freire
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo F Braz
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís A B Novo
- GeoBioTec Research Center, Department of Geosciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
24
|
Liu HL, Zhou J, Li M, Hu YM, Liu X, Zhou J. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:9-16. [PMID: 30227344 DOI: 10.1016/j.jhazmat.2018.09.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 05/25/2023]
Abstract
The objective of this study was to investigate the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system near a smelter. Soil reciprocal translocation experiment was conducted with seven groups of pot culture (filled with soils of gradient levels of heavy metals) in three sites of gradient atmospheric heavy metal depositions. Results showed that the newly deposited heavy metals (Cu and Cd) were preferential retention in topsoil (0-4 cm) and presented as higher bioavailable fractions compared to those in original soils. Atmospheric depositions contributed to 20-85% of shoot Cu and Cd in high deposition site, which were likely resulted not only from the direct transfer of contaminants from atmosphere to foliar but also from the atmosphere-soil-root transfer. However, the 52-62% of Pb in shoot from atmospheric depositions was mainly resulted from foliar direct uptake. The increasing atmospheric heavy metal depositions significantly decreased the photosynthetic parameters of pakchoi. Additionally, the potential health risks associated with the consumption of pakchoi were elevated in high deposition site and the bioaccessibility values were observed up to 56-81%. This study will provide useful reference information for the newly deposited heavy metal dynamics in the surface environment.
Collapse
Affiliation(s)
- Hai-Long Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, PR China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, PR China.
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuan-Mei Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, PR China
| | - Xiaoli Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, PR China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, PR China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang, 330096, PR China.
| |
Collapse
|
25
|
Li L, Wu J, Lu J, Min X, Xu J, Yang L. Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:345-353. [PMID: 30278396 DOI: 10.1016/j.ecoenv.2018.09.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Environmental quality of the northeastern Qinghai-Tibet Plateau has attracted more attention due to increasing anthropogenic disturbance. Therefore, this study investigated the distribution, pollution, ecological risks, and bioaccumulation of 12 target heavy metals and 16 rare earth elements (REEs) in soils of this area. The average concentrations of target trace elements in soils ranged from 0.16 (Hg) to 500.46 (Cr) mg/kg. Pb caused more serious pollution than the other elements based on geo-accumulation index evaluation. Hg exhibited the strongest enrichment feature with the average enrichment factor of 8.41. Compare with modified contamination degree and pollution load index, Nemerow pollution index method obtained the most serious evaluation results that 45.67% and 16.54% of sampling sites possessed high and moderate pollution. Evaluation results of potential ecological risk index showed that trace elements in soils posed very high and considerable ecological risks in 34.65% and 7.09% of sampling sites, respectively. Mining area was the region with the most serious pollution and ecological risks. Average bioaccumulation factor (BCF) values of target trace elements ranged from 0.05 (REEs) to 2.67 (Cr). Cr was the element that was easier to bio-accumulate in plants of the study area than the other target elements. It is in urgent need to take effective measures for controlling current pollution and potential ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Leiming Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Xiuyun Min
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Xu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Long Yang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China
| |
Collapse
|
26
|
Vaverková MD, Elbl J, Radziemska M, Adamcová D, Kintl A, Baláková L, Bartoň S, Hladký J, Kynický J, Brtnický M. Environmental risk assessment and consequences of municipal solid waste disposal. CHEMOSPHERE 2018; 208:569-578. [PMID: 29890495 DOI: 10.1016/j.chemosphere.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Effective and efficient assessments of the site conditions are required for the sustainable management of landfills. In this study we propose an evaluation method to determine the degree of environmental contamination by the contest of heavy metals (HM) concentrations in soil and plants (Tanacetum vulgare L., Carduus L., Plantago major L.). We compared HM concentrations in the soil, leaves, stem and roots of those native plants. Content of HM in samples was at the same level in all localities, except content of Zn. These values confirm that the area is not naturally burdened by increased HM content in the soil, and also that the deposited municipal waste or the material used for reclamation and composting does not contain risk elements. The content of selected HM was monitored in plants naturally occurring in the area of interest. We can state that the content of individual HM was in the plant biomass at the same level. The measured values confirmed that the largest number of HM was in roots, then in stem and the least in leaves. In addition, specific indexes were determined: BAC, TF, CF, PLI and Igeo. The BAC values confirmed that the individual plants had the ability to accumulate Pb and Cd (BAC> 2) but were limited to bind Mn and Zn (BAC <1). TF values confirmed that plants had a different ability to transport HM from roots to aboveground biomass. Potential soil contamination was detected using CF, PLI and Igeo indexes but contamination by HM was not confirmed.
Collapse
Affiliation(s)
- Magdalena Daria Vaverková
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic; Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 159, 02 776, Warsaw, Poland.
| | - Jakub Elbl
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Maja Radziemska
- Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Dana Adamcová
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Antonín Kintl
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic; Agriculture Research Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Ludmila Baláková
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Stanislav Bartoň
- Opole University of Technology, Faculty of Electrical Engineering Automatic Control and Informatics, Proszkowska 76, 45-758 Opole, Poland
| | - Jan Hladký
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Jindřich Kynický
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Martin Brtnický
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|
27
|
Wang H, Nie L, Xu Y, Du C, Zhang T, Wang Y. Effects of Highway-Related Pollutant on the Groundwater Quality of Turfy Swamps in the Changbai Mountain Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081652. [PMID: 30081526 PMCID: PMC6121959 DOI: 10.3390/ijerph15081652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022]
Abstract
Transportation activities such as fuel consumption, vehicle wear and road deicing can detrimentally affect the groundwater quality of fragile roadside wetland environments including. Nineteen parameters (Cu, Pb, Zn, Cd, Cr, Ni, Hg, As, pH, TDS, Ca2+, Mg2+, Na+, K+, SO42−, Cl−, HCO3−, NO3− and F−) were determined in groundwater samples from turfy swamps impacted by highway traffic from Jiangyuan (JY), Longquan (LQ), and Huangsongdian (HSD). Our results indicate that the metals Cu, Pb, Zn, Cr, Cd, the ions Na+, K+ and Cl− in groundwater were negatively affected by highway transportation, and the maximum affected distance of these pollutants varied from 15 to 100 m. The content of most of these pollutants in roadside groundwater decreased exponentially with the distance from the highway, as did the heavy metal pollution index HPI and Cd. The values of HPI and Cd in these three sites ranged from 46.8 to 78.4 and −4.9 to −2.9, respectively. The low pollution levels of heavy metals are related to the strong adsorption capacity of turfy soil towards metals. In any case, road transport activities increased the Cu, Pb, Zn, Cr, Cd, Na+, K+ and Cl− content in roadside groundwater in turfy swamp. With the increase of highway operation time, it will inevitably have a great influence on the groundwater quality of these wetlands. Therefore, the long-term monitoring is necessary to protect the sustainable development of turfy swamp.
Collapse
Affiliation(s)
- Hong Wang
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun 130026, Jilin, China.
| | - Lei Nie
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun 130026, Jilin, China.
| | - Yan Xu
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun 130026, Jilin, China.
| | - Chao Du
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun 130026, Jilin, China.
| | - Tao Zhang
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun 130026, Jilin, China.
| | - Yuzheng Wang
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun 130026, Jilin, China.
| |
Collapse
|
28
|
Wang H, Nie L, Xu Y, Li M, Lv Y. Traffic-emitted metal status and uptake by Carex meyeriana Kunth and Thelypteris palustris var. pubescens Fernald growing in roadside turfy swamp in the Changbai Mountain area, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18498-18509. [PMID: 29696547 DOI: 10.1007/s11356-018-1990-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Six traffic-emitted metals (Cr, Zn, Cu, Cd, Pb, and Ni) were determined in soil and plants for below- and aboveground parts along different distances from highway to evaluate their behavior and uptake by Carex meyeriana Kunth and Thelypteris palustris var. pubescens Fernald growing in turfy swamps. The results indicated that the different plant tissues showed significantly different levels of metal content. Nonlinear regression analysis indicated that metal contents leveled off at constant values before they decreased as the distance from the roadside increased. The high R2 values of the regression model indicated good fit of the exponential function applied to depict the distribution pattern of the metal elements. It was deduced that Cr, Cu, and Cd in Thelypteris palustris var. pubescens Fernald were mainly derived from the soil; Carex meyeriana Kunth and Thelypteris palustris var. pubescens Fernald absorbed Pb mainly through the stomata from atmospheric depositions; Cr, Cu, and Cd in Carex meyeriana Kunth and Zn in Thelypteris palustris var. pubescens Fernald were mainly affected by soil and atmospheric depositions. After excluding the effects of traffic, only the bioaccumulation factor of Cd (1.34) in Carex meyeriana Kunth and the translocation factor of Zn (1.13) in Thelypteris palustris var. pubescens Fernald were greater than 1, suggesting that Carex meyeriana Kunth could be a good candidate for assimilating Cd from soils and Thelypteris palustris var. pubescens Fernald could be suitable for the phytoextraction of Zn.
Collapse
Affiliation(s)
- Hong Wang
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun, 130026, Jilin, China
| | - Lei Nie
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun, 130026, Jilin, China
| | - Yan Xu
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun, 130026, Jilin, China.
| | - Miao Li
- Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, Panorama Avenue, Bathurst, NSW, 2795, Australia
| | - Yan Lv
- Construction Engineering College, Jilin University, Xi Min Zhu Street, Changchun, 130026, Jilin, China
| |
Collapse
|