1
|
Dania A, Lutier M, Heimböck MP, Heuschele J, Søreide JE, Jackson MC, Dinh KV. Temporal patterns in multiple stressors shape the vulnerability of overwintering Arctic zooplankton. Ecol Evol 2024; 14:e11673. [PMID: 38952656 PMCID: PMC11215157 DOI: 10.1002/ece3.11673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
The Arctic polar nights bring extreme environmental conditions characterised by cold and darkness, which challenge the survival of organisms in the Arctic. Additionally, multiple anthropogenic stressors can amplify the pressure on the fragile Arctic ecosystems during this period. Determining how multiple anthropogenic stressors may affect the survival of Arctic life is crucial for ecological risk assessments and management, but this topic is understudied. For the first time, our study investigates the complex interactions of multiple stressors, exploring stressor temporal dynamics and exposure duration on a key Arctic copepod Calanus glacialis during the polar nights. We conducted experiments with pulse (intermittent) and press (continuous) exposure scenarios, involving microplastics, pyrene and warming in a fully factorial design. We observed significant effects on copepod survival, with pronounced impacts during later stressor phases. We also detected two-way interactions between microplastics and pyrene, as well as pyrene and warming, further intensified with the presence of a third stressor. Continuous stressor exposure for 9 days (press-temporal scenario) led to greater reductions in copepod survival compared to the pulse-temporal scenario, characterised by two 3-day stressor exposure phases. Notably, the inclusion of recovery phases, free from stressor exposure, positively influenced copepod survival, highlighting the importance of temporal exposure dynamics. We did not find behaviour to be affected by the different treatments. Our findings underscore the intricate interactions amongst multiple stressors and their temporal patterns in shaping the vulnerability of overwintering Arctic copepods with crucial implications for managing Arctic aquatic ecosystems under the fastest rate of ongoing climate change on earth.
Collapse
Affiliation(s)
- Albini Dania
- Department of BiologyUniversity of OxfordOxfordUK
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Mathieu Lutier
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Martin P. Heimböck
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Jan Heuschele
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | | | | | - Khuong V. Dinh
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
2
|
Fathy RF. Divergent perspectives on the synergistic impacts of thermal-chemical stress on aquatic biota within the framework of climate change scenarios. CHEMOSPHERE 2024; 355:141810. [PMID: 38554872 DOI: 10.1016/j.chemosphere.2024.141810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.
Collapse
Affiliation(s)
- Ragaa F Fathy
- Hydrobiology Department, Veterinary Research Institute, National Research Centre (NRC), 33 El-Buhouth St, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
3
|
Albani G, Asiedu D, Abrokwah S, Jónasdóttir SH, Nielsen TG, Acheampong E, Ruiz LH, Ekumah B, Koski M. Synergistic and additive effects of microplastic, nickel and pyrene on survival, reproduction, and egestion of a tropical copepod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106737. [PMID: 37939499 DOI: 10.1016/j.aquatox.2023.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Coastal tropical ecosystems provide livelihood for millions of people but are at the same time exposed to an increasing intensity of diverse anthropogenic stressors, including pollution. Nevertheless, the combined effects of pollutants on marine ecosystems are poorly understood, particularly regarding lower trophic levels (plankton) and tropical ocean. We exposed the tropical copepod Centropages velificatus to 4-5 concentrations of a heavy metal (nickel), an oil compound (pyrene) and microplastic (PET), either alone or in combination, and measured their egestion, reproduction, and mortality rates. Microplastic alone did not have any effect on pellet or egg production of copepods, whereas nickel reduced egg production rate at concentrations ≥1 µg L-1 and pyrene reduced both egg and pellet production rates at concentrations ≥1 nM. The addition of nickel and pyrene to PET - microplastic resulted in a reduction similar to one caused by nickel or pyrene alone, suggesting an additive effect. In contrast, a combination of nickel and pyrene had a synergistic effect, with a strong reduction in survival, egg and pellet production. Our results suggest that combinations of contaminants that are commonly found in tropical coastal waters have detrimental effects on copepods-the crucial link in the pelagic food web-at lower concentrations than suggested by single stressor studies. This can have an influence on the food web productivity - the basis of fisheries that local communities rely on.
Collapse
Affiliation(s)
- Giovanna Albani
- Technical University of Denmark, National Institute for Aquatic Resources, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark.
| | - Delove Asiedu
- Technical University of Denmark, National Institute for Aquatic Resources, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Sika Abrokwah
- Centre for Coastal Management (CCM), School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | - Sigrún H Jónasdóttir
- Technical University of Denmark, National Institute for Aquatic Resources, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Torkel G Nielsen
- Technical University of Denmark, National Institute for Aquatic Resources, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Emmanuel Acheampong
- Centre for Coastal Management (CCM), School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana; Department of Fisheries and Aquatic Sciences, University of Cape Coast, Ghana
| | - Laura Hernández Ruiz
- Technical University of Denmark, National Institute for Aquatic Resources, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Bernard Ekumah
- Centre for Coastal Management (CCM), School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | - Marja Koski
- Technical University of Denmark, National Institute for Aquatic Resources, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Picone M, Russo M, Distefano GG, Baccichet M, Marchetto D, Volpi Ghirardini A, Lunde Hermansson A, Petrovic M, Gros M, Garcia E, Giubilato E, Calgaro L, Magnusson K, Granberg M, Marcomini A. Impacts of exhaust gas cleaning systems (EGCS) discharge waters on planktonic biological indicators. MARINE POLLUTION BULLETIN 2023; 190:114846. [PMID: 36965268 PMCID: PMC10152311 DOI: 10.1016/j.marpolbul.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Exhaust Gas Cleaning Systems (EGCS), operating in open-loop mode, continuously release acidic effluents (scrubber waters) to marine waters. Furthermore, scrubber waters contain high concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs, potentially affecting the plankton in the receiving waters. Toxicity tests evidenced significant impairments in planktonic indicators after acute, early-life stage, and long-term exposures to scrubber water produced by a vessel operating with high sulphur fuel. Acute effects on bacterial bioluminescence (Aliivibrio fischeri), algal growth (Phaeodactylum tricornutum, Dunaliella tertiolecta), and copepod survival (Acartia tonsa) were evident at 10 % and 20 % scrubber water, while larval development in mussels (Mytilus galloprovincialis) showed a 50 % reduction at ∼5 % scrubber water. Conversely, larval development and reproductive success of A. tonsa were severely affected at scrubber water concentrations ≤1.1 %, indicating the risk of severe impacts on copepod populations which in turn may result in impairment of the whole food web.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Martina Russo
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Anna Lunde Hermansson
- Chalmers University of Technology, Department of Mechanics and Maritime Sciences, Hörselgången 4, 41756 Göteborg, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig lluís companys 23, 08010 Barcelona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Girona (UDG), Girona, Spain
| | - Elisa Garcia
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Girona (UDG), Girona, Spain
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Loris Calgaro
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Kerstin Magnusson
- Swedish Environmental Research Institute (IVL), Kristineberg Marine Research Station, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Maria Granberg
- Swedish Environmental Research Institute (IVL), Kristineberg Marine Research Station, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| |
Collapse
|
5
|
Truong KN, Vu N, Doan NX, Bui CV, Le M, Vu MTT, Dinh KV. Transgenerational exposure to marine heatwaves ameliorates the lethal effect on tropical copepods regardless of predation stress. Ecol Evol 2022; 12:e9149. [PMID: 35949526 PMCID: PMC9350982 DOI: 10.1002/ece3.9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Marine heatwaves (MHWs) are emerging as a severe stressor in marine ecosystems. Extreme warm sea surface temperatures during MHWs often exceed the optimal thermal range for more than one generation of tropical coastal zooplankton. However, it is relatively unknown whether transgenerational plasticity (TGP) to MHWs may shape the offspring's fitness, particularly in an ecologically relevant context with biotic interactions such as predation stress. We addressed these novel research questions by determining the survival, reproductive success, and grazing rate of the copepod Pseudodiaptomus incisus exposed to MHW and fish predator cues (FPC) for two generations (F1 and F2). The experiment was designed in a full orthogonal manner with 4 treatments in F1 and 16 treatments in F2 generation. In both generations, MHW reduced P. incisus survival, reproductive parameters, and grazing by 10%-62% in MHW, but these parameters increased by 2%-15% with exposure to FPC, particularly at control temperature. F2 reproductive success and grazing rate as indicated by cumulative fecal pellets were reduced by 20%-30% in F1-MHW, but increased by ~2% in F1-FPC. Strikingly, MHW exposure reduced 17%-18% survival, but transgenerational exposure to MHWs fully ameliorated its lethal effect and this transgenerational effect was independent of FPC. Increased survival came with a cost of reduced reproductive success, constrained by reduced grazing. The rapid transgenerational MHW acclimation and its associated costs are likely widespread and crucial mechanisms underlying the resilience of coastal tropical zooplankton to MHWs in tropical coastal marine ecosystems.
Collapse
Affiliation(s)
- Kiem N. Truong
- Department of EcologyUniversity of Science, Vietnam National UniversityHanoiVietnam
| | - Ngoc‐Anh Vu
- Department of EcologyUniversity of Science, Vietnam National UniversityHanoiVietnam
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Nam X. Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Canh V. Bui
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Minh‐Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Minh T. T. Vu
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Khuong V. Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
6
|
Kadiene EU, Ouddane B, Gong HY, Hwang JS, Souissi S. Multigenerational study of life history traits, bioaccumulation, and molecular responses of Pseudodiaptomus annandalei to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113171. [PMID: 34999339 DOI: 10.1016/j.ecoenv.2022.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Metal pollution provide a substantial challenge for environmental health. This study investigated the multigeneration effects of cadmium on populations of the copepod species Pseudodiaptomus annandalei, exposed to a sublethal concentration, 40 µg/L of cadmium (Cd), over 10 generations. At the end of each generation, copepod individuals were collected to estimate fecundity, bioaccumulation, and real time qPCR quantification of selected differentially expressed genes to evaluate Cd effects and sex-specific responses of copepods across multiple generations. Our results revealed a sex-specific accumulation of Cd integrating 10 successive generations. The concentration of Cd was significantly higher (p < 0.05) in males than in females. We also observed a generational increase in Cd accumulation. Fecundity increased, with the exception of the first generation, possibly as a compensation for a decrease of copepod population size under Cd exposure. Protein expression of copepods exposed to Cd occurred in a sex-specific manner. Hemerythrin was mostly up-regulated in both copepod sexes exposed to Cd with males having the highest expression levels, while heat shock protein 70 was mostly up-regulated in males and down-regulated in female copepods, both exposed to Cd. Although copepods are known to develop adaptive mechanisms to tolerate toxic chemicals, continuous exposure to metals could lead to the bioaccumulation of metals in their offspring through maternal transfer and direct uptake from the medium over several generations. As a consequence, increased metal concentrations in copepods could result in physiological damage, reducing their fitness, and possibly compromise copepod population structures. This study showed that mortality, life history traits and molecular responses of a copepod species provided important toxicological endpoints and bio-markers for environmental risk assessments. Environmental pressure resulting from continuous exposure to persistent pollutants like Cd, could have evolutionary significance. The tendency for copepods to selectively adapt to a toxic environment through modifications, could increase their chance of survival over a long term.
Collapse
Affiliation(s)
- Esther U Kadiene
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan
| | - Baghdad Ouddane
- Université de Lille, Equipe Physico-Chimie de l'Environnement, Laboratoire LASIR UMR CNRS 8516, 59655 Villeneuve d'Ascq Cedex, France
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France.
| |
Collapse
|
7
|
Dinh KV, Doan KLU, Doan NX, Pham HQ, Le THO, Le MH, Vu MTT, Dahms HU, Truong KN. Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117603. [PMID: 34147778 DOI: 10.1016/j.envpol.2021.117603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 05/09/2023]
Abstract
Extreme temperatures from marine heatwaves (MHWs) and pollution are dominant stressors in tropical marine ecosystems. However, we know little about the role of transgenerational effects of metals and MHWs in shaping the offspring's vulnerability to these stressors. We addressed this fundamental knowledge gap by exposing the planktonic copepod Pseudodiaptomus incisus to copper (Cu: control, 15 and 60 μg L-1) under 2 temperatures (30 and a simulated marine heatwave at 34 °C) in the first generation (F1) and 16 treatments in F2: offspring from each of 4 F1 conditions (control or 15 μg Cu L-1 × 30 or 34 °C) was reared in 4 F2 conditions (control or 15 μg Cu L-1 × 30 or 34 °C). We assessed changes in copepod performance, particularly survival, adult size, grazing, and reproduction. In F1, Cu or marine heatwave (MHW) exposures reduced all fitness traits of F1; the effects were particularly strong when both stressors were present. Transgenerational effects of Cu or MHW also strongly reduced F2 performance. Direct Cu and MHW effects on the offspring were further strengthened by transgenerational effects, resulting in more substantial reductions in F2 performance when both generations were exposed to these stressors. As copepods are major food resources for corals, shrimps, or fish larvae and juveniles, strong transgenerational and direct effects of Cu and MHW can have a cascading effect on entire coastal food webs. These results highlight the importance of considering the interaction of transgenerational and direct effects of multiple stressors, particularly relevant for short-lived organisms in tropical marine ecosystems.
Collapse
Affiliation(s)
- Khuong V Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam.
| | - Kha L U Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam; Department of Environmental Technology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| | - Nam X Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Hung Q Pham
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Thi Hoang Oanh Le
- Department of Environmental Technology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| | - Minh-Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Minh T T Vu
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Kiem N Truong
- Department of Ecology, Faculty of Biology, University of Science, Vietnam National University, VNU Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| |
Collapse
|
8
|
Rodríguez-Romero A, Viguri JR, Calosi P. Acquiring an evolutionary perspective in marine ecotoxicology to tackle emerging concerns in a rapidly changing ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142816. [PMID: 33092841 DOI: 10.1016/j.scitotenv.2020.142816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon. Most environmental studies have been focusing on short-term within-generation responses of single life stages of single species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and magnitude of future impacts of chemicals on marine ecosystems. Current approaches that lack an evolutionary perspective within the context of ongoing and future local and global stressors will likely lead us to under or over estimations of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define whether marine organisms can acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic performances to maximize fitness, to the new chemical environment within a selective horizon defined by global changes. To foster a significant advancement in this research area, we review briefly the history of ecotoxicology, synthesis our current understanding of the fate and impact of contaminants under global changes, and critically discuss the benefits and challenges of integrative approaches toward developing an evolutionary perspective in marine ecotoxicology: particularly through a multigenerational approach. The inclusion of multigenerational studies in Ecological Risk Assessment framework (ERA) would provide significant and more accurately information to help predict the risks of pollution in a rapidly changing ocean.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain; Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain.
| | - Javier R Viguri
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
9
|
Hernández Ruiz L, Ekumah B, Asiedu DA, Albani G, Acheampong E, Jónasdóttir SH, Koski M, Nielsen TG. Climate change and oil pollution: A dangerous cocktail for tropical zooplankton. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105718. [PMID: 33360235 DOI: 10.1016/j.aquatox.2020.105718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Climate change and oil pollution pose a major threat to tropical marine ecosystems and to the coastal communities relying on their resources. The Gulf of Guinea is severely affected by multiple human induced stressors, but the potential impacts of these on marine productivity remain unknown. We investigated the combined effects of heatwaves (climate stressor) and the polycyclic aromatic hydrocarbon pyrene (proxy for oil) on the copepod Centropages velificatus. We quantified survival, reproduction and fecal pellet production of females exposed to concentrations of 0, 10, 100 and 100+ nM (saturated) pyrene under simulated heatwaves of different thermal intensity (+3 °C and +5 °C above control treatment temperature). Thermal stress due to both moderate and intensive heatwaves resulted in reduced survival and egg production. The negative effects of pyrene were only measurable at the high pyrene concentrations. However, thermal stress increased the sensitivity of C. velificatus to pyrene, indicating a synergistic interaction between the two stressors. We document that the interaction of multiple stressors can result in cumulative impacts that are stronger than expected based on single stressor studies. Further research is urgently needed to evaluate the combined impact of climatic and anthropogenic stressors on the productivity of coastal ecosystems, particularly in the tropical areas.
Collapse
Affiliation(s)
- Laura Hernández Ruiz
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark
| | - Bernard Ekumah
- Centre for Coastal Management (CCM), University of Cape Coast, Cape Coast, Ghana
| | | | - Giovanna Albani
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark
| | - Emmanuel Acheampong
- Centre for Coastal Management (CCM), University of Cape Coast, Cape Coast, Ghana
| | - Sigrún H Jónasdóttir
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark; Centre for Coastal Management (CCM), University of Cape Coast, Cape Coast, Ghana
| | - Marja Koski
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
11
|
Dinh KV, Nguyen QTT, Vo TMC, Bui TB, Dao TS, Tran DM, Doan NX, Truong TSH, Wisz MS, Nielsen TG, Vu MTT, Le MH. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations. MARINE POLLUTION BULLETIN 2020; 159:111509. [PMID: 32763562 DOI: 10.1016/j.marpolbul.2020.111509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Tropical coastal areas are increasingly exposed to temperature extremes from marine heatwaves and contaminants from anthropogenic activities. The interactive effects of these environmental changes on marine life are understudied. We investigated the direct and cross-generational effects of copper (Cu) on F0 and F1 generations of the common tropical copepod Pseudodiaptomus annandalei under extreme temperatures (30 and 34 °C). In F0, Cu exposure reduced survival and nauplii production; these patterns were more pronounced at 34 °C and in females. F0 Copepods produced more faecal pellets at 34 °C than 30 °C, indicating a higher energetic demand. In F1, the number of F1 adults was lower in CuF0 and at 34 °C. Cu-exposed F0 produced larger adult F1, while exposure to 34 °C resulted in smaller adult F1. Our results show that tropical copepods are highly vulnerable to the interactive effects of contaminants and extreme temperatures.
Collapse
Affiliation(s)
- Khuong V Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam.
| | - Quyen T T Nguyen
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Thi-My-Chi Vo
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Trung Ba Bui
- Institute for Environment and Resources, Vietnam National University - Hochiminh City, 142 To Hien Thanh St., Dist. 10, Hochiminh City, Viet Nam
| | - Thanh-Son Dao
- Hochiminh City University of Technology, VNU - HCM, Hochiminh City, Viet Nam
| | - Duc M Tran
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Nam X Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Trinh S H Truong
- Institute of Oceanography, VAST, 01 Cau Da street, Nha Trang City, Viet Nam
| | - Mary S Wisz
- World Maritime University, Fiskehamnsgatan 1, Malmö, Sweden
| | | | - Minh T T Vu
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Minh-Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| |
Collapse
|
12
|
Scott R, Gras R. A simulation study shows impacts of genetic diversity on establishment success of digital invaders in heterogeneous environments. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Margiotta F, Balestra C, Buondonno A, Casotti R, D'Ambra I, Di Capua I, Gallia R, Mazzocchi MG, Merquiol L, Pepi M, Percopo I, Saggiomo M, Sarno D, Zingone A. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104980. [PMID: 32907718 DOI: 10.1016/j.marenvres.2020.104980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.
Collapse
Affiliation(s)
| | - Cecilia Balestra
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Angela Buondonno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffaella Casotti
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Isabella D'Ambra
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Iole Di Capua
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Roberto Gallia
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | | | - Louise Merquiol
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Milva Pepi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Saggiomo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
14
|
Dinh KV, Dinh HT, Pham HT, Selck H, Truong KN. Development of metal adaptation in a tropical marine zooplankton. Sci Rep 2020; 10:10212. [PMID: 32576953 PMCID: PMC7311422 DOI: 10.1038/s41598-020-67096-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tropical marine ecosystems are highly vulnerable to pollution and climate change. It is relatively unknown how tropical species may develop an increased tolerance to these stressors and the cost of adaptations. We addressed these issues by exposing a keystone tropical marine copepod, Pseudodiaptomus annandalei, to copper (Cu) for 7 generations (F1–F7) during three treatments: control, Cu and pCu (the recovery treatment). In F7, we tested the “contaminant-induced climate change sensitivity” hypothesis (TICS) by exposing copepods to Cu and extreme temperature. We tracked fitness and productivity of all generations. In F1, Cu did not affect survival and grazing but decreased nauplii production. In F2-F4, male survival, grazing, and nauplii production were lower in Cu, but recovered in pCu, indicating transgenerational plasticity. Strikingly, in F5-F6 nauplii production of Cu-exposed females increased, and did not recover in pCu. The earlier result suggests an increased Cu tolerance while the latter result revealed its cost. In F7, extreme temperature resulted in more pronounced reductions in grazing, and nauplii production of Cu or pCu than in control, supporting TICS. The results suggest that widespread pollution in tropical regions may result in high vulnerability of species in these regions to climate change.
Collapse
Affiliation(s)
- Khuong V Dinh
- School of Biological Sciences, Washington State University, Pullman, WA, USA. .,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark. .,Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Vietnam.
| | - Hanh T Dinh
- Northern National Broodstock Center for Mariculture, Research Institute for Aquaculture No 1, Xuan Dam Commune, Cat Ba, Hai Phong, Vietnam
| | - Hong T Pham
- Department of Environmental Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Kiem N Truong
- Department of Ecology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam.
| |
Collapse
|
15
|
Carotenuto Y, Vitiello V, Gallo A, Libralato G, Trifuoggi M, Toscanesi M, Lofrano G, Esposito F, Buttino I. Assessment of the relative sensitivity of the copepods Acartia tonsa and Acartia clausi exposed to sediment-derived elutriates from the Bagnoli-Coroglio industrial area. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104878. [PMID: 31975692 DOI: 10.1016/j.marenvres.2020.104878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The sensitivity of the copepods Acartia tonsa, commonly used in standardized tests for environmental risk assessment and A. clausi, the dominant autochthonous congener species in the Mediterranean Sea, was assessed using sediment-derived elutriates from the industrial area of Bagnoli-Coroglio and nickel chloride as referent toxicant. Acute A. clausi naupliar immobilization test showed EC50 for elutriates E25, E56 and E84 of 23.3%, 80.5% and >100%, respectively, compared to 59.5%, 66.6% and >100% in A. tonsa. In the 7 day sublethal test, a reduction in A. clausi egg production rates was observed in all elutriates, but only in E56 for A. tonsa. Elutriate 56, which contained the highest amount of polycyclic aromatic hydrocarbons, also induced 70% mortality in A. clausi females. Although A. clausi was more sensitive than A. tonsa, the two species had convergent responses to the three elutriates, thus opening the venue for a potential use of A. clausi in standardized ecotoxicity tests.
Collapse
Affiliation(s)
- Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy.
| | - Valentina Vitiello
- Istituto Superiore per la Protezione e Ricerca Ambientale, via del cedro 38, 57122, Livorno, Italy
| | - Alessandra Gallo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Francesco Esposito
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
| | - Isabella Buttino
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy; Istituto Superiore per la Protezione e Ricerca Ambientale, via del cedro 38, 57122, Livorno, Italy.
| |
Collapse
|
16
|
Toxværd K, Dinh KV, Henriksen O, Hjorth M, Nielsen TG. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105332. [PMID: 31698182 DOI: 10.1016/j.aquatox.2019.105332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Calanus hyperboreus is the largest copepod and a key species in the Arctic food web. During the spring bloom, C. hyperboreus builds up large lipid reserves, which enable it to survive and produce eggs during overwintering. The ecological effects of oil exposure on overwintering C. hyperboreus are unknown. The present study empirically tested if exposure to the polycyclic aromatic hydrocarbon (PAH) pyrene from crude oil affects the survival, egg production, and hatching success of overwintering C. hyperboreus. We also tested the delayed effects on faecal pellet production and lipid recovery in clean seawater. Direct exposure did not reduce survival and egg production, but reduced hatching success 3-18 times by the end of the exposure period. Remarkably, we documented strong delayed effects of pyrene on faecal pellet production and the recovery of lipid reserves. The current study reveals a high vulnerability of this key species of Arctic zooplankton to oil exposure during winter. Together with our previous study on C. glacialis, we complete the picture of the impact of oil on the largest and most lipid-rich copepod C. hyperboreus, which potentially can have huge ecological consequences for the fragile Arctic marine food web.
Collapse
Affiliation(s)
- Kirstine Toxværd
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark; Cowi Denmark, Department of Water & Nature, Parallelvej 2, 2800 Kgs. Lyngby, Denmark.
| | - Khuong V Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark.
| | - Ole Henriksen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark.
| | - Morten Hjorth
- Cowi Denmark, Department of Water & Nature, Parallelvej 2, 2800 Kgs. Lyngby, Denmark.
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Van Dinh K, Olsen MW, Altin D, Vismann B, Nielsen TG. Impact of temperature and pyrene exposure on the functional response of males and females of the copepod Calanus finmarchicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29327-29333. [PMID: 31392619 DOI: 10.1007/s11356-019-06078-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
We know very little about the effects of two global stressors, elevated temperature and contaminants, on the grazing of marine copepods. To address this issue, we tested the hypotheses that the individual and combined effects of these two stressors may reduce grazing rates and may depend on food availability and gender. We exposed male and female Calanus finmarchicus copepods to pyrene at two temperatures (10 and 14 °C) and six food concentrations (25-800 μg C Rhodomonas baltica L-1) and measured fecal pellet size, and grazing rate (GR) from pellet production. Males had smaller fecal pellets and lower GR than did females. Temperature and pyrene exposure had no effect on pellet size. Temperature alone had no effect on GR of males, but females had lower GR at elevated temperature. Pyrene-exposed males and females had lower GR only at the food concentrations of 200-800 μg C R. baltica L-1 and those patterns were independent of temperature. Pyrene-induced reduction in GR was stronger in females than in males. The negative effects of both elevated temperature and pyrene may reduce the abundance and trophic success of C. finmarchicus in a warmer, more polluted future.
Collapse
Affiliation(s)
- Khuong Van Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 201, Lyngby Campus, 2800, Kgs. Lyngby, DK, Denmark.
- Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, DK, Denmark.
| | - Maria Winberg Olsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 201, Lyngby Campus, 2800, Kgs. Lyngby, DK, Denmark
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, DK, Denmark
| | - Dag Altin
- BioTrix, 7022, Trondheim, NO, Norway
| | - Bent Vismann
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, DK, Denmark
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 201, Lyngby Campus, 2800, Kgs. Lyngby, DK, Denmark
| |
Collapse
|
18
|
Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci Rep 2019; 9:4550. [PMID: 30872725 PMCID: PMC6418224 DOI: 10.1038/s41598-019-40996-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Shallow, tropical marine ecosystems provide essential ecosystem goods and services, but it is unknown how these ecosystems will respond to the increased exposure to the temperature extremes that are likely to become more common as climate change progresses. To address this issue, we tracked the fitness and productivity of a key zooplankton species, the copepod Pseudodiaptomus annandalei, acclimated at two temperatures (30 and 34 °C) over three generations. 30 °C is the mean temperature in the shallow water of the coastal regions in Southeast Asia, while 34 °C simulated a temperature extreme that occurs frequently during the summer period. For each generation, we measured the size at maturity and reproductive success of individuals. In all three generations, we found strong negative effects of warming on all measured fitness-related parameters, including prolonged development time, reduced size at maturity, smaller clutch sizes, lower hatching success, and reduced naupliar production. Our results suggest that P. annandalei are already exposed to temperatures that exceed their upper thermal optimum. Increased exposure to extreme temperatures may reduce the abundance of these tropical marine copepods, and thus reduce the availability of resources to higher trophic levels.
Collapse
|
19
|
Gusha MNC, Dalu T, Wasserman RJ, McQuaid CD. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:410-418. [PMID: 30240923 DOI: 10.1016/j.scitotenv.2018.09.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Within a given ecosystem, species persistence is driven by responses to the effects of biotic and abiotic stressors. Ongoing climatic shifts and increased pollution pressure have created the need to assess potential effects and interactions of physical and biotic factors on coastal ecosystem processes to project ecosystem resilience and persistence. In coastal marine environments, primary production dynamics are driven by the interaction between bottom-up abiotic effects and biotic effects induced by top-down trophic control. Given the many environmental and climatic changes observed throughout coastal regions, we assessed the effects of interactions among temperature, nutrients and grazing in a laboratory-based microcosm experiment. We did this by comparing chlorophyll-a (chl-a) concentrations at two temperatures in combination with four nutrient regimes. To test for subsequent cascading effects on higher trophic levels, we also measured grazing and growth rates of the calanoid copepod Pseudodiaptomus hessei. We observed different phytoplankton and zooplankton responses to temperature (17 °C, 24 °C) and nutrients (nitrogen only (N), phosphates only (P), nitrogen and phosphates combined (NP), no nutrient additions (C)). Contributions of predictors to model fit in the boosted regression trees model were phosphates (42.7%), copepods (23.8%), nitrates (17.5%) and temperature (15.9%), suggesting phosphates were an important driver for the high chl-a concentrations observed. There was an increase in total phytoplankton biomass across both temperatures, while nutrient addition affected the phytoplankton size structure prior to grazing irrespective of temperature. Phytoplankton biomass was highest in the NP treatment followed by the N treatment. However, the phytoplankton size structure differed between temperatures, with microphytoplankton being dominant at 24 °C, while nanophytoplankton dominated at 17 °C. The P and C treatments exhibited the lowest phytoplankton biomass. Copepod abundances and growth rates were higher at 17 °C than at 24 °C. This study highlights that bottom-up positive effects in one trophic level do not always positively cascade into another trophic level. It was, however, evident that temperature was a limiting factor for plankton abundance, productivity and size structure only when nutrients were limiting, with top-down pressure exhibiting minimal effects on the phytoplankton.
Collapse
Affiliation(s)
- Molline N C Gusha
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Tatenda Dalu
- Department of Ecology and Resource Management, University of Venda, Thohoyandou 0950, South Africa.
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
20
|
Jørgensen TS, Jepsen PM, Petersen HCB, Friis DS, Hansen BW. Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest. BMC Ecol 2019; 19:1. [PMID: 30646885 PMCID: PMC6332675 DOI: 10.1186/s12898-018-0217-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copepods make up the largest zooplankton biomass in coastal areas and estuaries and are pivotal for the normal development of fish larva of countless species. During spring in neritic boreal waters, the copepod pelagic biomass increases rapidly from near absence during winter. In the calanoid species Acartia tonsa, a small fraction of eggs are dormant regardless of external conditions and this has been hypothesized to be crucial for sediment egg banks and for the rapid biomass increase during spring. Other eggs can enter a state of induced arrest called quiescence when external conditions are unfavourable. While temperature is known to be a pivotal factor in the transition from developing to resting eggs and back, the role of pH and free Oxygen in embryo development has not been systematically investigated. RESULTS Here, we show in a laboratory setting that hypoxic conditions are necessary for resting eggs to maintain a near-intact rate of survival after several months of induced resting. We further investigate the influence of pH that is realistic for natural sediments on the viability of resting eggs and document the effect that eggs have on the pH of the surrounding environment. We find that resting eggs acidify their immediate surroundings and are able to survive in a wide range of pH. CONCLUSIONS This is the first study to demonstrate the importance of hypoxia on the survival capabilities of A. tonsa resting eggs in a controlled laboratory setting, and the first to show that the large majority of quiescent eggs are able to tolerate prolonged resting. These findings have large implications for the understanding of the recruitment of copepods from sediment egg banks, which are considered the primary contributor of nauplii seeded to pelagic populations in nearshore habitats in late spring.
Collapse
Affiliation(s)
- Tue Sparholt Jørgensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark. .,Department of Environmental Science-Environmental Microbiology & Biotechnology, Aarhus University, Roskilde, Denmark.
| | - Per Meyer Jepsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Dennis Steven Friis
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | |
Collapse
|
21
|
Dao TS, Vo TMC, Wiegand C, Bui BT, Dinh KV. Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:791-799. [PMID: 30241003 DOI: 10.1016/j.envpol.2018.09.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Climate change and human activities induce an increased frequency and intensity of cyanobacterial blooms which could release toxins to aquatic ecosystems. Zooplankton communities belong to the first affected organisms, but in tropical freshwater ecosystems, this issue has yet been poorly investigated. We tested two questions (i) if the tropical Daphnia lumholtzi is capable to develop tolerance to an ecologically relevant concentration of purified microcystin-LR and microcystins from cyanobacterial extract transferable to F1 and F2 generations? And (ii) would F1 and F2 generations recover if reared in toxin-free medium? To answer these questions, we conducted two full factorial mutigenerational experiments, in which D. lumholtzi was exposed to MC-LR and cyanobacterial extract at the concentration of 1 μg L-1 microcystin continuously for three generations. After each generation, each treatment was spit into two: one reared in the control (toxin free) while the other continued in the respective exposure. Fitness-related traits including survival, maturity age, body length, and fecundity of each D. lumholtzi generation were quantified. Though there were only some weak negative effects of the toxins on the first generation (F0), we found strong direct, accumulated and carried-over impacts of the toxins on life history traits of D. lumholtzi on the F1 and F2, including reductions of survival, and reproduction. The maturity age and body length showed some inconsistent patterns between generations and need further investigations. The survival, maturity age (for extract), and body length (for MC-LR) were only recovered when offspring from toxin exposed mothers were raised in clean medium for two generations. Chronic exposure to long lasting blooms, even at low density, evidently reduces survival of D. lumholtzi in tropical lakes and reservoirs with ecological consequences.
Collapse
Affiliation(s)
- Thanh-Son Dao
- Hochiminh City University of Technology, Vietnam National University - Hochiminh City, 268 Ly Thuong Kiet St., Dist. 10, Hochiminh City, Viet Nam.
| | - Thi-My-Chi Vo
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Claudia Wiegand
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000, Rennes, France
| | - Ba-Trung Bui
- Institute for Environment and Resources, Vietnam National University - Hochiminh City, 142 To Hien Thanh St., Dist. 10, Hochiminh City, Viet Nam; Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Khuong V Dinh
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 201, Lyngby, Denmark; Department of Fisheries Biology, Nha Trang University, Nha Trang City, Viet Nam
| |
Collapse
|
22
|
Guven O, Bach L, Munk P, Dinh KV, Mariani P, Nielsen TG. Microplastic does not magnify the acute effect of PAH pyrene on predatory performance of a tropical fish (Lates calcarifer). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:287-293. [PMID: 29622360 DOI: 10.1016/j.aquatox.2018.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Microplastic (MP) leads to widespread pollution in the marine ecosystem. In addition to the physical hazard posed by ingestion of microplastic particles, concern is also on their potential as vector for transport of hydrophobic contaminants. We experimentally studied the single and interactive effects of microplastic and pyrene, a polycyclic aromatic hydrocarbon, on the swimming behaviour and predatory performance of juvenile barramundi (Lates calcarifer). Juveniles (18+ days post hatch) were exposed to MPs, or pyrene (100 nM), or combination of both, and feeding rate and foraging activity (swimming) were analysed. Exposure to MPs alone did not significantly influence feeding performance of the juveniles, while a dose-effect series of pyrene showed strong effect on fish behaviour when concentrations were above 100 nM. In the test of combined MP and pyrene exposure, we observed no effect on feeding while swimming speed decreased significantly. Thus, our results confirm that short-time exposure to pyrene impacts the performance of fish juveniles, while additional exposure to microplastic at the given conditions influenced their activity only and not their feeding rate. Further studies of the combined effects of microplastics and pollutants on tropical fish behaviour are encouraged.
Collapse
Affiliation(s)
- Olgac Guven
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Denmark
| | - Lis Bach
- Arctic Research Centre, Department of Bioscience, Aarhus University, Denmark
| | - Peter Munk
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Denmark
| | - Khuong V Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Denmark; Centre for Marine Aquaculture Practices at Cam Ranh, Institute of Aquaculture, Nha Trang University, Viet Nam
| | - Patrizio Mariani
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Denmark
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Denmark.
| |
Collapse
|
23
|
Briski E, Chan FT, Darling JA, Lauringson V, MacIsaac HJ, Zhan A, Bailey SA. Beyond propagule pressure: importance of selection during the transport stage of biological invasions. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2018; 16:345-353. [PMID: 31942166 PMCID: PMC6961837 DOI: 10.1002/fee.1820] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biological invasions are largely considered to be a "numbers game", wherein the larger the introduction effort, the greater the probability that an introduced population will become established. However, conditions during transport - an early stage of the invasion - can be particularly harsh, thereby greatly reducing the size of a population available to establish in a new region. Some successful non-indigenous species are more tolerant of environmental and anthropogenic stressors than related native species, possibly stemming from selection (ie survival of only pre-adapted individuals for particular environmental conditions) during the invasion process. By reviewing current literature concerning population genetics and consequences of selection on population fitness, we propose that selection acting on transported populations can facilitate local adaptation, which may result in a greater likelihood of invasion than predicted by propagule pressure alone. Specifically, we suggest that detailed surveys should be conducted to determine interactions between molecular mechanisms and demographic factors, given that current management strategies may underestimate invasion risk.
Collapse
Affiliation(s)
- Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- ()
| | - Farrah T Chan
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Canada
| | - John A Darling
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC
| | | | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sarah A Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Canada
| |
Collapse
|