1
|
Pei Y, Chen J, Cheng W, Huang W, Liu R, Jiang Z. A critical review of nitrate reduction by nano zero-valent iron-based composites for enhancing N 2 selectivity. Dalton Trans 2024; 53:16134-16143. [PMID: 39264277 DOI: 10.1039/d4dt02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Due to the highly reductive capacity of nano zero-valent iron (nZVI) nanoparticles, the reduction of nitrate (NO3--N) is prone to produce ammonia nitrogen (NH4+-N) as a by-product and has low selectivity for nitrogen gas (N2). Water and dissolved oxygen (DO) in the solution consume electrons from nZVI, decreasing the efficiency of NO3--N reduction. In order to overcome the drawbacks of plain nZVI being used to remove NO3--N pollution, nZVI-based multifunctional materials have been constructed to realize the selective conversion of NO3--N to N2 as well as the efficient removal of NO3--N. Therefore, advanced research on the reduction of NO3--N by nZVI-based composites has been comprehensively reviewed. Strategies to improve NO3--N reduction efficiency and N2 selectivity are proposed. Moreover, the shortcomings of iron-based nanomaterials in NO3--N pollution control have been summarized, and some suggestions for future research directions provided.
Collapse
Affiliation(s)
- Yanyan Pei
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Junlan Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Wei Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Wenzhong Huang
- Fujian Provincial Institute of Architectural Design and Research Co., Ltd, Fuzhou, Fujian 350001, China
| | - Renyu Liu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
2
|
Yao D, Qin C, Li Y, Dai N, Xie H, Zhuang L, Hu Z, Liang S, Zhang J. Weakening of sulfate removal by aquatic plants in iron-based constructed wetlands: The rhizosphere is a sink or source of sulfur? BIORESOURCE TECHNOLOGY 2024; 406:131010. [PMID: 38901750 DOI: 10.1016/j.biortech.2024.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The fate of sulfur (S) was controlled by a complex interaction of abiotic and microbial reactions in constructed wetlands (CWs). Although zero-valent iron (ZVI) was generally considered to promote nitrogen (N) and S cycle by providing electrons, but its binding effect on sulfate (SO42--S) removal with the rhizosphere oscillating redox conditions had not been determined. This study found that the presence of plants increased SO42-_S removal in Con-CW, while decreased it by 3.93 % in ZVI-CW accompanied by the decrease of S content in the rhizosphere substrates. The enrichment of S oxidation genes (soxA/Y and yedZ), organic S decomposition genes (aslA) and plants radial oxygen loss (ROL) accelerated the transformation of solid-phase S to SO42--S, resulting in ZVI-CW turn from S sink to S source. Overall, the source-sink transformation provided a theoretical guidance for comprehending S cycling in CWs.
Collapse
Affiliation(s)
- Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Congli Qin
- Binzhou Ecological Environment Service Center, Binzhou 256600, China
| | - Yunkai Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Na Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 88 Wenhua East Road, Shandong, 250014, China
| |
Collapse
|
3
|
Wu P, Yang F, Lian J, Chen B, Wang Y, Meng G, Shen M, Wu H. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater. CHEMOSPHERE 2024; 361:142470. [PMID: 38810802 DOI: 10.1016/j.chemosphere.2024.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.
Collapse
Affiliation(s)
- Pei Wu
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Bo Chen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Yulai Wang
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Guanhua Meng
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Maocai Shen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
4
|
Chang Y, Meng J, Hu Y, Qi S, Hu Z, Wu G, Zhou J, Zhan X. Unacclimated activated sludge improved nitrate reduction and N 2 selectivity in iron filling/biochar systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174581. [PMID: 38981552 DOI: 10.1016/j.scitotenv.2024.174581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Iron (Fe)-based denitrification is a proven technology for removing nitrate from water, yet challenges such as limited pH preference range and low N2 selectivity (reduction of nitrate to N2) persist. Adding biochar (BC) can improve the pH preference range but not N2 selectivity. This study aimed to improve nitrate reduction and N2 selectivity in iron filling/biochar (Fe/BC) systems with a simplified approach by coupling unacclimated microbes (M) in the system. Factors such as initial pH, Fe/BC ratio, and Fe/BC dosage on nitrate removal efficiency and N2 selectivity were evaluated. Results show that the introduction of microbes significantly enhanced nitrate removal and N2 selectivity, achieving 100 % nitrate removal and 79 % N2 selectivity. The Fe/BC/M system exhibited efficient nitrate reduction at pH of 2-10. Moreover, the Fe/BC/M system demonstrated an improved electrochemical active surface area (ECSA), lower electron transfer resistance and lower corrosion potential, leading to enhanced nitrate reduction. The high i0 value in Fe/BC/M system means more Hads could be generated, thus improving the N2 selectivity. This study provides valuable insights into a novel approach for effective nitrate removal, offering a potential solution to the environmental challenges posed by excessive nitrate in wastewater, surface water and ground water.
Collapse
Affiliation(s)
- Yating Chang
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland
| | - Yuansheng Hu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Ireland
| | - Shasha Qi
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| |
Collapse
|
5
|
Zhang W, Qi L, Li L, Guo C, Xiao L. Characteristics of zero-valent iron surface oxide films under the catalytic interface reactions by assisting ligands in nitrate-contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134433. [PMID: 38718503 DOI: 10.1016/j.jhazmat.2024.134433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
The surface passivation layer coating on zero-valent iron (ZVI) particles impedes the electron transfer from ZVI to nitrate. To enhance the efficiency of nitrate reduction by Fe(0), we tested the chemical process and the thickness of the iron oxide film on the surface of Fe(0) particles, utilizing Fe2+aq in aqueous solution and wheat straw as ligands. A novel principal surface catalyzing reaction was formulated as follows: [Formula: see text] . When Fe2+aq concentration increased from 0 - 200 mg·L-1, the NO3- removal rate increased from 6.95% to 82.6% respectively during 12 h and it was 48%, 72%, 79% and 94% respectively in Fe0/WS ratio of 0, 0.25, 0.5 and 1 system. Uniform surface iron oxide films formed around the Fe(0) particles within 12 h after the adding Fe2+aq or wheat straw to the Fe(0) system. The composition and thickness of these films were dependent on the quantity of added materials. X-ray diffraction (XRD) analysis revealed that surface oxide iron mainly consisted of Fe2+ or Fe3+ oxides, with Fe3O4 being predominant. The X-ray photoelectron spectroscopy (XPS) etching indicated that the addition of Fe(0)/straw at mass ratios of 1 or system with 20 mg·L-1 Fe2+aq resulted in the thinnest surface iron oxide layer. The study demonstrated that reducing the oxide layer's thickness was achieved through partial catalysis and enhanced complexation capacity. This reduction was facilitated by the introduction of Fe2+aq or wheat straw into the Fe(0) system, potentially improving proton dissociation and promoting the ligand-assisted dissolution of Fe3+ oxides.
Collapse
Affiliation(s)
- Wen Zhang
- Zhejiang University of Water Resources and Electric Power, No. 508, 2nd Street, Qiantang District, Hangzhou 310018, Zhejiang Province, China
| | - Liang Qi
- School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, China
| | - Liwen Xiao
- Civil Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, College Green, Dublin 2 D02 PN40, Ireland.
| |
Collapse
|
6
|
Raj DA, Ahammed MM, Shaikh IN. Use of zero-valent iron-modified sand filters for greywater treatment: performance evaluation and modelling using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31182-4. [PMID: 38017210 DOI: 10.1007/s11356-023-31182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
The conventional sand filter when used alone for on-site treatment of greywater fails to meet different reuse standards, and hence there is a need to improve the potential of sand filters to remove different contaminants from greywater. Performance of zero-valent iron-modified (ZVI) sand filters is investigated in the present study for the treatment of real greywater. The experiments were conducted using three filters: an unmodified filter (SF) and two iron-modified filters, MSF-2 (with 2 kg of ZVI) and MSF-4 (with 4 kg of ZVI). The study evaluated the performance of these filters under different conditions: daily feed volumes of 10 L (72 L/m2/day), 20 L (144 L/m2/day), and 30 L (217 L/m2/day), as well as pause periods of 12, 24, and 36 h. The results showed that the ZVI-modified filters outperformed the unmodified filter significantly. Specifically, MSF-4 showed higher pollutant removal compared to MSF-2. The filter MSF-4 achieved 58% COD removal, 59% BOD removal, 56% NH4-N removal, 82% PO4-P removal, and a significant 1.96 log reduction in fecal coliforms. To optimize the filter operation, three key parameters, amount of ZVI, feed volume, and pause period were considered. The Box-Behnken design (BBD) with response surface methodology was employed to achieve optimization. The results of the optimization study indicated that the optimal conditions for the filters were 2.67 kg of ZVI quantity, a feed volume of 30 L (217 L/m2/day), and a pause period of 32.1 h.
Collapse
Affiliation(s)
- Dhanush A Raj
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India
| | - M Mansoor Ahammed
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India
| | - Irshad N Shaikh
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India.
| |
Collapse
|
7
|
Xu Z, Wang W, Liu Y, Zhao Y, Zhang X, Ban Y. Performances and mechanisms of simultaneous removal of nitrate and phosphate by biofilter assembled with sponge iron/copper and corn cobs. BIORESOURCE TECHNOLOGY 2023; 386:129516. [PMID: 37468007 DOI: 10.1016/j.biortech.2023.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Sponge iron (SI) is a potential material for removing nitrate and phosphate from water. We decorated the SI with copper (Cu) to enhance its removal performance. To gain insight into the nitrate and phosphate removal utilizing SI/Cu and microbial coupling systems, three biofilters filled with corn cob (CC), corn cob + sponge iron (CS) and corn cob + sponge iron/copper (CSCu) were constructed. The results showed that the effluent NO3--N and PO43--P concentrations of CSCu remained consistently below 1 and 0.1 mg/L. The introduction of SI/Cu led to the enrichment of the Dechloromonas genus, making it the dominant microbial group, occupying 42.65% of the effective sequences. Modification of SI with Cu increased nitrogen cycle-related functional genes abundance in CSCu, with a 634% increase in nirS compared to CS. These findings proved that SI/Cu was a promising material, providing an approach to concomitantly removing nitrate and phosphate.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Wuyi Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yubo Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yinqi Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Hou X, Chu L, Wang Y, Song X, Liu Y, Li D, Zhao X. Microelectrolysis-integrated constructed wetland with sponge iron filler to simultaneously enhance nitrogen and phosphorus removal. BIORESOURCE TECHNOLOGY 2023:129270. [PMID: 37290705 DOI: 10.1016/j.biortech.2023.129270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Integrating sponge iron (SI) and microelectrolysis individually into constructed wetlands (CWs) to enhance nitrogen and phosphorus removal are challenged by ammonia (NH4+-N) accumulation and limited total phosphorus (TP) removal efficiency, respectively. In this study, a microelectrolysis-assisted CW using SI as filler surrounding the cathode (e-SICW) was successfully established. Results indicated that e-SICW reduced NH4+-N accumulation and intensified nitrate (NO3--N), the total nitrogen (TN) and TP removal. The concentration of NH4+-N in the effluent from e-SICW was lower than that from SICW in the whole process with 39.2-53.2 % decrease, and as the influent NO3--N concentration of 15 mg/L and COD/N ratio of 3, the removal efficiencies of NO3--N, TN and TP in e-SICW achieved 95.7 ± 1.9 %, 79.8 ± 2.5 % and 98.0 ± 1.3 %, respectively. Microbial community analysis revealed that hydrogen autotrophic denitrifying bacteria of Hydrogenophaga was highly enriched in e-SICW.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Linglong Chu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Dongpeng Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
9
|
Wang C, Wang H, Yan Q, Chen C, Bao X, Pan M, Qian Y. Enhanced nitrogen removal from low C/N municipal wastewater employing algal biochar supported nano zero-valent iron (ABC-nZVI) using A/A/O-MBR: Duration and rehabilitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160396. [PMID: 36435251 DOI: 10.1016/j.scitotenv.2022.160396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
To bridge the organic-dependent barrier on nitrogen from low carbon/nitrogen (C/N) municipal wastewater, employing algal biochar supported nano zero-valent iron (ABC-nZVI) was investigated using A/A/O-MBR. Firstly, it can be seen that adequate carbon source is indispensable for the removal, since total nitrogen (TN) removal reached 77.89 % with the influent C/N of 7.8. Secondly, conducted in batch experiments with different doses of ABC-nZVI with/without active sludge, removal efficiency of total inorganic nitrogen (TIN) and the effective time achieved 84.94 % and 24 h with an ABC-nZVI dose of 300 mg/L, respectively. Thirdly, it was found that the duration of high-efficiency denitrification reached 9 h with the addition of 250 mg/L of ABC-nZVI to the anoxic tank of A/A/O-MBR, and the effluent ammonium nitrogen (NH4+-N) also meet the national discharge standard. Besides, biodiversity of both anoxic and aerobic sludge was apparently promoted with the addition of ABC-nZVI, while the lab-scale A/A/O-MBR could also be fully rehabilitated within 12 h. Finally, predicted through PICRUSt2, relevant abundance of functional genes involved in nitrogen metabolism could be enriched by nZVI addition. As an alternative supporting electron donor and mediator, ABC-nZVI can also be participated in the enhanced nitrogen removal in A/A/O-MBR at low C/N.
Collapse
Affiliation(s)
- Chaoyun Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiangming Bao
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| | - Meijuan Pan
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| | - Yunfei Qian
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| |
Collapse
|
10
|
Priyadarshini I, Chowdhury A, Rao A, Roy B, Chattopadhyay P. Assessment of bimetallic Zn/Fe 0 nanoparticles stabilized Tween-80 and rhamnolipid foams for the remediation of diesel contaminated clay soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116596. [PMID: 36326527 DOI: 10.1016/j.jenvman.2022.116596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Diesel contamination of soil due to oil spills, disposal of refinery waste, oil exploration constitutes a major environmental problem. This paper reports the remediation of diesel contaminated clay soil using Zn/Fe0 bimetallic nanoparticle stabilized Rhamnolipid (RMLP) and Tween-80 (TW-80) surfactant foams. Fe0, and Zn (x wt%)/Fe0 (x = 0.2, 2.0, and 10.0) bimetallic nanoparticles are synthesized by using sodium borohydride reduction method. The average particle size (from FESEM) is calculated to be 62, 57, 42 and 35 nm for the Fe0, Zn (0.2)/Fe0, Zn (2)/Fe0 and Zn (10)/Fe0 nanopowders, respectively. The highest foamability and foam stability of 109.6 and 108.5 mL, respectively are observed for the RMLP (12 mg/l) surfactant foam stabilized with 6 mg/l Zn (10)/Fe0 nanoparticles. The surface tension values reduce to the lowest value of 28.1 and 31.4 mN/m with the addition of 6 mg/l of Zn (10)/Fe0 powder in RMLP and TW-80 solutions of 12 mg/l, respectively. The maximum diesel removal efficiency of 83.8 and 59%, is achieved by RMLP (12 mg/l) foam stabilized by Zn (10)/Fe0 nanoparticles (6 mg/l) for the clay soil contaminated with 100 and 500 μl/g of diesel, respectively. The physicochemical properties of the nanoparticles are studied to explain the foam properties and the remediation behavior. These findings regarding the nanoparticle stabilized foams can offer a cost-effective environment friendly commercial solution for soil remediation in the future.
Collapse
Affiliation(s)
- Ipsita Priyadarshini
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, VidyaVihar, Pilani 333031, Rajasthan, India
| | - Arjun Chowdhury
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, VidyaVihar, Pilani 333031, Rajasthan, India
| | - Ankit Rao
- Center for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Banasri Roy
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, VidyaVihar, Pilani 333031, Rajasthan, India
| | - Pradipta Chattopadhyay
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, VidyaVihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
11
|
Nitrates Removal from Simulated Groundwater Using Nano Zerovalent Iron Supported by Polystyrenic Gel. Polymers (Basel) 2022; 15:polym15010061. [PMID: 36616410 PMCID: PMC9823507 DOI: 10.3390/polym15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The main objectives of this present paper were to indicate the immobilization of nano zerovalent iron (nZVI) onto a polymeric material (Purolite A400) and the synthesis of the polymeric material (A400-nZVI) through sodium borohydride (NaBH4) reduction. The obtained polymeric material (A400-nZVI) was used for the nitrate ions removal from a simulated groundwater at different conditions. The polymeric materials, without and with nano zerovalent iron (A400 and A400-nZVI), were characterized trough the FTIR, SEM-EDAX, XRD, and TGA analysis. The analysis confirmed the presence of nano zerovalent iron (nZVI) onto the polymeric material (A400). The adsorption capacity of A400-nZVI, used as polymeric adsorbent, was evaluated by kinetic and thermodynamic studies. The obtained experimental results indicated that the nitrate ions reduction was fitted well by models: pseudo-second-order kinetic and Freundlich isotherm. According to the kinetic model results, a reaction mechanism could exist in the stage of reactions. The higher value of removal nitrate (>80%) was obtained under acidic condition. The results indicated that the obtained polymeric material (A400-nZVI) can be considered as a potential polymeric adsorbent for different pollutants from groundwater and wastewater.
Collapse
|
12
|
Li X, Song C, Sun B, Gao J, Liu Y, Zhu J. Kinetics of zero-valent iron-activated persulfate for methylparaben degradation and the promotion of Cl . JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115973. [PMID: 36104884 DOI: 10.1016/j.jenvman.2022.115973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Methylparaben (MP) is an emerging pollutant, and the optimal conditions and kinetics of MP degradation using nano-zero-valent iron-activated persulfate (nZVI/PDS) need to be further investigated. This paper firstly investigated the response surface methodology (RSM) analysis of MP degradation by the heterogeneous system nZVI/PDS and concluded that the initial pH had the most significant effect on MP degradation. The optimal experimental conditions predicted by the RSM were as follows: initial pH 2.75, [nZVI]0 = 2.87 mM, [PDS]0 = 2.18 mM (MP degradation level of 95.30%). First- and second-order kinetic fits were performed for different initial pH levels and different concentrations of MP, nZVI, and PDS. It was determined that k = 0.0365 min-1 (R2 = 0.984) when the initial pH was 3, [PDS]0 = 2 mM, [MP]0 = 20 mg L-1, and [nZVI]0 = 3 mM (MP degradation level of 94.25%). The rest of the conditions were more closely fitted to the second-order reactions. The effects of different concentrations of anions and humic acid (HA) on the MP degradation level and k were examined, and it was found that Cl- could promote MP degradation to 97.69% (increased by 3.65%) and increase the k in accordance with the first-order reaction kinetics (0.0780 min-1, R2 = 0.991). Finally, the analysis of intermediates revealed 5 reaction pathways and 7 reaction intermediates, which inferred a possible reaction mechanism with the recycling performance of nZVI. In this paper, the superiority of nZVI/PDS for the purposes of activating MP degradation was affirmed. The presence of Cl- can enhance the level of MP degradation was confirmed, which provides a new direction for future practical engineering applications.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuang Song
- Tieling Ecological Environment Bureau, Tieling, 112008, China
| | - Beibei Sun
- Sinopec Ningbo Engineering CO., LTD., Ningbo, 315000, China
| | - Jingsi Gao
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Zhang Z, Zhang H, Al-Gabr HM, Jin H, Zhang K. Performances and enhanced mechanisms of nitrogen removal in a submerged membrane bioreactor coupled sponge iron system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115505. [PMID: 35753132 DOI: 10.1016/j.jenvman.2022.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Sponge iron is a potential material for nitrogen removal, but lack of a study about nitrogen removal in a membrane bioreactor (MBR) coupled with sponge iron. The performances and mechanisms of nitrogen removal of SI-MBR were investigated and compared it with that in GAC-MBR. The results showed that the average rate of organic matter removal in the SI-MBR was 92.74%, which was higher than that in the GAC-MBR (87.48%). And the average effluent NO2--N and NO3--N concentration in the SI-MBR (0.02 mg/L and 3.73 mg/L) was lower than that in the GAC-MBR (0.05 mg/L and 7.51 mg/L). Meanwhile, the highest nitrification rate and denitrification rate was respectively 3.544 ± 0.25 mg/(g VSS·h) and 6.643 ± 0.2 mg/(g VSS·h) in the SI-MBR, which was higher than that (3.094 ± 0.25 mg/(g VSS·h) and (6.376 ± 0.2 mg/(g VSS·h)) in the GAC-MBR. Additionally, the bacterial activities (e.g., DHA activity and respiratory activity) were obviously enhanced through the iron ion from sponge iron. The bacterial community in the SI-MBR system was more richness and diverse than that in the GAC-MBR. Ultimately, the mechanisms of enhanced biological nitrogen removal with sponge iron in MBR were analyzed. On the surface of sponge iron, the DIRB and FOB could use the iron ion from sponge iron as the electron transfer to improve the nitrogen and organic removal. With sponge iron, there is not only the nitrification bacteria and heterotrophic denitrifying microorganism enriched, but also the autotrophic denitrifying bacteria abounded obviously. The autotrophic denitrifying bacteria could use Fe(II) as an electron donor to achieve denitrification and enhance the nitrogen removal.
Collapse
Affiliation(s)
- Zhuowei Zhang
- NingboTech University, 315000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | |
Collapse
|
14
|
Qin C, Yao D, Cheng C, Xie H, Hu Z, Zhang J. Influence of iron species on the simultaneous nitrate and sulfate removal in constructed wetlands under low/high COD concentrations. ENVIRONMENTAL RESEARCH 2022; 212:113453. [PMID: 35537498 DOI: 10.1016/j.envres.2022.113453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Nitrate and sulfate are crucial factors of eutrophication and black and odorous water in the surface water and thus have raised increasing environmental concerns. Constructed wetlands (CWs) are the last ecological barrier before effluent enters the natural water body. To explore the simultaneous removal of nitrate and sulfate, the CW microcosms of CW-Con (with quartz sand), CW-ZVI (quartz sand and zero-valent iron), CW-Mag (quartz sand and magnetite), CW-ZVI + Mag (quartz sand, ZVI and magnetite) groups were set up under the low (100 mg/L)/high (300 mg/L) chemical oxygen demand (COD) concentration. Under the high COD condition, CW-ZVI group showed the best performance in nitrate (97.1%) and sulfate (96.9%) removal. Under the low COD concentration, the removal content of nitrate and sulfate in CW-ZVI group was better than CW-Mag group. The reason for this result was that zero-valent iron (ZVI) could be the electron donor for nitrate and sulfate reduction. Meanwhile, ZVI promoted chemical denitrification under high COD concentration according to PCA analysis. In addition, the produced sulfides inhibited the relative abundance of denitrifying bacteria, resulting in the lowest nitrate removal rate in CW-Mag group with sufficient electron donors. This study provided an alternative method to enhance simultaneous sulfate and nitrate removal in CWs.
Collapse
Affiliation(s)
- Congli Qin
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Cheng Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|
15
|
Wang P, Li W, Ren S, Peng Y, Wang Y, Feng M, Guo K, Xie H, Li J. Use of sponge iron as an indirect electron donor to provide ferrous iron for nitrate-dependent ferrous oxidation processes: Denitrification performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 357:127318. [PMID: 35609754 DOI: 10.1016/j.biortech.2022.127318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Sponge iron (SI) can serve as an indirect electron donor to provide Fe(II) for the nitrate-dependent ferrous oxidation (NDFO) process, producing OH- and magnetite. The SI-NDFO system mainly uses Fe(OH)2 as an electron donor, achieving a TN reduction rate of 0.42 mg-TN/(gVSS·h) for a period of at least 90 days. The enrichment of iron-oxidizing bacteria and the competition of iron-carbon micro-electrolysis for reaction sites on the surface of SI are the main reasons for the improvement of total nitrogen removal efficiency (TNRE). With an influent NO3--N concentration of 50 mg/L and a SI concentration of 50 g/L (at pH 5.0 and 30 °C), the TNRE reached a maximum level of 38.28%. In addition, reducing the pH environment was found to improve the denitrification efficiency of the SI-NDFO system, although denitrification stability was also reduced as a result. Overall, the SI-mediated NDFO process is a promising technique.
Collapse
Affiliation(s)
- Peng Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuang Ren
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Yuzhuo Peng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Yaning Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Muyu Feng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Kehuan Guo
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, PR China
| | - Huina Xie
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China; Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou 730020, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou 730020, China.
| |
Collapse
|
16
|
An F, Feng X, Dang Y, Sun D. Enhancing nitrate removal efficiency of micro-sized zero-valent iron by chitosan gel balls encapsulating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153641. [PMID: 35131244 DOI: 10.1016/j.scitotenv.2022.153641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The activity of micro-sized zero-valent iron (MZVI) material for nitrate removal in neutral pH and low C/N ratios water needs to be improved. In this study, micro-sized zero-valent iron@chitosan (MZVI@CS) material was synthesized through embedding MZVI particles into chitosan (CS) gel by sol-gel method, and was used for deep removal of NO3--N in the absence of organic carbon sources and neutral pH. The NO3--N removal rate of MZVI@CS was 0.37 mg-N·L-1·d-1 (dosage of 1%, initial pH = 7, 25 °C, initial nitrate concentration = 15 mg-N·L-1), which was 11.33 times higher than that of MZVI. The apparent activation energy (Ea) of MZVI@CS with nitrate was 38.23 kJ·mol-1. MZVI@CS can remove nitrate effectively at a low concentration (15 mg-N·L-1). A stable denitration rate (0.37-2.28 mg-N·L-1·d-1) could be maintained under weak acidic, neutral and alkaline conditions (pH = 5-9). More than 80% of reduced nitrate was converted to N2, and only a small amount was converted to NH4+ or NO2-. The gel structure of MZVI@CS eliminated the agglomeration between MZVI particles while the forming of Fe-CS chelates reduced the formation of iron oxide and solved the problems of passivation, hence successfully strengthened the NO3--N removal efficiency of MZVI. Therefore MZVI@CS has great application potential in NO3--N deep removal of water bodies with neutral pH and low C/N ratios.
Collapse
Affiliation(s)
- Facai An
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Xianlu Feng
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Hong X, Du Y, Zhang H, Xue W, San Hui K, Fang G. Electrochemical nitrate removal by magnetically immobilized nZVI anode on ammonia-oxidizing plate of RuO 2-IrO 2/Ti. CHEMOSPHERE 2022; 294:133806. [PMID: 35120957 DOI: 10.1016/j.chemosphere.2022.133806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Ammonium as the major reduction intermediate has always been the limitation of nitrate reduction by cathodic reduction or nano zero-valent iron (nZVI). In this work, we report the electrochemical nitrate removal by magnetically immobilized nZVI anode on RuO2-IrO2/Ti plate with ammonia-oxidizing function. This system shows maximum nitrate removal efficiency of 94.6% and nitrogen selectivity up to 72.8% at pH of 3.0, and it has also high nitrate removal efficiency (90.2%) and nitrogen selectivity (70.6%) near neutral medium (pH = 6). As the increase of the applied anodic potentials, both nitrate removal efficiency (from 27.2% to 94.6%) and nitrogen selectivity (70.4%-72.8%) increase. The incorpration of RuO2-IrO2/Ti plate with ammonia-oxidizing function on the nZVI anode enhances the nitrate reduction. The dosage of nZVI on RuO2-IrO2/Ti plate (from 0.2 g to 0.6 g) has a slight effect (the variance is no more than 10.0%) on the removal performance. Cyclic voltammetry, Tafel analysis and electrochemical impedance spectroscopy (EIS) were further used to investigate the reaction mechanisms occurring on the nZVI surfaces in terms of CV curve area, corrosion voltage, corrosion current density and charge-transfer resistance. In conclusion, high nitrate removal performance of magnetically immobilized nZVI anode coupled with RuO2-IrO2/Ti plate may guide the design of improved electrochemical reduction by nZVI-based anode for practical nitrate remediation.
Collapse
Affiliation(s)
- Xiaoting Hong
- Department of Chemistry, Zhejiang Sci-tech University, Hangzhou, 310018, PR China.
| | - Yingying Du
- Department of Chemistry, Zhejiang Sci-tech University, Hangzhou, 310018, PR China
| | - Haibin Zhang
- Zhejiang Ruicheng New Materials Co., Ltd, Wenzhou, 325401, PR China
| | - Wenjuan Xue
- Department of Chemistry, Zhejiang Sci-tech University, Hangzhou, 310018, PR China
| | - Kwan San Hui
- Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gangming Fang
- Hangzhou Chuan En Environmental Technology Co., LTD, Hangzhou, 311508, PR China
| |
Collapse
|
18
|
Abstract
Nitrate is a widespread water contaminant that can pose environmental and health risks. Various conventional techniques can be applied for the removal of nitrate from water and wastewater, such as biological denitrification, ion exchange, nanofiltration, and reverse osmosis. Compared to traditional methods, the chemical denitrification through zero-valent metals offers various advantages, such as lower costs, simplicity of management, and high efficiencies. The most utilized material for chemical denitrification is zero-valent iron (ZVI). Aluminium (ZVA), magnesium (ZVM), copper (ZVC), and zinc (ZVZ) are alternative zero-valent metals that are studied for the removal of nitrate from water as well as from aqueous solutions. To the best of our knowledge, a comprehensive work on the use of the various zero-valent materials that are employed for the removal of nitrate is still missing. Therefore, in the present review, the most recent papers concerning the use of zero-valent materials for chemical denitrification were analysed. The studies that dealt with zero-valent iron were discussed by considering microscopic (mZVI) and nanoscopic (nZVI) forms. For each Fe0 form, the effects of the initial pH, the presence or absence of dissolved oxygen, the initial nitrate concentration, the temperature, and the dissolved ions on the nitrate removal process were separately evaluated. Finally, the different materials that were employed as support for the nanoparticles were examined. For the other zero-valent metals tested, a detailed description of the works present in the literature was carried out. A comparison of the various features that are related to each considered material was also made.
Collapse
|
19
|
Enhanced nitrate removal and nitrogen-selective conversion mechanism of a combined sponge iron/biochar/manganese sand system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Shi H, Li C, Wang L, Wang W, Meng X. Selective reduction of nitrate into N 2 by novel Z-scheme NH 2-MIL-101(Fe)/BiVO 4 heterojunction with enhanced photocatalytic activity. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127711. [PMID: 34799158 DOI: 10.1016/j.jhazmat.2021.127711] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate and its metabolites as common pollutants in water had attracted widespread attentions. Converting nitrate to nontoxic and harmless nitrogen via photocatalysis was a promising approach. In this study, a novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction was successfully prepared. As-prepared Z-scheme heterojunction along with built-in electric field facilitated the charge separation and enhanced the photocatalytic activity in nitrate reduction. The results showed that 0.10-MBiVO photocatalyst exhibited the highest nitrate removal rate of 94.8% (initial concentration 100 mgN/L) and final selectivity to N2 of 93.4% in 50 min under ultraviolet irradiation. Moreover, formic acid was proved as better hole scavenger compared with methanol and oxalic acid. And the concentration of formic acid had significant influence on the process of nitrate photocatalytic reduction. 0.10-MBiVO photocatalyst exhibited excellent reusability in the recycling tests, indicating its great potential in practical application of nitrate photocatalytic removal. The mechanism of the enhancement as well as reaction pathways for nitrate photocatalytic reduction on NH2-MIL-101(Fe)/BiVO4 were comprehensively explored and described at the end.
Collapse
Affiliation(s)
- Huilong Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Liang Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Wentai Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
21
|
Zhou Y, Li X. Green synthesis of modified polyethylene packing supported tea polyphenols-NZVI for nitrate removal from wastewater: Characterization and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150596. [PMID: 34592281 DOI: 10.1016/j.scitotenv.2021.150596] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/15/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nano-zero-valent iron (NZVI), as an electron donor, performed excellence in the reduction and remove of nitrate. However, the easy agglomeration and poor antioxidation of NZVI declined the nitrate removal and limited the application in the field of wastewater treatment. Herein, a novel composite packing of tea polyphenol, NZVI and modified polyethylene carrier (TP-NZVI/PE) was prepared and characterized, the removal efficiency of nitrate was verified, and the preliminary removal mechanism was finally investigated. The results showed that the maximum iron loading on TP-NZVI/PE composite achieved under 50 °C, pH of 5.0, 4.0 g/L of Fe2+, and 7.2 g/L of TP, respectively, with 3.51 ± 0.12 mg/g. NZVI presented satisfactory antioxidation and anti-agglomeration via TP encapsulation. TP encapsulation of TP-NZVI/PE composite was easily degraded by microorganisms and NZVI was exposed to nitrate during wastewater treatment, which made the reduction of nitrate possible. The nitrate removal efficiency of TP-NZVI/PE composite with microorganism was 79.88 ± 0.17%, higher three times than that of TP-NZVI/PE (25.54 ± 0.21%). The oxidized NZVI was transformed to Fe2+/Fe3+, which were prone to adsorb nitrate and then co-precipitate. It was favorable for further removal of nitrate. Results suggested a novel approach for fast and eco-friendly preparation and efficient application of NZVI.
Collapse
Affiliation(s)
- Yu Zhou
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
22
|
Zhao F, Xin J, Yuan M, Wang L, Wang X. A critical review of existing mechanisms and strategies to enhance N 2 selectivity in groundwater nitrate reduction. WATER RESEARCH 2022; 209:117889. [PMID: 34936974 DOI: 10.1016/j.watres.2021.117889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The pollution of nitrate (NO3-) in groundwater has become an environmental problem of general concern and requires immediate remediation because of adverse human and ecological impacts. NO3- removal from groundwater is conducted mainly by chemical, biological, and coupled methods, with the removal efficiency of NO3- considered the sole performance indicator. However, in addition to the harmless form of N2, the reduced NO3- could be transformed into other intermediates, such as nitrite (NO2-), nitrous oxide (N2O), and ammonia (NH4+), which may have direct or indirect negative impacts on the environment. Therefore, increasing N2 selectivity is a significant challenge in reducing NO3- in groundwater, which seriously impedes the large-scale implementation of available remediation technologies. In this work, we comprehensively overview the most recent advances in N2 selectivity regarding the understanding of emerging groundwater NO3- removal technologies. Mechanisms of by-product production and strategies to enhance the selective reduction of NO3- to N2 are discussed in detail. Furthermore, we proposed topics for further research and hope that the total environmental impacts of remediation schemes should be evaluated comprehensively by quantifying all potential intermediate products, and promising strategies should be further developed to enhance N2 selectivity, to improve the feasibility of related technologies in actual remediation.
Collapse
Affiliation(s)
- Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
23
|
Chauhan R, Srivastava VC. Mechanistic kinetic modeling of simultaneous electrochemical nitrate reduction and ammonium ion oxidation in wastewater. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Florea AF, Lu C, Hansen HCB. A zero-valent iron and zeolite filter for nitrate recycling from agricultural drainage water. CHEMOSPHERE 2022; 287:131993. [PMID: 34523440 DOI: 10.1016/j.chemosphere.2021.131993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/12/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate reduction to ammonium followed by ammonium capture and reuse, represent a new pathway to recycle nitrogen, prevent eutrophication, and to save energy used for industrial ammonium production. The present study investigates the principle of nitrogen recycling to agricultural drainage water using a coupled zero-valent iron (ZVI) and zeolite-based filter column system tested in laboratory and field continuous-flow experiments. A 40-day laboratory test showed 82% nitrate removal, of which 70% was converted to ammonium. In the following pilot scale field test, a total of 59.2 m3 (1700 pore volumes) drainage water with a nitrate concentration of 2-8 mg L-1 NO3--N was filtrated. An oxidizing unit inserted after the ZVI unit removed iron(II) and optimized ammonium retention in the zeolite unit. Nitrate removal efficiency was 94% for the entire 56-day period with a slight pH increase (pH 8.9). All ammonium produced was retained by the zeolite unit. Formation of green rust carbonate (layered FeII-FeIII-hydroxide) was observed on ZVI particle surfaces, which may increase the redox capacity of the filter system by up to 50% and contribute to its cost-efficiency. Moreover, all phosphate in the influent waters with concentrations between 0.1 and 0.5 mg L-1 was retained due to sorption by iron oxides in the system. Corrosion products formed cause partial filter clogging and should be removed by regular cleaning and backflushing. In conclusion, the ZVI - zeolite coupled filter system serves as a promising and cost-effective technology for nutrient removal and ammonium retention from agricultural drainage water.
Collapse
Affiliation(s)
- Adrian F Florea
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Dk-1871, Denmark.
| | - Changyong Lu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Dk-1871, Denmark
| | - Hans Chr B Hansen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Dk-1871, Denmark
| |
Collapse
|
25
|
Liu M, Xu M, Zhang X, Zhou J, Ma Q, Wu L. Poorly crystalline Fe(Ⅱ) mineral phases induced by nano zero-valent iron are responsible for Cd stabilization with different soil moisture conditions and soil types. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112616. [PMID: 34371454 DOI: 10.1016/j.ecoenv.2021.112616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (nZVI) is a promising remediation material for Cd-contaminated soil, but questions remain regarding the effects of nZVI-induced Fe oxides on Cd availability with different soil types and moisture conditions. To identify the changes in Cd availability and Fe mineral phases resulting from the application of nZVI, three types of Cd-spiked soils with 0.1% nZVI amendment were incubated under different moisture conditions with water-holding capacities (WHCs) of 30%, 60%, and 180%. The availability of Cd was significantly decreased in yellow and black soils amended with nZVI, with fewer changes being observed in cinnamon soil. The limited effect of nZVI on Cd stabilization was due to the extremely low content of poorly crystalline Fe phases in cinnamon soil. The Cd stabilization efficiency of nZVI was higher in the flooding soils (180% WHC) than in the non-flooding yellow and black soils (30% and 60% WHC, respectively). Moreover, the addition of nZVI promoted the formation of less-available forms of Cd (Fe-oxide-bound Cd in yellow soil and Fe-oxide-bound and organic-material-bound Cd in black soil) under the flooding condition. The decrease in extractable Cd was strongly related to the increase in poorly crystalline Fe(Ⅱ) mineral phases among the three soils and various soil moisture contents. Although 0.1% nZVI amendment induced the dissolution of Mn oxides, it did not hinder the Cd stabilization in the three soils. Overall, this study indicates that increased amounts of poorly crystalline Fe(Ⅱ) compounds due to nZVI amendment play a critical role in the stabilization of Cd in soils.
Collapse
Affiliation(s)
- Mengjiao Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Qin S, Zhang X, He S, Huang J. Improvement of nitrogen removal with iron scraps in floating treatment wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17878-17890. [PMID: 33398766 DOI: 10.1007/s11356-020-12177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Floating treatment wetland (FTW) in restoration of low C/N ratio wastewater was deemed to a frequently used method. However, the nitrate removal performance in floating beds was limited due to insufficient organic carbon sources. Iron scraps as a potential electron donor was beneficial to the NO3--N reduction. To research the removal performance and mechanism of denitrification in FTW with iron scraps, FTW with Iris pseudacorus was built, and iron scraps were added as an electron donor to improve nitrogen removal efficiency. The batch experimental results demonstrated that the proper mass ratio of iron scraps to NO3--N was 500:1. With iron scraps, the NO3--N removal efficiency of FTW and control system increased significantly to 98.04% and 44.42% respectively in 2 weeks, while there was no obvious influence on the removal of NH4+-N. After adding iron scraps, the proportion of bacteria in the systems related to iron cycle and the relative abundance of nitrifying and denitrifying bacteria have increased obviously. By calculating the nitrogen balance, nitrogen reduction via plant uptake accounted for 8.79%, and the microbial denitrification was the main nitrogen removal pathway in FTW.
Collapse
Affiliation(s)
- Si Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| |
Collapse
|
27
|
Kim I, Cha DK. Effect of low temperature on abiotic and biotic nitrate reduction by zero-valent Iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142410. [PMID: 33254888 DOI: 10.1016/j.scitotenv.2020.142410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
The effect of low temperatures on abiotic and biotic nitrate (NO3-) reduction by zero-valent iron (ZVI) were examined at temperatures below 25 °C. The extent and rate of nitrate removal in batch ZVI reactors were determined in the presence and absence of microorganisms at 3.5, 10, 17, and 25 °C. Under anoxic conditions, NO3- reduction rates in both ZVI-only and ZVI-cell reactors declined as temperature decreased. In ZVI-only reactor, 62% and 17% of initial nitrate concentration were reduced in 6 days at 25 and 3.5 °C, respectively. The reduced nitrate was completely recovered as ammonium ions (NH4+) at both temperatures. The temperature-dependent abiotic reduction rates enabled us to calculate the activation energy (Ea) using the Arrhenius relationship, which was 50 kJ/mol. Nitrate in ZVI-cell reactors was completely removed within 1-2 days at 25 and 10 °C, and 67% of reduction was achieved at 3.5 °C. Only 18-25% of the reduced nitrate was recovered as NH4+ in the ZVI-cell reactors. Soluble iron concentrations (Fe2+ and Fe3+) in the ZVI reactors were also measured as the indicators of anaerobic corrosion. In the ZVI-cell reactors, soluble iron concentrations were 1.7 times higher than that in ZVI-only reactors at 25 °C, suggesting that the enhanced nitrate reduction in the ZVI-cell reactors may be partly due to increased redox activity (i.e., corrosion) on iron surfaces. Anaerobic corrosion of ZVI was also temperature-dependent as substantially lower concentrations of corrosion product were detected at lower incubation temperatures; however, microbially induced corrosion (MIC) of ZVI was much less impacted at lower temperatures than abiotic ZVI corrosion. This study demonstrated that ZVI-supported microbial denitrification is not only more sustainable at lower temperatures, but it becomes more dominant reaction for nitrate removal in microbial-ZVI systems at low temperatures.
Collapse
Affiliation(s)
- Inyoung Kim
- Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, United States.
| | - Daniel K Cha
- Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
28
|
Si Z, Song X, Wang Y, Cao X, Wang Y, Zhao Y, Ge X, Sand W. Untangling the nitrate removal pathways for a constructed wetland- sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122407. [PMID: 32135362 DOI: 10.1016/j.jhazmat.2020.122407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Sponge iron (s-Fe0) is a potential alternative electron donor for nitrate reduction. To gain insight into the mechanism of denitrification in a constructed wetland- sponge iron coupled system (CW-Fe0 system), the removal performance and reduction characteristics of nitrate in constructed wetlands (CWs) with and without s-Fe0 application were compared. Results indicated that s-Fe0 intensified the removal of nitrate with a 6h-HRT. The nitrate removal efficiency was improved by 16-76 % with various influent NO3--N concentrations (10-30 mg L-1) and at a chemical oxygen demand(COD)/N ratio of 5. The rates of chemical denitrification were positively correlated with the dosage of s-Fe0 and negatively correlated with the influent COD concentration. 16S rDNA sequencing revealed that hydrogen-utilizing autotrophic denitrifier of Hydrogenophaga was highly enriched (accounting for 10 % of the total OTUs) only in CW-Fe0 system. The micro-environment created by s-Fe0 was suitable for heterotrophic denitrifiers of Thauera, Tessaracoccus and Simplicispira. The determination of physiological indicators for plants showed that the application of s-Fe0 causes abiotic stress to wetland plants (Canna indica L.). Nevertheless, s-Fe0 can be used as a substrate for CWs, since it allows a high-efficiency removal of nitrate by mediating chemical denitrification and hydrogen-driven autotrophic denitrification.
Collapse
Affiliation(s)
- Zhihao Si
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Ge
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Wolfgang Sand
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
29
|
Ji S, Qian H, Yang C, Zhao X, Yan X. Cationic Surfactant‐Modified Covalent Organic Frameworks for Nitrate Removal from Aqueous Solution: Synthesis by Free‐Radical Polymerization. Chempluschem 2020; 85:828-831. [DOI: 10.1002/cplu.202000104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Shi‐Lei Ji
- College of Chemistry Research Center for Analytical Sciences Tianjin Key Laboratory of Molecular Recognition and Biosensing State Key Laboratory of Medicinal Chemical BiologyNankai University Tianjin 300071 P. R. China
| | - Hai‐Long Qian
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Institute of Analytical Food Safety School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Cheng‐Xiong Yang
- College of Chemistry Research Center for Analytical Sciences Tianjin Key Laboratory of Molecular Recognition and Biosensing State Key Laboratory of Medicinal Chemical BiologyNankai University Tianjin 300071 P. R. China
| | - Xu Zhao
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Institute of Analytical Food Safety School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Xiu‐Ping Yan
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Institute of Analytical Food Safety School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
30
|
Yang B, Cheng Z, Yuan T, Tan Y, Gao X, Shen Z. Synergetic denitrification through co-removal of nitro and amino/N-heterocyclic compounds in supercritical water. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2018.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Chemical Reduction of Nitrate by Zero-Valent Iron: Shrinking-Core versus Surface Kinetics Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041241. [PMID: 32075161 PMCID: PMC7068433 DOI: 10.3390/ijerph17041241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/01/2022]
Abstract
Zero valent iron (ZVI) is being used in permeable reactive barriers (PRB) for the removal of oxidant contaminants, from nitrate to chlorinated organics. A sound design of these barriers requires a good understanding of kinetics. Here we present a study of the kinetics of nitrate reduction under relatively low values of pH, from 2 to 4.5. We use a particle size of 0.42 mm, which is within the recommended size for PRBs (0.2 mm to 2.0 mm). In order to avoid possible mass-transfer limitations, a well-stirred reactor coupled with a fluidized bed reactor was used. The experiments were performed at constant pH values using a pH controller that allows to accurately track the amount of acid added. Since the reduction of H+ to H2 by the oxidation of ZVI will always be present for these pH values, blank experiments (without nitrate) were performed and the rate of this H+ reduction obtained. This rate of reduction was studied using three kinetic models: a regular empirical one, the Shrinking-Core Model (SCM), and the Surface Kinetics Model (SKM). The best performance was obtained from the SKM model. Therefore, this model was also used to study the results for the nitrate reduction, also with satisfactory results. In both cases, some assumptions are introduced to maintain a moderate number of fitting parameters.
Collapse
|
32
|
Ma F, Zhao B, Diao J, Jiang Y, Zhang J. Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron. RSC Adv 2020; 10:39217-39225. [PMID: 35518416 PMCID: PMC9057329 DOI: 10.1039/d0ra07391a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the removal mechanism of phosphate by rape straw biochar (RSBC) supported nanoscale zero-valent iron (nZVI).
Collapse
Affiliation(s)
- Fengfeng Ma
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Jingru Diao
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yufeng Jiang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Jian Zhang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| |
Collapse
|
33
|
Han Y, Huang J, Liu H, Wu Y, Wu Z, Zhang K, Lu Q. Abiotic reduction of p-chloronitrobenzene by sulfate green rust: influence factors, products and mechanism. RSC Adv 2020; 10:19247-19253. [PMID: 35515441 PMCID: PMC9054108 DOI: 10.1039/d0ra02113j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
The reduction of p-chloronitrobenzene (p-CNB) by sulfate green rust (GRSO4) was systematically studied. The results revealed that GRSO4 has a good removal effect on p-CNB. The removal efficiencies of p-CNB by GRSO4 improved with the increase of the pH value. The removal efficiencies in the presence of ions were better than that of GRSO4 alone, while natural organic matter (NOM) could adsorb p-CNB, which competed with GRSO4. The reductions of p-CNB by GRSO4 under different conditions followed pseudo-first-order reaction kinetics except for the reactions in the presence of NOM. p-CNB was converted into p-chloroaniline (p-CAN), which produced p-nitrosochlorobenzene and p-chlorophenylhydroxylamine as the intermediate products. The results of the X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed GRSO4 was gradually transformed into goethite. Fe(ii) in the GRSO4 structure was the main electron donor involved in the reaction. Sulfate green rust reduces p-chloronitrobenzene through the electron transfer from the structural Fe(ii) and transforms into goethite.![]()
Collapse
Affiliation(s)
- Ying Han
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| | - Junkai Huang
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| | - Hongyuan Liu
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| | - Yue Wu
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| | - Zhao Wu
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| | - Kemin Zhang
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| | - Qingjie Lu
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310023
- P. R. China
| |
Collapse
|
34
|
Zhang J, Wu J, Chao J, Shi N, Li H, Hu Q, Yang XJ. Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 227:103541. [PMID: 31481250 DOI: 10.1016/j.jconhyd.2019.103541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Groundwater contamination is a worldwide concern and the development of new materials for groundwater remediation has been of great interest. This study investigated removal kinetics and mechanisms of nitrate, copper ion and hexavalent chromium (20-50 mg L-1) by particles of Al-Fe alloy consisting of 20% Fe in batch reactors from a single KNO3, CuSO4, Cu(NO3)2, K2Cr2O7 and their mixed solutions. The effects of contaminant interactions and initial pH of the solution were examined and the alloy particles before and after reaction were characterized by X-ray diffraction spectrometer, scanning electron microscopy and X-ray photoelectron spectroscopy. The removal mechanisms were attributed to chemical reduction [Cu(II) to Cu, NO3- to NH3 and Cr(VI) to Cr(III)] and co-precipitation of Cr(III)-Al(III)-Fe(III) hydroxides/oxyhydroxides. Cu(II) enhanced the rates of NO3- and Cr(VI) reduction and Cr(VI) was an inhibitor for Cu(II) and NO3- reduction. This study demonstrates that Al-Fe alloy is of potential for groundwater remediation.
Collapse
Affiliation(s)
- Jingqi Zhang
- Beijing Key Laboratory of Membrane Science and Technology, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wu
- Beijing Key Laboratory of Membrane Science and Technology, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingbo Chao
- National Institute of Metrology, Beijing 100029, China
| | - Naijie Shi
- National Institute of Metrology, Beijing 100029, China
| | - Haifeng Li
- National Institute of Metrology, Beijing 100029, China
| | - Qing Hu
- Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Beijing Huanding Environmental Big Data Institute, No. 1 Wangzhuang Road, 100083 Beijing, China
| | - Xiao Jin Yang
- Beijing Key Laboratory of Membrane Science and Technology, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
35
|
Coutelot F, Thomas RJ, Seaman JC. Using porous iron composite (PIC) material to immobilize rhenium as an analogue for technetium. ENVIRONMENT INTERNATIONAL 2019; 128:379-389. [PMID: 31078007 DOI: 10.1016/j.envint.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Technetium (99Tc), a uranium-235 (235U) and plutonium-239 (239Pu) fission product, is a primary risk driver in low level radioactive liquid waste at U.S. Department of Energy sites. Previous studies have shown success in using Zero Valent Iron (ZVI) to chemically reduce and immobilize redox sensitive groundwater contaminants. Batch and column experiments were performed to assess the ability of a novel porous iron composite material (PIC) to immobilize Tc(VII) in comparison with two commercial Fe oxide sorbents and reagent grade ZVI in the presence and absence of NO3-, a competing oxidized species that is often found in high concentrations in liquid nuclear waste. Perrhenate (ReO4-) was used as a non-radioactive chemical analogue for pertechnetate (TcO4-) under both oxic and anoxic test conditions. The PIC powder was the most effective at immobilizing Re(VII) under all batch test conditions. The presence of nitrate (NO3-) slowed the removal of ReO4- from solution, presumably through chemical reduction and precipitation. Even so, the PIC and ZVI were effective at removing both Re(VII) and NO3- completely from solution. Nitrate was reduced to NH3 with very little nitrite (NO2-) buildup during equilibration. Significant Re immobilization was observed in the column tests containing PIC sorbent, even though inlet solutions were in equilibrium with O2. The presence of NO3- hastened Re breakthrough, while NO3- reduction to NH3 was observed. The results suggest that PIC and ZVI would be the most effective at the removal of TcO4- from contaminated groundwater sites.
Collapse
Affiliation(s)
- Fanny Coutelot
- Savannah River Ecology Laboratory, Aiken, SC, USA; The University of Georgia, Athens, GA, USA.
| | - Robert J Thomas
- Savannah River Ecology Laboratory, Aiken, SC, USA; The University of Georgia, Athens, GA, USA
| | - John C Seaman
- Savannah River Ecology Laboratory, Aiken, SC, USA; The University of Georgia, Athens, GA, USA
| |
Collapse
|
36
|
Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media. WATER 2019. [DOI: 10.3390/w11071316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural nonpoint pollution has been recognized as a primary source of nutrients and pesticides that contaminate surface water and groundwater. Reactive materials have great potential to remove nutrients and pesticides from agricultural drainage water. In this study, we investigated the reactive transport and removal of coexisting nitrate, phosphate, and three pesticides (tricyclazole, isoprothiolane, and malathion) by iron filings and natural ore limestone through column experiments under saturated flow conditions. Breakthrough results showed that 45.0% and 35.8% of nitrate were removed by iron filings and limestone during transport, with average removal capacities of 2670 mg/kg and 1400 mg/kg, respectively. The removal of nitrate was mainly due to microbial denitrification especially after 131–154 pore volumes (≈30 d), whereas reduction to ammonia dominated nitrate removal in iron filings during early phase (i.e., <21.7 d). The results showed that 68.2% and 17.6% of phosphate were removed by iron filings and limestone, with average removal capacities of 416.1 mg/kg and 155.2 mg/kg, respectively. Mineral surface analyses using X-ray diffraction (XRD) and scanning electron microscope (SEM) coupled with energy-dispersive X-ray analysis (EDX) suggested that ligand exchange, chemical precipitation, and electrostatic attraction were responsible for phosphate removal. Chemical sorption was the main mechanism that caused removals of 91.6–100% of malathion and ≈27% of isoprothiolane in iron filings and limestone. However, only 22.0% and 1.1% of tricycalzole were removed by iron filings and limestone, respectively, suggesting that the removal might be relevant to the nonpolarity of tricyclazole. This study demonstrates the great potential of industrial wastes for concurrent removal of nutrients and pesticides under flow conditions.
Collapse
|
37
|
Liu Y, Wang J. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:388-403. [PMID: 30933795 DOI: 10.1016/j.scitotenv.2019.03.317] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Zero valent iron (ZVI) and ZVI-based materials have been widely used for the reduction of nitrate, a major contaminant commonly detected in groundwater and surface water. The reduction of nitrate by ZVI is influenced by various factors, such as the physical and chemical characteristics of ZVI and the operational parameters. There are some problems for the nitrate reduction by ZVI alone, for example, the formation of iron oxides on the surface of ZVI at high pH condition, which will inhibit the further reduction of nitrate; in addition, the end reduction product is mainly ammonium, which itself needs to be concerned. Several strategies, such as the optimization of the structure of ZVI composites and the addition of reducing assistants, have been proposed to increase the reduction efficiency and the selectivity of end product of nitrate reduction in a wide range of pH, especially under neutral pH condition. This review will mainly focus on the high efficient reduction of nitrate by ZVI-based materials. Firstly, the reduction of nitrate by ZVI alone was briefly introduced and discussed, including the influence of physical and chemical characteristics of ZVI and some operational parameters on the reduction efficiency of nitrate. Then, the strategies for enhancing the reduction efficiency and the N2 selectivity of the reductive products of nitrate were systematically analyzed and evaluated, especially the optimization of the structure of ZVI composites (e.g., doped ZVI composite, supported ZVI composite and premagnetized ZVI), and the addition of reducing assistants (e.g., metal cations, ligand, hydrogen gas and light) were highlighted. Thirdly, the mechanisms and pathways of nitrate reduction were discussed. Finally, concluding remarks and some suggestions for the future research were proposed.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
38
|
Diao ZH, Qian W, Lei ZX, Kong LJ, Du JJ, Liu H, Yang JW, Pu SY. Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: Reactivity, products, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:541-549. [PMID: 30641381 DOI: 10.1016/j.scitotenv.2019.01.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 01/05/2019] [Indexed: 05/26/2023]
Abstract
Herein, the application of a novel acid mine drainage-based nanoscale zero valent iron (AMD-based nZVI) for the remediation of nitrate and norfloxacin (NOR) was studied. Experimental results indicated that the catalytic reactivity of AMD-based nZVI toward nitrate reduction was superior to that of iron salt-based nanoscale zero valent iron (Iron salt-based nZVI). The presence of ultrasound irradiation could significantly enhance the reactivity toward both the nitrate reduction and NOR oxidation processes. The optimal efficiencies of nitrate and NOR by AMD-based nZVI/US process could be kept 96 and 94% within 120 min, respectively. Ammonia was identified as a major product in nitrate reduction process, while three oxidation products were observed in NOR degradation process. Both reduction reaction of nitrate from AMD-based nZVI and oxidation reaction of NOR from US-assisted Fenton system might be involved in AMD-based nZVI/US process. The AMD-based nZVI/US process showed a better performance on the removal of NOR compared with that of nitrate. The findings of the present work could be as a guide and show that AMD-based nZVI/US process is feasible for the remediation of both nitrate and NOR in real wastewater.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Wei Qian
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ze-Xiang Lei
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | | | - Jian-Jun Du
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hui Liu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie-Wen Yang
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sheng Yan Pu
- Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
39
|
El Hanache L, Lebeau B, Nouali H, Toufaily J, Hamieh T, Daou TJ. Performance of surfactant-modified *BEA-type zeolite nanosponges for the removal of nitrate in contaminated water: Effect of the external surface. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:206-217. [PMID: 30366242 DOI: 10.1016/j.jhazmat.2018.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Hierarchical *BEA-type nanosponges zeolite with a high external surface area (116 m2.g-1) and small crystal size, synthesized in the presence of a dual-porogenic organic compound, were modified with a cationic surfactant (HDTMA+Br-: hexadecyltrimethyl ammonium bromide) in order to create a new anion exchanger system: the surfactant-modified zeolite nanosponges (SMZNS). For comparison, two other surfactant-modified *BEA-type zeolite materials, SMZMC and SMZNC, were obtained by modifying the synthesized conventional micron-size microcrytals and nanocrystals *BEA-type zeolite with HDTMA+Br-, respectively. Textural and structural properties were determined for the three prepared materials using N2 adsorption/desorption analysis, XRD, SEM, and TEM. Nitrate adsorption isotherms were drawn in a large concentration range [0.8-24.2 mmol.L-1] and fitted with Langmuir isotherm model. The maximum nitrate removal capacity (1338 mmol.Kg-1/83 mg.g-1) was obtained for SMZNS material. This value is the highest ever observed for nitrate removal using surfactant-modified zeolite. The nitrate removal kinetics were fitted with the pseudo second-order model for both materials SMZNS and SMZNC.
Collapse
Affiliation(s)
- Layla El Hanache
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, France; Laboratoire Matériaux, Catalyse, Environnement et Méthodes Analytiques (MCEMA), Université Libanaise, Campus Universitaire Rafic Hariri, Hadath, Lebanon; Laboratoire de recherche sur les Etudes Appliquées au Développement Durable et Energie Renouvelable (LEADDER), Université Libanaise, Campus Universitaire Rafic Hariri, Hadath, Lebanon
| | - Bénédicte Lebeau
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, France
| | - Habiba Nouali
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, France
| | - Joumana Toufaily
- Laboratoire Matériaux, Catalyse, Environnement et Méthodes Analytiques (MCEMA), Université Libanaise, Campus Universitaire Rafic Hariri, Hadath, Lebanon; Laboratoire de recherche sur les Etudes Appliquées au Développement Durable et Energie Renouvelable (LEADDER), Université Libanaise, Campus Universitaire Rafic Hariri, Hadath, Lebanon
| | - Tayssir Hamieh
- Laboratoire Matériaux, Catalyse, Environnement et Méthodes Analytiques (MCEMA), Université Libanaise, Campus Universitaire Rafic Hariri, Hadath, Lebanon
| | - T Jean Daou
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, France.
| |
Collapse
|
40
|
Hu Z, Li D, Deng S, Liu Y, Ma C, Zhang C. Combination with catalyzed Fe(0)-carbon microelectrolysis and activated carbon adsorption for advanced reclaimed water treatment: simultaneous nitrate and biorefractory organics removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5693-5703. [PMID: 30612352 DOI: 10.1007/s11356-018-3919-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
A process combining catalyzed Fe(0)-carbon microelectrolysis (IC-ME) with activated carbon (AC) adsorption was developed for advanced reclaimed water treatment. Simultaneous nitrate reduction and chemical oxygen demand (COD) removal were achieved, and the effects of composite catalyst (CC) addition, AC addition, and initial pH were investigated. The reaction kinetics and reaction mechanisms were calculated and analyzed. The results showed that CC addition could enhance the reduction rate of nitrate and effectively inhibit the production of ammonia. Moreover, AC addition increased the adsorption capacity of biorefractory organic compounds (BROs) and enhanced the degradation of BRO. The reduction of NO3--N at different pH values was consistently greater than 96.9%, and NH4+-N was suppressed by high pH. The presence of CC ensured the reaction rate of IC-ME at high pH. The reaction kinetics orders and constants were calculated. Catalyzed iron scrap (IS)-AC showed much better nitrate reduction and BRO degradation performances than IS-AC and AC. The IC-ME showed great potential for application to nitrate and BRO reduction in reclaimed water.
Collapse
Affiliation(s)
- Zhifeng Hu
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Desheng Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China.
- Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, 100044, People's Republic of China.
| | - Shihai Deng
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, 100044, People's Republic of China
| | - Yuanhui Liu
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Changyue Ma
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Chao Zhang
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
41
|
Pu S, Deng D, Wang K, Wang M, Zhang Y, Shangguan L, Chu W. Optimizing the removal of nitrate from aqueous solutions via reduced graphite oxide-supported nZVI: synthesis, characterization, kinetics, and reduction mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3932-3945. [PMID: 30547335 DOI: 10.1007/s11356-018-3813-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Graphene has been considered an ideal absorbent and excellent carrier for nanoparticles. Reduced graphite oxide (rGO)-supported nanoscale zero-valent iron (nZVI@rGO) is an effective material for removing nitrate from water. nZVI@rGO nanocomposites were prepared by a liquid-phase reduction method and then applied for nitrate-nitrogen (NO3--N) removal in aqueous solution under anaerobic conditions. The experimental results showed that the stability and activity of the nZVI@rGO nanocomposites were enhanced compared with those of nZVI. The influence of the reaction conditions, including the initial concentration of NO3--N, coexisting anions, initial pH of the solution, and water temperature, on NO3--N removal was also investigated by batch experiments. In a neutral or slightly alkaline environment, 90% of NO3--N at a concentration less than 50 mg/L could be removed within 1 h, and nitrogen production was approximately 15%. The process of NO3--N removal by nZVI@rGO fits well with different reaction kinetics. In addition, magnetite was the main oxidation product. RGO-supported nZVI might become a promising filler in the permeable reactive barrier process for groundwater remediation.
Collapse
Affiliation(s)
- Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.
| | - Daili Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Kexin Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Miaoting Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Lixiang Shangguan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Wei Chu
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| |
Collapse
|
42
|
Zhang Y, Douglas GB, Kaksonen AH, Cui L, Ye Z. Microbial reduction of nitrate in the presence of zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1195-1203. [PMID: 30235605 DOI: 10.1016/j.scitotenv.2018.07.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Microbial reduction of nitrate in the presence of zero-valent iron (ZVI) was evaluated in anoxic shake flasks to assess the feasibility of ZVI-facilitated biological nitrate removal. Nitrate was completely reduced within 3days in the presence of both ZVI and microorganisms (ZVI-M). In contrast, only 75% of the nitrate was reduced in the presence of ZVI but without microbial inoculum. Nitrate removal was affected by ZVI-M flasks initial pH, nitrate concentration and ZVI dosage. Nitrate removal in the inoculated ZVI flasks system could be divided into two phases: adaptation phase and log phase which could be described by first-order kinetic equations. The analysis of bacterial communities in the inoculated flasks in the absence and presence of ZVI, indicated that the addition of ZVI increased the relative abundance of Methylotenera spp., Alcaligenes eutrophus, Pseudomonas spp. which might play an important role in nitrogen removal. The presence of ZVI could enhance biological denitrification through four mechanisms: the biological reduction of nitrate with 1) electrons derived directly from ZVI; 2) with hydrogen released from ZVI; 3) with Fe2+ released from ZVI; and 4) with acetate generated by homoacetogens which utilize H2 released from ZVI.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Grant B Douglas
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag 5, Wembley, 6913, WA, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag 5, Wembley, 6913, WA, Australia
| | - Lili Cui
- Hebei Energy and Environmental Engineering, Hebei Institute of Architectural Engineering, Zhangjiakou, Hebei 075000, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
43
|
Yang B, Cheng Z, Yuan T, Gao X, Tan Y, Ma Y, Shen Z. Temperature sensitivity of nitrogen-containing compounds decomposition during supercritical water oxidation (SCWO). J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|