1
|
Ofiti NOE, Huguet A, Hanson PJ, Wiesenberg GLB. Peatland warming influences the abundance and distribution of branched tetraether lipids: Implications for temperature reconstruction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171666. [PMID: 38490418 DOI: 10.1016/j.scitotenv.2024.171666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids whose distribution in peatland soils serves as an important proxy for past climate changes due to strong linear correlations with temperature in modern environments. However, commonly used brGDGT-based temperature models are characterized by high uncertainty (ca. 4 °C) and these calibrations can show implausible correlations when applied at an ecosystem level. This lack of accuracy is often attributed to our limited understanding of the exact mechanisms behind the relationship between brGDGTs and temperature and the potential effect of temperature-independent factors on brGDGT distribution. Here, we examine the abundance and distribution of brGDGTs in a boreal peatland after four years of in-situ warming (+0, +2.25, +4.5, +6.75 and +9 °C). We observed that with warming, concentrations of total brGDGTs increased. Furthermore, we determined a shift in brGDGT distribution in the surface aerobic layers of the acrotelm (0-30 cm depth), whereas no detectable change was observed at deeper anaerobic depths (>40 cm), possibly due to limited microbial activity. The response of brGDGTs to warming was also reflected by a strong increase in the methylation index of 5-methyl brGDGTs (MBT'5Me), classically used as a temperature proxy. Further, the relationship between the MBT'5Me index and soil temperature differed between 0-10, 10-20 and 20-30 cm depth, highlighting depth-specific response of brGDGTs to warming, which should be considered in paleoenvironmental and paleoecological studies. As the bacterial community composition was generally unaltered, the rapid changes in brGDGT distribution argue for a physiological adaptation of the microorganisms producing these lipids. Finally, soil temperature and water table depth were better predictors of brGDGT concentration and distribution, highlighting the potential for these drivers to impact brGDGT-based proxies. To summarize, our results provide insights on the response of brGDGT source microorganisms to soil warming and underscore brGDGTs as viable temperature proxies for better understanding of climatic perturbation in peatlands.
Collapse
Affiliation(s)
- Nicholas O E Ofiti
- Department of Geography, University of Zurich, Zurich, Switzerland; CEREEP-Ecotron Ile De France, ENS, CNRS, PSL Research University, Saint-Pierre-lès-Nemours, France.
| | - Arnaud Huguet
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | |
Collapse
|
2
|
Gong J, Hou W, Liu J, Malik K, Kong X, Wang L, Chen X, Tang M, Zhu R, Cheng C, Liu Y, Wang J, Yi Y. Effects of Different Land Use Types and Soil Depths on Soil Mineral Elements, Soil Enzyme Activity, and Fungal Community in Karst Area of Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053120. [PMID: 35270817 PMCID: PMC8910417 DOI: 10.3390/ijerph19053120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
The current research was aimed to study the effects of different land use types (LUT) and soil depth (SD) on soil enzyme activity, metal content, and soil fungi in the karst area. Soil samples with depths of 0–20 cm and 20–40 cm were collected from different land types, including grassland, forest, Zanthoxylum planispinum land, Hylocereus spp. land and Zea mays land. The metal content and enzyme activity of the samples were determined, and the soil fungi were sequenced. The results showed that LUT had a significant effect on the contents of soil K, Mg, Fe, Cu and Cr; LUT and SD significantly affected the activities of invertase, urease, alkaline phosphatase and catalase. In addition, Shannon and Chao1 index of soil fungal community was affected by different land use types and soil depths. Ascomycota, Basidiomycota and Mortierellomycota were the dominant phyla at 0–20 cm and 20–40 cm soil depths in five different land types. Land use led to significant changes in soil fungal structure, while soil depth had no significant effect on soil fungal structure, probably because the small-scale environmental changes in karst areas were not the dominant factor in changing the structure of fungal communities. Additionally, metal element content and enzyme activity were related to different soil fungal communities. In conclusion, soil mineral elements content, enzyme activity, and soil fungal community in the karst area were strongly affected by land use types and soil depths. This study provides a theoretical basis for rational land use and ecological restoration in karst areas.
Collapse
Affiliation(s)
- Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Wenpeng Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Kamran Malik
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Li Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Xianlei Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
| | - Ruiqing Zhu
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Chen Cheng
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Yinglong Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (W.H.); (C.C.); (Y.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (J.W.); (Y.Y.)
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China; (J.G.); (J.L.); (X.K.); (L.W.); (X.C.); (M.T.)
- Correspondence: (J.W.); (Y.Y.)
| |
Collapse
|
3
|
Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I. Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities. Front Microbiol 2021; 12:674160. [PMID: 34025630 PMCID: PMC8137989 DOI: 10.3389/fmicb.2021.674160] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Soil microorganisms such as bacteria and fungi play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of the soil microbiome to a depth of 2 m in Swiss drought-exposed forests of European beech and oaks on calcareous bedrock. We aimed to disentangle the effects of soil depth, tree (beech, oak), and substrate (soil, roots) on microbial abundance, diversity, and community structure. With increasing soil depth, organic carbon, nitrogen, and clay content decreased significantly. Similarly, fine root biomass, microbial biomass (DNA content, fungal abundance), and microbial alpha-diversity decreased and were consequently significantly related to these physicochemical parameters. In contrast, bacterial abundance tended to increase with soil depth, and the bacteria to fungi ratio increased significantly with greater depth. Tree species was only significantly related to the fungal Shannon index but not to the bacterial Shannon index. Microbial community analyses revealed that bacterial and fungal communities varied significantly across the soil layers, more strongly for bacteria than for fungi. Both communities were also significantly affected by tree species and substrate. In deep soil layers, poorly known bacterial taxa from Nitrospirae, Chloroflexi, Rokubacteria, Gemmatimonadetes, Firmicutes and GAL 15 were overrepresented. Furthermore, archaeal phyla such as Thaumarchaeota and Euryarchaeota were more abundant in subsoils than topsoils. Fungal taxa that were predominantly found in deep soil layers belong to the ectomycorrhizal Boletus luridus and Hydnum vesterholtii. Both taxa are reported for the first time in such deep soil layers. Saprotrophic fungal taxa predominantly recorded in deep soil layers were unknown species of Xylaria. Finally, our results show that the microbial community structure found in fine roots was well represented in the bulk soil. Overall, we recorded poorly known bacterial and archaeal phyla, as well as ectomycorrhizal fungi that were not previously known to colonize deep soil layers. Our study contributes to an integrated perspective on the vertical distribution of the soil microbiome at a fine spatial scale in drought-exposed forests.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roger Köchli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alexander Dharmarajah
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Huguet A, Bernard S, El Khatib R, Gocke MI, Wiesenberg GLB, Derenne S. Multiple stages of plant root calcification deciphered by chemical and micromorphological analyses. GEOBIOLOGY 2021; 19:75-86. [PMID: 32951341 DOI: 10.1111/gbi.12416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rhizoliths, that is, roots fossilized by secondary carbonates, have been known for ages and are increasingly used for paleoenvironmental reconstructions. However, knowledge about their formation mechanisms remains limited. This study reports the mineralogical and chemical characterization of rhizoliths at different stages of mineralization and fossilization in the Late Pleistocene loess-paleosol sequence of Nussloch (SW Germany). Scanning electron microscopy coupled with elemental mapping and 13 C solid-state nuclear magnetic resonance were used to concomitantly characterize the mineral and organic matter of the rhizoliths. These joint analyses showed for the first time that large rhizoliths are not necessarily remains of single large roots but consist of numerous microrhizoliths as remains of fine roots, formed mainly by calcium carbonates with only low amounts of Mg and Si. They further revealed that the precipitation of secondary carbonates occurs not only around, but also within the plant root and that fossilization leads to the selective preservation of recalcitrant root biopolymers-lignin and suberin. The precipitation of secondary carbonates was observed to occur first around fine roots, the epidermis acting as a first barrier, and then within the root, within the cortex cells, and even sometimes around the phloem and within the xylem. This study suggests that the calcification of plant roots starts during the lifetime of the plant and continues after its death. This has to be systematically investigated to understand the stratigraphic context before using (micro)rhizoliths for paleoenvironmental reconstructions in terrestrial sediments.
Collapse
Affiliation(s)
- Arnaud Huguet
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
| | | | - Rime El Khatib
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
- MNHN, CNRS, Sorbonne Université, UMR IMPMC, Paris, France
| | - Martina I Gocke
- Division Soil Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Department of Geography, University of Zurich, Zürich, Switzerland
| | | | - Sylvie Derenne
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
| |
Collapse
|
5
|
Adedeji AA, Häggblom MM, Babalola OO. Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Robin A, Pradier C, Sanguin H, Mahé F, Lambais GR, de Araujo Pereira AP, Germon A, Santana MC, Tisseyre P, Pablo AL, Heuillard P, Sauvadet M, Bouillet JP, Andreote FD, Plassard C, de Moraes Gonçalves JL, Cardoso EJBN, Laclau JP, Hinsinger P, Jourdan C. How deep can ectomycorrhizas go? A case study on Pisolithus down to 4 meters in a Brazilian eucalypt plantation. MYCORRHIZA 2019; 29:637-648. [PMID: 31732817 DOI: 10.1007/s00572-019-00917-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.
Collapse
Affiliation(s)
- Agnès Robin
- CIRAD, UMR Eco&Sols, Piracicaba, SP, 13418-900, Brazil.
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France.
- ESALQ, University São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Céline Pradier
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | - Hervé Sanguin
- CIRAD, UMR BGPI, F-34398, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Frédéric Mahé
- CIRAD, UMR BGPI, F-34398, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | | | | | - Amandine Germon
- UNESP, University São Paulo, Botucatu, SP, 18610-300, Brazil
| | | | - Pierre Tisseyre
- LSTM, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Anne-Laure Pablo
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Pauline Heuillard
- INRA, US 1426, GeT-PlaGe, Genotoul, F-31320, Castanet-Tolosan, France
| | - Marie Sauvadet
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Bouillet
- CIRAD, UMR Eco&Sols, Piracicaba, SP, 13418-900, Brazil
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | | | - Claude Plassard
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | | | | | - Jean-Paul Laclau
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | - Philippe Hinsinger
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Christophe Jourdan
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| |
Collapse
|
7
|
Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 2017; 93:3744313. [PMID: 28430944 DOI: 10.1093/femsec/fix050] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
The microbiome of plants plays a crucial role in both plant and ecosystem health. Rapid advances in multi-omics tools are dramatically increasing access to the plant microbiome and consequently to the identification of its links with diseases and to the control of those diseases. Recent insights reveal a close, often symbiotic relationship between microorganisms and plants. Microorganisms can stimulate germination and plant growth, prevent diseases, and promote stress resistance and general fitness. Plants and their associated microorganisms form a holobiont and have to be considered as co-evolved species assemblages consisting of bacterial, archaeal and diverse eukaryotic species. The beneficial interplay of the host and its microbiome is responsible for maintaining the health of the holobiont, while diseases are often correlated with microbial dysbioses. Microbial diversity was identified as a key factor in preventing diseases and can be implemented as a biomarker in plant protection strategies. Targeted and predictive biocontrol approaches are possible by developing microbiome-based solutions. Moreover, combined breeding and biocontrol strategies maintaining diversity and ecosystem health are required. The analysis of plant microbiome data has brought about a paradigm shift in our understanding of its role in health and disease and has substantial consequences for biocontrol and health issues.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010 Graz, Austria
| | - Martina Köberl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Daria Rybakova
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Henry Müller
- BioTenzz, Plüddemanngasse 39, 8010 Graz, Austria
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|