1
|
Parkerton TF, McFarlin K. Environmental hazard and preliminary risk assessment of herding agents used in next generation oil spill response. MARINE POLLUTION BULLETIN 2024; 208:116885. [PMID: 39299189 DOI: 10.1016/j.marpolbul.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Herding agents offer a significant advance in oil spill response by overcoming past barriers limiting effectiveness of in-situ burning. This paper reviews the use, environmental fate and effects of two commercial herders, Siltech OP-40 and ThickSlick 6535. A conceptual model is proposed to describe herder fate followed by a screening exposure analysis. Hazard concentrations intended to protect aquatic life are derived using empirical toxicity data, interspecies correlation estimation and group target site models. Using exposure and hazard evaluations, a preliminary risk assessment is performed demonstrating acceptable risk to aquatic life. Hazards posed to wildlife are also reviewed. Potential harm to wildlife can be avoided or minimized by adopting best management application practices. This synthesis is intended to provide a valuable resource describing the rationale for herder use, evaluating environmental risk trade-offs and informing future oil spill response planning and decision-making. Priorities for further research are identified.
Collapse
Affiliation(s)
| | - Kelly McFarlin
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ 08801, USA
| |
Collapse
|
2
|
Lin Q, Mou L, Ou G, Wu G, Ren Y, Chen Z, Lu P, Zhang Y. Active ingredient identification and purification of organosilicon spray adjuvant and its uptake and translocation in rice (Oryza sativa L.). PEST MANAGEMENT SCIENCE 2024; 80:5322-5333. [PMID: 38895912 DOI: 10.1002/ps.8258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
The assessment of residue, absorption, conduction, and degradation of agricultural organosilicon surfactants in the environment is hindered by the lack of information on active ingredients and corresponding quantitative standards for organosilicon spray adjuvants. The spray adjuvant 'Jiexiaoli,' a primary organosilicon spray agent in China, was identified as hydroxy (polyethylene) propyl-heptamethyl trisiloxane (TSS-H) with 3-15 ethoxy (EO) groups. Purification of TSS-H was achieved through semi-preparative separation using high-performance liquid chromatography (HPLC), resulting in TSS-H purity exceeding 96%. An accurate residual detection method for nine oligomers (4-12 EO) of TSS-H in rice roots, stems, leaves, and culture solution samples was developed using HPLC tandem high-resolution mass spectrometry (HPLC-HRMS). Recoveries for nine oligomers of TSS-H in the four matrices ranged from 80.22% to 104.01%. Foliar application experiments demonstrated that TSS-H did not transfer from the upper to the lower parts of the rice plant. The half-lives of each oligomer (4-12 EO) in leaves were less than 3.21 days. Root application experiments revealed a root concentration factor (RCF) ranging from 0.20 to 0.56, a biological enrichment factor (BCF) ranging from 0.36 to 0.68, a transpiration factor (TSCF) ranging from 0.069 to 0.086, and a transport factor (TF) ranging from 0.08 to 0.43. These results indicated that TSS-H could be absorbed by rice roots and conducted to the above-ground parts of rice plants. This study fills the data gap in the environmental risk and food safety assessment of agricultural silicone spray adjuvants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiao Lin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Lianhong Mou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Guipeng Ou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Guangbin Wu
- Pingtang county branch of Qiannan Tobacco Company of Guizhou Province, Duyun, China
| | - Yonggang Ren
- Pingtang county branch of Qiannan Tobacco Company of Guizhou Province, Duyun, China
| | - Zhibo Chen
- Pingtang county branch of Qiannan Tobacco Company of Guizhou Province, Duyun, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yuping Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Zhao Q, Yang Z, Zhou Z, Yang Y, Wang W. Toxicity mechanism of organosilicon adjuvant in combination with S-metolachlor on Vigna angularis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135978. [PMID: 39342851 DOI: 10.1016/j.jhazmat.2024.135978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The widespread use of S-metolachlor (ME) in agriculture to suppress weeds and boost crop yields, particularly in cultivating Vigna angularis, is well established. However, the application of organosilicon adjuvants with herbicides has potential threats to non-target crops. This study investigates the toxicity symptoms and mechanisms when V. angularis is exposed to ME in conjunction with a common organosilicon adjuvant. Results indicate that ME inhibits the growth of V. angularis seedlings, and adding adjuvants could aggravate the negative effects of ME. According to the growth index of seedlings, the adjuvant increased the toxicity of ME by 84-96 %. Additionally, the chlorophyll content, root permeability, and antioxidant indicators in the seedlings were also adversely affected. Integrated metabolomics and transcriptomics analyses reveal that differentially abundant metabolites (DAMs) and differentially expressed genes (DEGs) are mainly enriched in four ways: "lysine degradation," "ABC transporters," "phenylalanine metabolism," and "monoterpenoid biosynthesis." The metabolic pathways and gene regulatory network involving 11 DAMs and 22 DEGs are associated with the physiological processes affected by ME and the adjuvant. This study provides guidance for the application of herbicides and their adjuvants in agricultural production to minimize adverse effects on non-target crops.
Collapse
Affiliation(s)
- Qian Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Zhenduo Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Ziyuan Zhou
- Center for Environmental Policy, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Yuewei Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Wei Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China.
| |
Collapse
|
4
|
Akimbekov N, Digel I, Zhubanova A, Tastambek KT, Tepecik A, Sherelkhan D. Biotechnological potentials of surfactants in coal utilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55099-55118. [PMID: 39243327 DOI: 10.1007/s11356-024-34892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption.
Collapse
Affiliation(s)
- Nuraly Akimbekov
- Scientific-Practical Center, West Kazakhstan Marat Ospanov Medical University, Maresyev str. 68, Aktobe, 030019, Kazakhstan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov str. 29, Turkistan, 161200, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, Jülich, 52428, Germany.
| | - Azhar Zhubanova
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
| | - Kuanysh T Tastambek
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov str. 29, Turkistan, 161200, Kazakhstan
| | - Atakan Tepecik
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, Jülich, 52428, Germany
| | - Dinara Sherelkhan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
| |
Collapse
|
5
|
Wang H, Li M, Li S, Chen X, Li B, Shao H, Jin F. Dissipation and potential risk of tristyrylphenol ethoxylate homologs in peanuts by spraying and root irrigation: A comparative assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134486. [PMID: 38714052 DOI: 10.1016/j.jhazmat.2024.134486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Peanuts, known for their nutritional value, health benefits, and delicious taste, are susceptible to agricultural chemical contamination, posing a challenge to the peanut industry in China. While tristyrylphenol ethoxylates (TSPEOs) have garnered attention for their widespread use in pesticide formulations, their dissipation and potential risks in peanuts remain a gap in knowledge. This study, unique in its focus on TSPEOs, investigates their dissipation and potential risks under two common application modes: spraying and root irrigation. The concentration of total TSPEOs in peanut plants was significantly higher when sprayed (435-37,693 μg/kg) than in root irrigation (24-1602 μg/kg). The dissipation of TSPEOs was faster in peanuts and soil when sprayed, with half-lives of 3.67-5.59 d (mean: 4.37 d) and 5.41-7.07 d (mean: 5.95 d), respectively. The residue of TSPEOs in peanut shells and soil were higher with root irrigation (8.9-65.2 and 25.4-305.1 μg/kg, respectively) than with spraying (5.4-30.6 and 8.8-146.5 μg/kg, respectively). These results indicated that the dissipation behavior of TSPEOs in peanuts was influenced by application modes. While the healthy and ecological risk assessments of TSPEOs in soil and peanut shells showed no risks, root irrigation might pose a higher potential risk than spraying. This research provides valuable data for the judicious application of pesticides during peanut cultivation to enhance pesticide utilization and reduce potential risks.
Collapse
Affiliation(s)
- Hongping Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minjie Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
| | - Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueying Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bowen Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Badawy MH, Murnane D, Lewis KA, Morgan N. The effect of formulation composition and adjuvant type on difenoconazole dislodgeable foliar residue. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:437-447. [PMID: 38869424 DOI: 10.1080/03601234.2024.2361595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
Rigorous risk assessments for those exposed to pesticides are carried out to satisfy crop protection regulatory requirements. Non-dietary risk assessments involve estimating the amount of residue which can be transferred from plant foliage to the skin or clothes, known as dislodgeable foliar residues (DFRs). DFR data are less available than crop residue data as studies are costly and limited by seasonality. European regulatory authorities are reticent to allow extrapolation of study data to different scenarios as the contributory factors have hitherto been poorly identified. This study is the first to use a new laboratory DFR method to investigate how one such factor, pesticide formulation, may affect DFR on a variety of crops. The study used the active substance difenoconazole as both an emulsifiable concentrate (EC 10%) and a wettable powder (WP 10%) with and without adjuvants (Tween 20 and organophosphate tris(2-ethylhexyl)phosphate TEHP) on tomato, French bean and oilseed rape. A comparable DFR% was retained from the WP and EC formulation on most crops except for tomato, where lower DFR% was retained in the case of WP (39 ± 4.7%) compared to EC (60 ± 1.2%). No significant effect of adjuvant addition was observed for either formulation except when mixing TEHP (0.1% w/v) to the EC 10% on French bean, resulting in 8% DFR reduction compared to the EC formulation alone. This research demonstrates the value of a unique DFR laboratory technique in investigating the importance of the formulation and in-tank adjuvants as factors that affect DFR.
Collapse
Affiliation(s)
- Mohamed H Badawy
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts, UK
| | - Darragh Murnane
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts, UK
| | - Kathleen A Lewis
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts, UK
| | - Neil Morgan
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| |
Collapse
|
7
|
Li S, Yue N, Li M, Li X, Li B, Wang H, Wang J, Jin F. Occurrence and distribution of trisiloxane ethoxylates in citrus orchard soils in China: Analytical challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170603. [PMID: 38325469 DOI: 10.1016/j.scitotenv.2024.170603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Trisiloxane ethoxylates (TSEOn) are widely used as agricultural surfactants due to their significant synergism with the active ingredients of pesticides, generally, including three typical end groups which are hydroxyl (TSEOn-H), methoxy (TSEOn-CH3), and acetoxy (TSEOn-COCH3), respectively. However, the potential ecotoxicological and endocrine-disrupting risks of TSEOn congeners have recently attracted ever-growing concern. Above all, there is limited research on the concentration levels of TSEOn in agroecosystems. This study, simultaneous analysis of 39 TSEOn oligomers in citrus orchard soils in China was implemented by the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method detection limits (MDLs) and the method quantification limits (MQLs) for TSEOn were 0.003-0.07 μg/kg and 0.01-0.20 μg/kg, respectively. The recoveries for TSEOn oligomers in soils ranged from 81 % ∼ 106 % with related standard deviations (RSDs) < 7 %. This newly developed UPLC-MS/MS method with high sensitivity and stability allows us to successfully trace the occurrence of TSEOn congeners in the citrus orchard soils from 3 provinces and 1 municipality in China. The detected concentrations of TSEOn-H oligomers in the sampled soils ranged from 0.02 to 0.288 μg/kg (dry weight). The congener profiles of TSEOn-H were dominated by TSEOn-H (n = 6- 8) in the soils. Additionally, the total concentrations of TSEOn-H congeners (ΣTSEOn-H) in the soils were in the range of 0.03 to 1.49 μg/kg. A comparison of ΣTSEOn-H distribution among the different citrus orchard soils indicated a higher level of ΣTSEOn-H in the soil samples collected from Zhejiang Province. Notably, TSEOn-CH3 or TSEOn-COCH3 oligomers were not detected in the tested soils. To the best of our knowledge, this is the first report on the occurrence and distribution of TSEOn congeners in agricultural soils.
Collapse
Affiliation(s)
- Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Yue
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minjie Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiaohui Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bowen Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongping Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Fine JD, Cox-Foster DL, Moor KJ, Chen R, Avalos A. Trisiloxane Surfactants Negatively Affect Reproductive Behaviors and Enhance Viral Replication in Honey Bees. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:222-233. [PMID: 37861380 DOI: 10.1002/etc.5771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Trisiloxane surfactants are often applied in formulated adjuvant products to blooming crops, including almonds, exposing the managed honey bees (Apis mellifera) used for pollination of these crops and persisting in colony matrices, such as bee bread. Despite this, little is known regarding the effects of trisiloxane surfactants on important aspects of colony health, such as reproduction. In the present study, we use laboratory assays to examine how exposure to field-relevant concentrations of three trisiloxane surfactants found in commonly used adjuvant formulations affect queen oviposition rates, worker interactions with the queen, and worker susceptibility to endogenous viral pathogens. Trisiloxane surfactants were administered at 5 mg/kg in pollen supplement diet for 14 days. No effects on worker behavior or physiology could be detected, but our results demonstrate that hydroxy-capped trisiloxane surfactants can negatively affect queen oviposition and methyl-capped trisiloxane surfactants cause increased replication of Deformed Wing Virus in workers, suggesting that trisiloxane surfactant use while honey bees are foraging may negatively impact colony longevity and growth. Environ Toxicol Chem 2024;43:222-233. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Julia D Fine
- US Department of Agriculture-Agricultural Research Service Invasive Species and Pollinator Health Research Unit, Davis, California, USA
| | - Diana L Cox-Foster
- US Department of Agriculture-Agricultural Research Service Pollinating Insect Research Unit, Logan, Utah, USA
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arian Avalos
- US Department of Agriculture-Agricultural Research Service Honey Bee Breeding, Genetics, and Physiology Research Laboratory, Baton Rouge, Louisiana, USA
| |
Collapse
|
9
|
DesJardins NS, Macias J, Soto Soto D, Harrison JF, Smith BH. 'Inert' co-formulants of a fungicide mediate acute effects on honey bee learning performance. Sci Rep 2023; 13:19458. [PMID: 37945797 PMCID: PMC10636155 DOI: 10.1038/s41598-023-46948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Managed honey bees have experienced high rates of colony loss recently, with pesticide exposure as a major cause. While pesticides can be lethal at high doses, lower doses can produce sublethal effects, which may substantially weaken colonies. Impaired learning performance is a behavioral sublethal effect, and is often present in bees exposed to insecticides. However, the effects of other pesticides (such as fungicides) on honey bee learning are understudied, as are the effects of pesticide formulations versus active ingredients. Here, we investigated the effects of acute exposure to the fungicide formulation Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) on honey bee olfactory learning performance in the proboscis extension reflex (PER) assay. We also exposed a subset of bees to only the active ingredients to test which formulation component(s) were driving the learning effects. We found that the formulation produced negative effects on memory, but this effect was not present in bees fed only boscalid and pyraclostrobin. This suggests that the trade secret "other ingredients" in the formulation mediated the learning effects, either through exerting their own toxic effects or by increasing the toxicities of the active ingredients. These results show that pesticide co-formulants should not be assumed inert and should instead be included when assessing pesticide risks.
Collapse
Affiliation(s)
| | - Jessalynn Macias
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Magor E, Wilson MD, Wong H, Cresswell T, Sánchez-Palacios JT, Bell RW, Penrose B. Selected adjuvants increase the efficacy of foliar biofortification of iodine in bread wheat ( Triticum aestivum L.) grain. FRONTIERS IN PLANT SCIENCE 2023; 14:1246945. [PMID: 37799553 PMCID: PMC10548206 DOI: 10.3389/fpls.2023.1246945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Agronomic biofortification of crops is a promising approach that can improve the nutritional value of staple foods by alleviating dietary micronutrient deficiencies. Iodine deficiency is prevalent in many countries, including Australia, but it is not clear what foliar application strategies will be effective for iodine fortification of grain. This study hypothesised that combining adjuvants with iodine in foliar sprays would improve iodine penetration in wheat, leading to more efficient biofortification of grains. The glasshouse experiment included a total of nine treatments, including three reference controls: 1) Water; 2) potassium iodate (KIO3) and 3) potassium chloride (KCl); and a series of six different non-ionic surfactant or oil-based adjuvants: 4) KIO3 + BS1000; 5) KIO3 + Pulse® Penetrant; 6) KIO3 + Uptake®; 7) KIO3 + Hot-Up®; 8) KIO3 + Hasten® and 9) KIO3 + Synerterol® Horti Oil. Wheat was treated at heading, and again during the early milk growth stage. Adding the organosilicon-based adjuvant (Pulse®) to the spray formulation resulted in a significant increase in grain loading of iodine to 1269 µg/kg compared to the non-adjuvant KIO3 control at 231µg/kg, and the water and KCl controls (both 51µg/kg). The second most effective adjuvant was Synerterol® Horti Oil, which increased grain iodine significantly to 450µg/kg. The Uptake®, BS1000, Hasten®, and Hot-Up® adjuvants did not affect grain iodine concentrations relative to the KIO3 control. Importantly, iodine application and the subsequent increase in grain iodine had no significant effects on biomass production and grain yield relative to the controls. These results indicate that adjuvants can play an important role in agronomic biofortification practices, and organosilicon-based products have a great potential to enhance foliar penetration resulting in a higher translocation rate of foliar-applied iodine to grains, which is required to increase the iodine density of staple grains effectively.
Collapse
Affiliation(s)
- Esther Magor
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Matthew Deas Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Henri Wong
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | | | - Richard William Bell
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Murdoch University, Murdoch, WA, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
11
|
Tison L, Franc C, Burkart L, Jactel H, Monceau K, de Revel G, Thiéry D. Pesticide contamination in an intensive insect predator of honey bees. ENVIRONMENT INTERNATIONAL 2023; 176:107975. [PMID: 37216836 DOI: 10.1016/j.envint.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Pesticides used for plant protection can indirectly affect target and non-target organisms and are identified as a major cause of insect decline. Depending on species interactions, pesticides can be transferred into the environment from plants to preys and predators. While the transfer of pesticides is often studied through vertebrate and aquatic exposure, arthropod predators of insects may represent valuable bioindicators of environmental exposure to pesticides. A modified QuEChERS extraction coupled with HPLC-MS/MS analysis was used to address the question of the exposure to pesticides of the invasive hornet Vespa velutina, a specialist predator of honey bees. This analytical method allows the accurate quantification of nanogram/gram levels of 42 contaminants in a sample weight that can be obtained from single individuals. Pesticide residues were analyzed in female workers from 24 different hornet nests and 13 different pesticides and 1 synergist, piperonyl butoxide, were identified and quantified. In 75 % of the explored nests, we found at least one compound and in 53 % of the positive samples we could quantify residues ranging from 0.5 to 19.5 ng.g-1. In this study, hornets from nests located in sub-urban environments were the most contaminated. Pesticide residue analysis in small and easy to collect predatory insects opens new perspectives for the study of environmental contamination and the transfer of pesticides in terrestrial trophic chains.
Collapse
Affiliation(s)
- Léa Tison
- INRAE, UMR1065 SAVE, 33140 Villenave d'Ornon, France.
| | - Céline Franc
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140 Villenave d'Ornon, France
| | | | | | - Karine Monceau
- Univ. La Rochelle CEBC, UMR CNRS 7372, 79360 Villiers-en-Bois, France
| | - Gilles de Revel
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140 Villenave d'Ornon, France
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140 Villenave d'Ornon, France
| |
Collapse
|
12
|
Bolan S, Padhye LP, Mulligan CN, Alonso ER, Saint-Fort R, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130189. [PMID: 36265382 DOI: 10.1016/j.jhazmat.2022.130189] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Catherine N Mulligan
- Department of Bldg, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Emilio Ritore Alonso
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
| | - Roger Saint-Fort
- Department of Environmental Science, Faculty of Science & Technology, Mount Royal University, Calgary, AB T3E6K6, Canada
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
13
|
Liu XL, Chen YF, Chen YW, Peng WK, Liu HC. Preparation of carbosilane quaternary ammonium surfactants and surface activity. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new series of carbosilane quaternary ammonium surfactants with different hydrophobic carbosilane structures (triethylsilyl, triisopropylsilyl, trihexylsilyl, triphenylsilyl) and tail groups (C12, C16, C18) have been synthesized and the structures of the organosilicon carbosilane quaternary ammonium surfactants were determined by means of FTIR, NMR and elemental analysis. The properties of aqueous solutions were determined by electrical conductivity measurements and with the method of maximum bubble formation. Members of this series reduced the surface tension of water to approximately 30.5 mN/m at concentration levels of 0.14 mmol/L.
Collapse
Affiliation(s)
- Xue-Li Liu
- College of Material and Chemical Engineering , ChuZhou University , 239012 , Chuzhou , China
- School of Chemistry and Chemical Engineering , AnHui University , 230601 , He Fei , China
| | - Yi-Fan Chen
- College of Material and Chemical Engineering , ChuZhou University , 239012 , Chuzhou , China
| | - Yi-Wen Chen
- College of Material and Chemical Engineering , ChuZhou University , 239012 , Chuzhou , China
| | - Wei-Kang Peng
- College of Material and Chemical Engineering , ChuZhou University , 239012 , Chuzhou , China
| | - Han-Chun Liu
- College of Material and Chemical Engineering , ChuZhou University , 239012 , Chuzhou , China
| |
Collapse
|
14
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
15
|
Straw EA, Thompson LJ, Leadbeater E, Brown MJF. 'Inert' ingredients are understudied, potentially dangerous to bees and deserve more research attention. Proc Biol Sci 2022; 289:20212353. [PMID: 35232234 PMCID: PMC8889201 DOI: 10.1098/rspb.2021.2353] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/28/2022] [Indexed: 01/07/2023] Open
Abstract
Agrochemical formulations are composed of two broad groups of chemicals: active ingredients, which confer pest control action, and 'inert' ingredients, which facilitate the action of the active ingredient. Most research into the effects of agrochemicals focusses on the effects of active ingredients. This reflects the assumption that 'inert' ingredients are non-toxic. A review of relevant research shows that for bees, this assumption is without empirical foundation. After conducting a systematic literature search, we found just 19 studies that tested the effects of 'inert' ingredients on bee health. In these studies, 'inert' ingredients were found to cause mortality in bees through multiple exposure routes, act synergistically with other stressors and cause colony level effects. This lack of research is compounded by a lack of diversity in study organism used. We argue that 'inert' ingredients have distinct, and poorly understood, ecological persistency profiles and toxicities, making research into their individual effects necessary. We highlight the lack of mitigation in place to protect bees from 'inert' ingredients and argue that research efforts should be redistributed to address the knowledge gap identified here. If so-called 'inert' ingredients are, in fact, detrimental to bee health, their potential role in widespread bee declines needs urgent assessment.
Collapse
Affiliation(s)
- Edward A. Straw
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Department of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Linzi J. Thompson
- Department of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ellouise Leadbeater
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Mark J. F. Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
16
|
Zhang Y, Chen D, Xu Y, Ma L, Du M, Li P, Yin Z, Xu H, Wu X. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151116. [PMID: 34688756 DOI: 10.1016/j.scitotenv.2021.151116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Development of stereoisomeric neonicotinoid pesticides with lower toxicity is key to preventing global population declines of honeybees, whereas little is known about the in situ metabolic regulation of honeybees in response to stereoisomeric pesticides. Herein, we demonstrate an integrated mass spectrometry imaging (MSI) and untargeted metabolomics method to disclose disturbed metabolic expression levels and spatial differentiation in honeybees (Apis cerana) associated with stereoisomeric dinotefuran. This method affords a metabolic network mapping capability regarding a wide range of metabolites involved in multiple metabolic pathways in honeybees. Metabolomics results indicate more metabolic pathways of honeybees can be significantly affected by S-(+)-dinotefuran than R-(-)-dinotefuran, such as tricarboxylic acid (TCA) cycle, glyoxylate and dicarboxylate metabolism, and various amino acid metabolisms. MSI results demonstrate the cross-regulation and spatial differentiation of crucial metabolites involved in the TCA cycle, purine, glycolysis, and amino acid metabolisms within honeybees. Taken together, the integrated MSI and metabolomics results indicated the higher toxicity of S-(+)-dinotefuran arises from metabolic pathway disturbance and its inhibitory role in the energy metabolism, resulting in significantly reduced degradation rates of detoxification mechanisms. From the view of spatial metabolomics, our findings provide novel perspectives for the development and applications of pure chiral agrochemicals.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
18
|
Almeida CHS, Haddi K, Toledo PFS, Rezende SM, Santana WC, Guedes RNC, Newland PL, Oliveira EE. Sublethal agrochemical exposures can alter honey bees' and Neotropical stingless bees' color preferences, respiration rates, and locomotory responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146432. [PMID: 33744575 DOI: 10.1016/j.scitotenv.2021.146432] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
Stingless bees such as Partamona helleri Friese play important roles in pollination of native plants and agricultural crops in the Neotropics. Global concerns about declining bee populations due to agrochemical pollutants have, however, been biased towards the honey bee, Apis mellifera Linnaeus. Here, we analysed the unintended effects of commercial formulations of a neonicotinoid insecticide, imidacloprid, and a fungicide mixture of thiophanate-methyl and chlorothalonil on color preference, respiration rates and group locomotory activities of both P. helleri and A. mellifera. Our results revealed that P. helleri foragers that were not exposed to pesticides changed their color preference during the course of a year. By contrast, we found that pesticide exposure altered the color preference of stingless bees in a concentration-dependent manner. In addition, imidacloprid decreased the overall locomotion of both bee species, whereas the fungicide mixture increased locomotion of only stingless bees. The fungicide mixture also reduced respiration rates of forager bees of both species. Forager bees of both species altered their color preference, but not their locomotory and respiration rates, when exposed to commercial formulations of each fungicidal mixture component (i.e., chlorothalonil and thiophanate-methyl). Our findings emphasize the importance of P. helleri as a model for Neotropical wild pollinator species in pesticide risk assessments, and also the critical importance of including groups of agrochemicals that are often considered to have minimal impact on pollinators, such as fungicides.
Collapse
Affiliation(s)
- Carlos H S Almeida
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Khalid Haddi
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil; Departamento de Entomologia, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil.
| | - Pedro F S Toledo
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Sarah M Rezende
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Weyder C Santana
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Philip L Newland
- Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
19
|
Zhang Y, Chen D, Du M, Ma L, Li P, Qin R, Yang J, Yin Z, Wu X, Xu H. Insights into the degradation and toxicity difference mechanism of neonicotinoid pesticides in honeybees by mass spectrometry imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145170. [PMID: 33607427 DOI: 10.1016/j.scitotenv.2021.145170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Honeybees are essential for the pollination of a wide variety of crops and flowering plants, whereas they are confronting decline around the world due to the overuse of pesticides, especially neonicotinoids. The mechanism behind the negative impacts of neonicotinoids on honeybees has attracted considerable interest, yet it remains unknown due to the limited insights into the spatiotemporal distribution of pesticides in honeybees. Herein, we demonstrated the use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for the spatiotemporal visualization of neonicotinoids, such as N-nitroguanidine (dinotefuran) and N-cyanoamidine (acetamiprid) compounds, administered by oral application or direct contact, in the whole-body section of honeybees. The MSI results revealed that both dinotefuran and acetamiprid can quickly penetrate various biological barriers and distribute within the whole-body section of honeybees, but acetamiprid can be degraded much faster than dinotefuran. The degradation rate of acetamiprid is significantly decreased when piperonyl butoxide (PBO) is applied, whereas that of dinotefuran remains almost unchanged. These two factors might contribute to the fact that dinotefuran affords a higher toxicity to honeybees than acetamiprid. Moreover, the toxicity and degradation rate of acetamiprid can be affected by co-application with tebuconazole. Taken together, the results presented here indicate that the discrepant toxicity between dinotefuran and acetamiprid does not lie in the difference in their penetration of various biological barriers of honeybees, but in the degradation rate of neonicotinoid pesticides within honeybee tissues. Moreover, new perspectives are given to better understand the causes of the current decline in honeybee populations posed by insecticides, providing guidelines for the precise use of conventional agrochemicals and the rational design of novel pesticide candidates.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application, Guangzhou 510642, China
| | - Dong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Run Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application, Guangzhou 510642, China
| | - Jiaru Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Mitchell DG, Edgar A, Martindale MQ. Improved histological fixation of gelatinous marine invertebrates. Front Zool 2021; 18:29. [PMID: 34118945 PMCID: PMC8196456 DOI: 10.1186/s12983-021-00414-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Gelatinous zooplankton can be difficult to preserve morphologically due to unique physical properties of their cellular and acellular components. The relatively large volume of mesoglea leads to distortion of the delicate morphology and poor sample integrity in specimens prepared with standard aldehyde or alcohol fixation techniques. Similar challenges have made it difficult to extend standard laboratory methods such as in situ hybridization to larger juvenile ctenophores, hampering studies of late development. Results We have found that a household water repellant glass treatment product commonly used in laboratories, Rain-X®, alone or in combination with standard aldehyde fixatives, greatly improves morphological preservation of such delicate samples. We present detailed methods for preservation of ctenophores of diverse sizes compatible with long-term storage or detection and localization of target molecules such as with immunohistochemistry and in situ hybridization and show that this fixation might be broadly useful for preservation of other delicate marine specimens. Conclusion This new method will enable superior preservation of morphology in gelatinous specimens for a variety of downstream goals. Extending this method may improve the morphological fidelity and durability of museum and laboratory specimens for other delicate sample types. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00414-z.
Collapse
Affiliation(s)
- Dorothy G Mitchell
- The Whitney Laboratory for Marine Bioscience, 9505 N, Ocean Shore Blvd, St. Augustine, FL, 32080-8610, USA
| | - Allison Edgar
- The Whitney Laboratory for Marine Bioscience, 9505 N, Ocean Shore Blvd, St. Augustine, FL, 32080-8610, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, 9505 N, Ocean Shore Blvd, St. Augustine, FL, 32080-8610, USA.
| |
Collapse
|
21
|
Li XX, He LF, Pang XY, Gao YY, Liu Y, Zhang P, Wei G, Mu W, Li BX, Liu F. Tank-mixing adjuvants enhanced the efficacy of fludioxonil on cucumber anthracnose by ameliorating the penetration ability of active ingredients on target interface. Colloids Surf B Biointerfaces 2021; 204:111804. [PMID: 33940521 DOI: 10.1016/j.colsurfb.2021.111804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
In this study, pot and field experiments showed that S903, Hasten and Gemini-31511 can significantly enhanced the control efficacy of fludioxonil on cucumber anthracnose. Then by studying the deposition and penetration interaction between active ingredients and cucumber leaves to revealed how the adjuvants influence the interaction process between pesticide active ingredients and target plants to improve the control efficacy. By analysis the effect of fludioxonil deposition to synergism of adjuvants, indicated that fludioxonil active ingredient deposition caused by adjuvants was not the main factor for the adjuvants synergistic effect. Fludioxonil + S903 yielded the lowest surface tension and contact angle, which also implying the best wetting ability. The mean diameters in Hasten + fludioxonil group were much smaller than those in only fludioxonil group (5.39 μm-90 g a.i. ha-1, 5.50 μm-180 g a.i. ha-1), the average particle size only had 3.45 μm (90 g a.i. ha-1) and 3.94 μm (180 g a.i. ha-1). And the result of spray droplets was consistent with the particles of fludioxonil crystals observed on glass slides and cucumber leaves. Therefore, S903 improved the penetrability of fludioxonil in the target plants by improving the wetting and dispersion of active ingredients on the target interface. Meantime, Hasten improved the penetrability of fludioxonil in the target plants by decreasing the particle size of active ingredients.
Collapse
Affiliation(s)
- Xiao-Xu Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Li-Fei He
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiu-Yu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yang-Yang Gao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yang Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Guang Wei
- Central Research Institute of China Chemical Science and Technology Co., Ltd., Beijing, 100011, China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bei-Xing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
22
|
Liu S, Deng X, Bai L. Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143273. [PMID: 33190894 DOI: 10.1016/j.scitotenv.2020.143273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Benoxacor, a chiral herbicide safener for S-metolachlor, has been detected in streams. However, the potential risk this poses to aquatic ecosystems is not clear. This study used zebrafish (Danio rerio) embryos as a model to assess the enantioselective toxicity of benoxacor and its effects on biological activity and development from 2 h to 96 h post-fertilization (hpf). Results showed that benoxacor had negative effects on hatchability, malformations, and mortality. Compared to either individual enantiomer, embryos exposed to Rac-benoxacor had higher acute and developmental toxicities, glutathione S-transferase (GST) and glutathione peroxidase (GPx) enzyme activities, and nrf 2 expression levels. They also had lower superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) enzyme activity and krt 17, tbx 16, osx, cat, bcl 2, bax, and ifn expression levels. High-throughput RNA sequencing revealed that Rac-benoxacor had a greater effect on gene regulation than either enantiomer. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that changes in oxidoreductase activity, cellular lipid metabolic process, and catalytic activity related genes may be due to the enantioselective effects of benoxacor isomers. These results suggest that the ecotoxicology data and safety knowledge about the effects of chiral benoxacor on zebrafish should be considered in future environmental risk evaluation.
Collapse
Affiliation(s)
- Sihong Liu
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xile Deng
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lianyang Bai
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China.
| |
Collapse
|
23
|
Johnson P, Trybala A, Starov V, Pinfield VJ. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci 2021; 288:102340. [PMID: 33383470 DOI: 10.1016/j.cis.2020.102340] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
The environmental impacts of the use of synthetic surfactants are discussed in this work such as their high levels of toxicity and low biodegradability. These materials destroy aquatic microbial populations, damage fish and other aquatic life, and reduce photochemical energy conversion efficiency of plants as well as adversely affecting waste-water treatment processes. With global usage of surfactants being over 15 million tonnes annually, and an estimated 60% of surfactant ending up in the aquatic environment, there is an urgent need for alternatives with lower adverse environmental effects; this review explores biosurfactants as potential alternatives. The sources and natural function of biosurfactants are presented, together with their advantages compared with their synthetic counterparts, including their low toxicity and biodegradability. Their comparable effectiveness as surfactants has been demonstrated by surface tension reduction, achieved at much lower critical micelle concentrations that those of synthetic surfactants. The limitations and challenges for the use of biosurfactants are discussed, particularly low production yields; such limitations must be addressed before wide range industrial use of biosurfactants can be achieved. Although there has been focus on achieving greater production yields, a remaining issue is the lack of research into the use of biosurfactants in a greater range of industrial and consumer applications to demonstrate their efficacy and identify candidate biosurfactants for production. This review highlights such research as deserving of further investigation, alongside the ongoing work to optimize the production process.
Collapse
Affiliation(s)
- Phillip Johnson
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Anna Trybala
- Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Victor Starov
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Valerie J Pinfield
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
24
|
Kovalchuk NM, Simmons MJ. Surfactant-mediated wetting and spreading: Recent advances and applications. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Fabrication and Analysis of Polydimethylsiloxane (PDMS) Microchannels for Biomedical Application. Processes (Basel) 2020. [DOI: 10.3390/pr9010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this research work, Polydimethylsiloxane (PDMS) has been used for the fabrication of microchannels for biomedical application. Under the internet of things (IoT)-based controlled environment, the authors have simulated and fabricated bio-endurable, biocompatible and bioengineered PDMS-based microchannels for varicose veins implantation exclusively to avoid tissue damaging. Five curved ascending curvilinear micro-channel (5CACMC) and five curved descending curvilinear micro-channels (5CDCMC) are simulated by MATLAB (The Math-Works, Natick, MA, USA) and ANSYS (ANSYS, The University of Lahore, Pakistan) with actual environments and confirmed experimentally. The total length of each channel is 1.6 cm. The diameter of both channels is 400 µm. In the ascending channel, the first to fifth curve cycles have the radii of 2.5 mm, 5 mm, 7.5 mm, 10 mm, and 2.5 mm respectively. In the descending channel, the first and second curve cycles have the radii of 12.5 mm and 10 mm respectively. The third to fifth cycles have the radii of 7.5 mm, 5 mm, and 2.5 mm respectively. For 5CACMC, at Reynolds number of 185, the values of the flow rates, velocities and pressure drops are 19.7 µLs−1, 0.105 mm/s and 1.18 Pa for Fuzzy simulation, 19.3 µLs−1, 0.1543 mm/s and 1.6 Pa for ANSYS simulation and 18.23 µLs−1, 0.1332 mm/s and 1.5 Pa in the experiment. For 5CDCMC, at Reynolds number 143, the values of the flow rates, velocities and pressure drops are 15.4 µLs−1, 0.1032 mm/s and 1.15 Pa for Fuzzy simulation, 15.0 µLs−1, 0.120 mm/s and 1.22 Pa for ANSYS simulation and 14.08 µLs−1, 0.105 mm/s and 1.18 Pa in the experiment. Both channels have three inputs and one output. In order to observe Dean Flow, Dean numbers are also calculated. Therefore, both PDMS channels can be implanted in place of varicose veins to have natural blood flow.
Collapse
|
26
|
Durant JL. Ignorance loops: How non-knowledge about bee-toxic agrochemicals is iteratively produced. SOCIAL STUDIES OF SCIENCE 2020; 50:751-777. [PMID: 32400285 DOI: 10.1177/0306312720923390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this article, I examine the knowledge politics around pesticides in the United States and the role it plays in honey bee declines. Since 2006, US beekeepers have lost an average of one-third of their colonies each year. Though a number of factors influence bee health, beekeepers, researchers and policymakers cite pesticides as a primary contributor. In the US, pesticide registration is overseen by the US Environmental Protection Agency (EPA), with the required tests conducted by chemical companies applying for registration. Until 2016, the EPA only required chemical companies to measure acute toxicity for non-target species, which means that many pesticides with sublethal toxicities are not labeled bee-toxic, and farmers can apply them without penalty while bees are on their farms or orchards. In addition, California state and county regulators will typically only investigate a bee kill caused by a labeled bee-toxic pesticide, and so emergent data on non-labeled, sublethal pesticides goes uncollected. These gaps in data collection frustrate beekeepers and disincentivize them from reporting colony losses to regulatory agencies - thus reinforcing ignorance about which chemicals are toxic to bees. I term the iterative cycle of non-knowledge co-constituted by regulatory shortfalls and stakeholder regulatory disengagement an 'ignorance loop'. I conclude with a discussion of what this dynamic can tell us about the politics of knowledge production and pesticide governance and the consequences of 'ignorance loops' for stakeholders and the environment.
Collapse
|
27
|
Li C, Zhou J, Yue N, Wang Y, Wang J, Jin F. Dissipation and dietary risk assessment of tristyrylphenol ethoxylate homologues in cucumber after field application. Food Chem 2020; 338:127988. [PMID: 32950866 DOI: 10.1016/j.foodchem.2020.127988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/04/2023]
Abstract
The potential for tristyrylphenol ethoxylates (TSPEOs) residues to contaminate crops or be released into the environment is of increasing concern, as they are toxic to living organisms. This study determined the dissipation of TSPEO homologues in cucumber under field conditions. TSPEOn (n = 6-29) dissipated more rapidly in cucumber than in soil samples, with half-lives of 1.80-4.30 d and 3.73-6.52 d, respectively. Short-chain TSPEOn (n = 6-11) persisted for longer than other oligomers in soil. Concentrations of the final residues (∑TSPEOs) in cucumber and soil were 24.3-1349 μg/kg and 47.3-1337 μg/kg, respectively. TSP15EO or TSP16EO was the dominant oligomer, with concentrations of 2.30-150 μg/kg. The risk assessment showed that the acute and chronic dietary exposure risks of ∑TSPEOs in cucumber were 0.03-0.57% and 0.05-0.39%, respectively, suggesting little or no health risk to Chinese consumers.
Collapse
Affiliation(s)
- Chunmei Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhou
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Yue
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanli Wang
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
28
|
A modified QuEChERS/GC–MS for simultaneous determination of 16 pesticide adjuvant residues in fruits and vegetables. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1677-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Nadiminti PP, Liu Q, Vanjari LK, Dong YD, Boyd BJ, Cahill DM. Novel self-assembling conjugates as vectors for agrochemical delivery. J Nanobiotechnology 2018; 16:94. [PMID: 30463582 PMCID: PMC6247628 DOI: 10.1186/s12951-018-0423-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Modern agricultural practises rely on surfactant-based spray applications to eliminate weeds in crops. The wide spread and indiscriminate use of surfactants may result in a number of deleterious effects that are not limited to impacts on the crop and surrounding farm eco-system but include effects on human health. To provide a safer alternative to the use of surfactant-based formulations, we have synthesised a novel, self-assembling herbicide conjugate for the delivery of a broad leaf herbicide, picloram. RESULTS The synthesized self-assembling amphiphile-picloram (SAP) conjugate has three extending arms: a lipophilic lauryl chain, a hydrophilic polyethylene glycol chain and the amphiphobic agrochemical active picloram. We propose that the SAP conjugate maintains its colloidal stability by quickly transitioning between micellar and inverse micellar phases in hydrophilic and lipophilic environments respectively. The SAP conjugate provides the advantage of a phase structure that enables enhanced interaction with the hydrophobic epicuticular wax surface of the leaf. We have investigated the herbicidal efficiency of the SAP conjugate compared against that of commercial picloram formulations using the model plant Arabidopsis thaliana and found that when tested at agriculturally relevant doses between 0.58 and 11.70 mM a dose-dependent herbicidal effect with comparable kill rates was evident. CONCLUSION Though self-assembling drug carriers are not new to the pharmaceutical industry their use for the delivery of agrochemicals shows great promise but is largely unexplored. We have shown that SAP may be used as an alternative to current surfactant-based agrochemical formulations and has the potential to shift present practises towards a more sustainable approach.
Collapse
Affiliation(s)
- Pavani P Nadiminti
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia.
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lavanya K Vanjari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia
| | - Yao D Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia
| |
Collapse
|
30
|
Mesnage R, Antoniou MN. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Front Public Health 2018; 5:361. [PMID: 29404314 PMCID: PMC5786549 DOI: 10.3389/fpubh.2017.00361] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023] Open
Abstract
Commercial formulations of pesticides are invariably not single ingredients. Instead they are cocktails of chemicals, composed of a designated pesticidal “active principle” and “other ingredients,” with the latter collectively also known as “adjuvants.” These include surfactants, antifoaming agents, dyes, etc. Some adjuvants are added to influence the absorption and stability of the active principle and thus promote its pesticidal action. Currently, the health risk assessment of pesticides in the European Union and in the United States focuses almost exclusively on the stated active principle. Nonetheless, adjuvants can also be toxic in their own right with numerous negative health effects having been reported in humans and on the environment. Despite the known toxicity of adjuvants, they are regulated differently from active principles, with their toxic effects being generally ignored. Adjuvants are not subject to an acceptable daily intake, and they are not included in the health risk assessment of dietary exposures to pesticide residues. Here, we illustrate this gap in risk assessment by reference to glyphosate, the most used pesticide active ingredient. We also investigate the case of neonicotinoid insecticides, which are strongly suspected to be involved in bee and bumblebee colony collapse disorder. Authors of studies sometimes use the name of the active principle (for example glyphosate) when they are testing a commercial formulation containing multiple (active principle plus adjuvant) ingredients. This results in confusion in the scientific literature and within regulatory circles and leads to a misrepresentation of the safety profile of commercial pesticides. Urgent action is needed to lift the veil on the presence of adjuvants in food and human bodily fluids, as well as in the environment (such as in air, water, and soil) and to characterize their toxicological properties. This must be accompanied by regulatory precautionary measures to protect the environment and general human population from some toxic adjuvants that are currently missing from risk assessments.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|