1
|
Moriya M, Noro K, Nagaosa A, Banno A, Ono J, Amagai T, Yabuki Y. Characterization of The Permeation Properties of Membrane Filters and Sorption Properties of Sorbents Used for Polar Organic Chemical Integrative Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2115-2121. [PMID: 39056746 DOI: 10.1002/etc.5957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Polar organic chemical integrative samplers (POCIS) are promising devices for measuring the time-weighted average concentrations of hydrophilic compounds in aquatic environments. However, the mechanisms underlying compound uptake by POCIS remain unclear. We investigated the permeation kinetics of polyethersulfone and polytetrafluoroethylene membrane filters, and the sorption kinetics of Oasis HLB (Waters), Envi-Carb (Supelco), and Oasis WAX (Waters) sorbents. The log octanol-water partition coefficient (KOW) values of the 19 targeted compounds ranged from -0.55 to 6.0. The overall mass-transfer coefficients were negatively correlated with KOW, indicating that interactions between hydrophobic compounds and the membrane inhibit permeation. The sorption rate coefficient showed no correlation with KOW and depended on the type of sorbent used. These results imply that the uptake of highly hydrophilic compounds by POCIS is determined by both the membrane and the sorbent kinetics; however, membrane kinetics dominate the uptake of hydrophobic compounds. Environ Toxicol Chem 2024;43:2115-2121. © 2024 SETAC.
Collapse
Affiliation(s)
- Miyu Moriya
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazushi Noro
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Aika Nagaosa
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Arisa Banno
- Research, Institute of Environment, Agriculture, and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Junko Ono
- Research, Institute of Environment, Agriculture, and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshinori Yabuki
- Research, Institute of Environment, Agriculture, and Fisheries, Osaka Prefecture, Habikino, Japan
| |
Collapse
|
2
|
Krupčíková S, Stiborek M, Kalousková P, Urík J, Šimek Z, Melymuk L, Muz M, Vrana B. Investigation of occurrence of aromatic amines in municipal wastewaters using passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173196. [PMID: 38750764 DOI: 10.1016/j.scitotenv.2024.173196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Aromatic amines (AAs) are human-made compounds known for their mutagenic properties, entering surface waters from various sources, often originating as transformation products of dyes or pesticides. Despite their low concentrations in surface waters, AAs can exhibit mutagenicity. Our study focused on evaluating three passive samplers (PSs) for enriching these compounds from influent and effluent of a wastewater treatment plant (WWTP) in Brno, Czech Republic. The PSs tested included variants containing AttractSPE™ SDB-RPS sorbent disk, one with and one without a diffusive agarose hydrogel layer, and a modified Speedisk (Bakerbond Speedisk® H2O-Philic). PSs were deployed in wastewater (WW) for one to four weeks in various overlapping combinations, and the uptake of AAs to PSs was compared to their concentrations in 24-hour composite water samples. A targeted LC/MS analysis covered 42 amines, detecting 11 and 13 AAs in daily composite influent and effluent samples, respectively. In the influent, AAs ranged from 1.5 ng L-1 for 1-anilinonaphthalene to 1.0 μg L-1 for aniline, and the highest concentration among all measured amines was observed for cyclohexylamine at 2.9 μg L-1. In the effluent, concentrations ranged from 0.5 ng L-1 for 1-anilinonaphthalene to 88 ng L-1 for o-anisidine. PSs demonstrated comparable accumulation of amines, with integrative uptake up to 28 days in both influent and effluent and detection of up to 23 and 27 amines in influent and effluent, respectively; altogether 34 compounds were detected in the study. Sampling rates (Rs) were estimated for compounds present in at least 50 % of the samples and showing <40 % aqueous concentration variability, with robustness evaluated by comparing values for compounds in WWTP influent and effluent. Although all devices performed similarly, hydrogel-based PS exhibited superior performance in several criteria, including time integration and robustness of sampling rates, making it a suitable monitoring tool for AAs in WW.
Collapse
Affiliation(s)
- Simona Krupčíková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Marek Stiborek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Petra Kalousková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Jakub Urík
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Zdeněk Šimek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Melis Muz
- Helmholtz Centre for Environmental Research GmbH-UFZ, Department Exposure Science, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| |
Collapse
|
3
|
Mazzella N, Bernard M, Guibal R, Boutry S, Lissalde S, Guibaud G. Proposal of a new empirical model with flow velocity to improve time-weighted average concentration estimates from the Polar Organic Chemical Integrative Samplers. CHEMOSPHERE 2024; 350:141062. [PMID: 38159734 DOI: 10.1016/j.chemosphere.2023.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
It is now widely recognized that the sampling rate of Polar Organic Chemical Integrative Samplers (POCIS) is significantly affected by flow velocity, which can cause a consequent bias when determining time-weighted average concentrations (TWAC). We already observed the desorption of deisopropylatrazine (DIA) over time when added to the receiving phase of a POCIS. This desorption rate was particularly influenced by flow velocity, in an agitated water environment in situ. In the method presented here, we calibrated 30 pesticides under controlled laboratory conditions, varying the flow velocity over four levels. We simultaneously studied the desorption rate of DIA-d5 (a deuterated form of DIA) over time. An empirical model based on a power law involving flow velocity was used to process the information from the accumulation kinetics of the compounds of interest and elimination of DIA-d5. This type of model makes it possible to consider the effect of this crucial factor on exchange kinetics, and then to obtain more accurate TWACs with reduced bias and more acceptable dispersion of results.
Collapse
Affiliation(s)
| | - Marion Bernard
- INRAE, UR EABX, 50 Avenue de Verdun, 33612 Cestas, France
| | - Robin Guibal
- Université de Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges, Cedex 87060, France
| | | | - Sophie Lissalde
- Université de Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges, Cedex 87060, France
| | - Gilles Guibaud
- Université de Limoges, E2Lim, 123 Avenue Albert Thomas, Limoges, Cedex 87060, France
| |
Collapse
|
4
|
Wang L, Liu R, Zhou Y, Yuan P, Liu X, Gao H. Mass transfer characteristics of chiral pharmaceuticals on membrane used for polar organic chemical integrative sampler. J Environ Sci (China) 2024; 136:670-681. [PMID: 37923475 DOI: 10.1016/j.jes.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 11/07/2023]
Abstract
Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments. Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach. In this study, adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone (PES) and polytetrafluoroethylene (PTFE) membranes used in a polar organic chemical integrative sampler. Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine. The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane. The permeation experiment indicated that under different hydraulic conditions, the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system, and mass transfer hysteresis exists for both contaminant systems through PES membranes. Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients, the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system. This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.
Collapse
Affiliation(s)
- Liyang Wang
- College of Water Science, Beijing Normal University, Beijing 100018, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Ruixia Liu
- College of Water Science, Beijing Normal University, Beijing 100018, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Youya Zhou
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
5
|
Assoumani A, Margoum C, Guillemain C, Renard B, Coquery M. Prediction of the accumulation behavior of pesticides in PDMS-coated stir bars used as passive samplers in freshwaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168630. [PMID: 37977384 DOI: 10.1016/j.scitotenv.2023.168630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Passive samplers accumulate organic contaminants at rates that depend on in-field exposure conditions such as freshwater flow velocity, water temperature and water quality. Time-weighted average concentrations can be determined by using a correction process such as the performance reference compound (PRC) method. This study presented a new approach to predict the accumulation behavior of pesticides in polydimethylsiloxane-coated stir bars under different exposure conditions and assign a specific PRC to each pesticide for quantitative purposes. We used an experimental design with eight simultaneous accumulation kinetics of 13 pesticides and elimination kinetics of three PRC candidates run in a flow-through system to determine the effects of flow velocity, water temperature and dissolved organic matter on the kinetic constants. We identified the parameters that had a significant effect on the accumulation of each pesticide and assigned a PRC candidate to each pesticide. We then used a discriminant function analysis to find the parameters that had a significant effect on accumulation of the 13 pesticides via their physical-chemical properties and to predict through a stochastic approach the parameters for seven other pesticides. This approach provides a better framework for identifying a PRC than conventional methods to determine unbiased concentrations in future monitoring efforts.
Collapse
Affiliation(s)
- A Assoumani
- INRAE, RiverLy, F-69625 Villeurbanne, France; INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, 60550 Verneuil-en-Halatte, France
| | - C Margoum
- INRAE, RiverLy, F-69625 Villeurbanne, France.
| | | | - B Renard
- INRAE, RiverLy, F-69625 Villeurbanne, France; INRAE, Aix Marseille Univ., UR RECOVER, Aix-En-Provence, France
| | - M Coquery
- INRAE, RiverLy, F-69625 Villeurbanne, France
| |
Collapse
|
6
|
Marchand E, Petit F, Alliot F, Blanchoud H, Costantini D, Guigon E, Martin N, Traore S, Goutte A. Contrasted Antibiotics and Pesticides Occurrence in Fish Exposed In Situ to Urban Effluents: A 20-Day Caging Experiment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116996 DOI: 10.1002/etc.5810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/14/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Urban freshwater ecosystems receive a wide array of organic pollutants through wastewater-treatment plant (WWTP) discharges and agricultural runoff. Evaluating the fate and effects of antibiotics and pesticides can be a challenging task, especially the effects on freshwater vertebrates because of their abilities to metabolize and excrete these chemicals and because of their high mobility and escape behavior when exposed to stressful environmental conditions. In the present study, 37 wild gudgeons (Gobio gobio) were caged for a period of up to 20 days, upstream and downstream of a WWTP effluent discharge in the Orge River (a tributary of the Seine River, France). Levels of pesticides and antibiotics in fish muscles were monitored weekly and compared with environmental contamination (water and sediments). Our results highlighted a slight bioaccumulation of pesticides in the gudgeon muscles at the downstream site after 20 days of exposure. Concerning antibiotics, ofloxacin was the most detected compound in fish muscles (85% of occurrence) and ranged from undetectable to 8 ng g-1 dry weight. Antibiotic levels in fish muscle were not higher at the downstream site and did not increase with exposure duration, despite high levels in the water (up to 29 times greater than upstream). Potential ecotoxicological effects were also evaluated: Body condition did not differ between the caging location and exposure time. Three oxidative status markers in the fish livers showed significant shifts after 14 days of caging. Our results suggest a high clearance rate of antibiotics and, to a lesser extent, of pesticides in wild gudgeons, which could be explained by changes in xenobiotic metabolism with pollutant exposure. Environ Toxicol Chem 2024;00:1-11. © 2023 SETAC.
Collapse
Affiliation(s)
- Etienne Marchand
- UNIROUEN, UNICAEN, Normandie Université, Rouen, France
- CNRS, EPHE, Sorbonne Université, Paris, France
| | - Fabienne Petit
- UNIROUEN, UNICAEN, Normandie Université, Rouen, France
- CNRS, EPHE, Sorbonne Université, Paris, France
| | - Fabrice Alliot
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Hélène Blanchoud
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | - David Costantini
- UPMA, Muséum National d'Histoire Naturelle, CNRS, Paris, France
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Elodie Guigon
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Sira Traore
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Aurélie Goutte
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
7
|
Tarábek P, Vrana B, Chalupková K, Bednáriková A, Okšová L, Bystrický P, Leonova N, Konovalova O. Examining the applicability of polar organic chemical integrative sampler for long-term monitoring of groundwater contamination caused by currently used pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165905. [PMID: 37532041 DOI: 10.1016/j.scitotenv.2023.165905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The possibilities of expanding a groundwater quality monitoring scheme by passive sampling using polar organic chemical integrative sampler (POCIS) comprising HLB sorbent as the receiving phase were explored. Passive sampling and grab sampling were carried out simultaneously in the regions with vulnerable groundwater resources in Slovakia, between 2013 and 2021. For 27 pesticides and degradation products detected both in POCIS and the grab samples, in situ sampling rates were calculated and statistically evaluated. The limited effectiveness of the receiving phase in POCIS for sampling polar or ionized compounds was confirmed through a comparison of the medians of compound-specific sampling rates. For the majority of the monitored compounds the median sampling rates varied between 0.01 and 0.035 L/day. In some cases, the actual in situ values could be confirmed by parallel exposure of POCIS and silicone rubber sheet employed to obtain a benchmark for maximum attainable sampling rate. Sampling site and sampling period appear to have also some influence on the sampling rates, which was attributed in part to the groundwater velocity varying in both space and time. The influence of physico-chemical parameters (temperature, pH, electrolytic conductivity) remains mostly questionable due to the naturally limited ranges of recorded values over the entire duration of the study. Concentrations of pollutants in POCIS could be used for predicting time weighed average concentrations in water, provided the sampling rates were known and relatively constant. Generally, the compound-specific sampling rate cannot be considered constant due to a combination of naturally varying environmental factors that influence the actual in situ sampling rate. The relative standard deviation of concentration data from POCIS exposed in triplicates varied between approx. 5 %-50 %. Utilizing exploratory data analysis approach and tools enabled us to obtain a relatively complex picture of the situation and progress regarding pesticide pollution of groundwater in the monitored areas.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia.
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Katarína Chalupková
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Alena Bednáriková
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Linda Okšová
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Peter Bystrický
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| |
Collapse
|
8
|
Römerscheid M, Paschke A, Schneider S, Blaha M, Harzdorf J, Schüürmann G. Calibration of the Chemcatcher® passive sampler and derivation of generic sampling rates for a broad application in monitoring of surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161936. [PMID: 36746283 DOI: 10.1016/j.scitotenv.2023.161936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We determined sampling rates for 34 pesticides, five pesticide transformation products, and 34 pharmaceutical compounds with the Chemcatcher (CC) passive sampler in a laboratory-based continuous-flow system at 40 cm/s and ambient temperature. Three different sampling phases were used: styrene divinylbenzene disks (SDB-XC), styrene divinylbenzene reversed phase sulfonate disks (SDB-RPS), and hydrophilic lipophilic balance disks (HLB), in all cases covered with a diffusion-limiting polyethersulfone membrane. The measured sampling rates range from 0.007 L/d to 0.193 L/d for CC with SDB-XC (CC-XC), from 0.055 L/d to 0.796 L/d for CC with SDB-RPS (CC-RPS), and from 0.018 L/d to 0.073 L/d for CC equipped with HLB (CC-HLB). Comparison with sampling rates from literature enabled to derive generic sampling rates that can be used for compounds with unknown uptake kinetics such as transformations products and new compounds of interest. Field trial results demonstrate that the presently derived generic sampling rates are suitable for estimating time-weighted average concentrations within reasonable uncertainty limits. In this way, Chemcatcher passive sampling can be applied approximately to a broad range of solutes without the need for deriving compound-specific sampling rates, which enable compliance checks against environmental quality standards and further risk assessment.
Collapse
Affiliation(s)
- Mara Römerscheid
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Albrecht Paschke
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Selma Schneider
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maximilian Blaha
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Harzdorf
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| |
Collapse
|
9
|
Glanzmann V, Reymond N, Weyermann C, Estoppey N. An improved Chemcatcher-based method for the integrative passive sampling of 44 hydrophilic micropollutants in surface water - Part A: Calibration under four controlled hydrodynamic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162037. [PMID: 36740052 DOI: 10.1016/j.scitotenv.2023.162037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
When monitoring water quality with hydrophilic integrative passive sampling devices, it is crucial to use accurate sampling rates (RS) that account for exposure conditions such as hydrodynamics. This study aims at calibrating Chemcatcher-like passive samplers - styrene-divinylbenzene reverse phase sulfonate (SDB-RPS) extraction disk covered by a polyethersulfone (PES) membrane - at four water flow velocities (5 to 40 cm s-1) in a channel system. First, the four hydrodynamic conditions were characterized by measuring the mass transfer coefficients of the water boundary layer (kw) at the surface of the samplers using the alabaster dissolution method. Then, fifty-six samplers were deployed in the channels and exposed for 7 different intervals varying from 1 to 21 days. Thus, RS were determined at four different kw for 44 hydrophilic compounds, ranging from 0.015 to 0.115 L day-1. Relationships were established between kw and RS using models for mixed rate control by the membrane and the water boundary layer. The estimated parameters of those relationships are suitable for the determination of accurate RS when kw is measured in situ, for example by co-deploying silicone disks spiked with performance and reference compounds (PRC) as implemented in Part B.
Collapse
Affiliation(s)
- Vick Glanzmann
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland.
| | - Naomi Reymond
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland
| | - Céline Weyermann
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland.
| | - Nicolas Estoppey
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland; Norwegian Geotechnical Institute (NGI), P.O. Box. 3930 Ullevål Stadion, N-0806 Oslo, Norway
| |
Collapse
|
10
|
Wang S, Basijokaite R, Murphy BL, Kelleher CA, Zeng T. Combining Passive Sampling with Suspect and Nontarget Screening to Characterize Organic Micropollutants in Streams Draining Mixed-Use Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16726-16736. [PMID: 36331382 PMCID: PMC9730844 DOI: 10.1021/acs.est.2c02938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Organic micropollutants (OMPs) represent an anthropogenic stressor on stream ecosystems. In this work, we combined passive sampling with suspect and nontarget screening enabled by liquid chromatography-high-resolution mass spectrometry to characterize complex mixtures of OMPs in streams draining mixed-use watersheds. Suspect screening identified 122 unique OMPs for target quantification in polar organic chemical integrative samplers (POCIS) and grab samples collected from 20 stream sites in upstate New York over two sampling seasons. Hierarchical clustering established the co-occurrence profiles of OMPs in connection with watershed attributes indicative of anthropogenic influences. Nontarget screening leveraging the time-integrative nature of POCIS and the cross-site variability in watershed attributes prioritized and confirmed 11 additional compounds that were ubiquitously present in monitored streams. Field sampling rates for 37 OMPs that simultaneously occurred in POCIS and grab samples spanned the range of 0.02 to 0.22 L/d with a median value of 0.07 L/d. Comparative analyses of the daily average loads, cumulative exposure-activity ratios, and multi-substance potentially affected fractions supported the feasibility of complementing grab sampling with POCIS for OMP load estimation and screening-level risk assessments. Overall, this work demonstrated a multi-watershed sampling and screening approach that can be adapted to assess OMP contamination in streams across landscapes.
Collapse
Affiliation(s)
- Shiru Wang
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| | - Ruta Basijokaite
- Department
of Earth and Environmental Sciences, Syracuse
University, 204 Heroy Geology Laboratory, Syracuse, New York 13244, United States
| | - Bethany L. Murphy
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| | - Christa A. Kelleher
- Department
of Earth and Environmental Sciences, Syracuse
University, 204 Heroy Geology Laboratory, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| |
Collapse
|
11
|
Suchana S, Passeport E. Implications of polar organic chemical integrative sampler for high membrane sorption and suitability of polyethersulfone as a single-phase sampler. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157898. [PMID: 35952872 DOI: 10.1016/j.scitotenv.2022.157898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Polar organic chemical integrative sampler (POCIS) contains sorbent, which is typically enclosed between two polyethersulfones (PES) membranes. A significant PES uptake is reported for many contaminants, yet, aqueous concentration is mainly correlated with the sorbent uptake using first-order kinetics. Under high PES sorption, the first-order kinetics often provide erroneous sampling rate for the sorbent phase due to increased membrane resistance. This work evaluated the uptake of four high PES sorbing chemicals, i.e., three Cl- and CH3-substituted nitrobenzenes and one chlorinated aniline using POCIS and the potential of a single-phase PES sampler using laboratory experiments. POCIS calibration results demonstrated that both sorbent and membrane had similar affinity for the target compounds. A rapid PES sorption occurred in the earlier days (<7 days) followed by a gradual increase in the PES phase concentration (equilibrium not achieved after 60 days). Especially, the membrane was the primary sink for 3,4-dichloroaniline and 3,4-dichloronitrobenzene for up to 14 and 31 days, respectively. On the other hand, the single-phase PES sampler showed similar mass uptake as POCIS and reached equilibrium within 19 days under static condition, indicating its potential suitability in the equilibrium regime. PES-water partition coefficient of the target compounds was between 1.2 and 6.5 L/g. Finally, we present a poly-parameter linear-free energy relationship (pp-LFER) using published data to predict the PES-water partition coefficients. The pp-LFER models showed moderate predictability as indicated by R2adj values between 0.7 and 0.9 for both internal and external data set consisting of a wide range of hydrophobic and hydrophilic compounds (-0.1 ≤ logKOW ≤ 7.4). The proposed pp-LFER model can be used to screen high PES-sorbing chemicals to increase the reliability and accuracy of aqueous concentration prediction from POCIS sampling and to select the most appropriate sampling approach for new compounds.
Collapse
Affiliation(s)
- Shamsunnahar Suchana
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
12
|
MacKeown H, Benedetti B, Scapuzzi C, Di Carro M, Magi E. A Review on Polyethersulfone Membranes in Polar Organic Chemical Integrative Samplers: Preparation, Characterization and Innovation. Crit Rev Anal Chem 2022; 54:1758-1774. [PMID: 36263980 DOI: 10.1080/10408347.2022.2131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The membranes in polar organic chemical integrative samplers (POCIS) enclose the receiving sorbent and protect it from coming into direct contact with the environmental matrix. They have a crucial role in extending the kinetic regime of contaminant uptake, by slowing down their diffusion between the water phase and the receiving phase. The drive to improve passive sampling requires membranes with better design and enhanced performances. In this review, the preparation of standard polyethersulfone (PES) membranes for POCIS is presented, as well as methods to evaluate their composition, morphology, structure, and performance. Generally, only supplier-related morphological and structural data are provided, such as membrane type, thickness, surface area, and pore diameter. The issues related to the use of PES membranes in POCIS applications are exposed. Finally, alternative membranes to PES in POCIS are also discussed, although no better membrane has yet been developed. This review highlights the urge for more membrane characterization details and a better comprehension of the mechanisms which underlay their behavior and performance, to improve membrane selection and optimize passive sampler development.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
Novel miniaturized passive sampling devices based on liquid phase microextraction equipped with cellulose-grafted membranes for the environmental monitoring of phthalic acid esters in natural waters. Anal Chim Acta 2022; 1231:340405. [PMID: 36220296 DOI: 10.1016/j.aca.2022.340405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Phthalic acid esters (PAEs) are considered endocrine disruptors and potential carcinogens. Consequently, efficient and accurate environmental monitoring of trace levels of these organic pollutants is necessary to protect the population against their hazardous effects. Passive sampling techniques have gained notoriety for environmental monitoring and have been proven highly sensitive to temporal variations. This study developed a miniaturized passive sampling device (MPSD) based on hollow fiber liquid-phase microextraction (HF-LPME). The devices were calibrated in the laboratory using an automated calibration system. The results demonstrated the first-order uptake ranges for Diethyl phthalate (DEP), Diisobutyl phthalate (DiBP), Dibutyl phthalate (DBP), Benzyl butyl phthalate (BBP) and Bis(2-ethylhexyl phthalate) (DEHP) between 30 min and 24 h with sampling rates equivalent to 0.009; 0.021; 0.033; 0.085 and 0.003 mL h-1 respectively (R2 between 0.88 and 0.99). The calibrated devices were deployed in 12 marginal lagoons, stretching approximately 330 km along the main river. The extracts recovered from the devices were analyzed by gas chromatography (GC), resulting in the identification and quantification of DEP (0.697-13.7 ng L-1), DiBP (0.100-4.43 ng L-1), DBP (0.014-1.21 ng L-1), BBP (0.218-5.67 ng L-1), and DEHP (0.002-2.24 ng L-1). Despite being frequently identified, DEHP concentrations were well below the maximum established limits, revealing a good water quality in terms of the target PAEs. In contrast, screening the extracts using GCxGC was possible to detect other hazardous pollutants such as pesticides, drugs, and their metabolites. The described device was effective and reliable, providing accurate PAE measurements following short exposure periods. In this sense, its deployment during emergency operations, such as accidental discharges of industrial effluents into natural waters, could continuously and cost-effectively monitor water quality.
Collapse
|
14
|
Shao X, Liu L, Li H, Luo Y, Zhao J, Liu S, Yan B, Wang D, Luo K, Liu M, Bai L, Li X, Liu K. The effects of polyethersulfone and Nylon 6 micromembrane filters on the pyraclostrobin detection: adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74051-74061. [PMID: 35633450 DOI: 10.1007/s11356-022-21021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Adsorption of test substances on micromembrane filters during sample pretreatment before qualitative and quantitative analysis has greatly affected the accuracy of the measurement. In the present study, it was found that the adsorption rate of pyraclostrobin reached 77.7-100% when water samples of pyraclostrobin (1 mL) were filtered with polyethersulfone (PES) and Nylon 6 filters. Therefore, the adsorption mechanisms were investigated from the kinetics, isotherms, and thermodynamics of the pyraclostrobin adsorption process, combined with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that PES accorded with second-order adsorption kinetics and Nylon 6 with first-order adsorption kinetics, and the correlation coefficient R2 was 0.98. The adsorption behavior of the two micromembranes followed the linear isothermal model, indicating that the adsorption process was through monolayer adsorption. Thermodynamic study showed that the adsorption of pyracoethyl on PES membrane was spontaneous endothermic, while that on Nylon 6 was spontaneous exothermic. The π-π electron-donor-acceptor (EDA) between pyraclostrobin and PES may promote the adsorption of PES to pyraclostrobin, and hydrogen bonding between pyraclostrobin and Nylon 6 micromembrane may be involved in the adsorption. Our study also proved that the adding 60% methanol and iodine solution (2 mmol/L) was an effective strategy to reduce the adsorption effects and to increase the accuracy of the detection.
Collapse
Affiliation(s)
- Xiaolan Shao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, 410125, Changsha, People's Republic of China
| | - Lejun Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yue Luo
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jingyu Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Shuai Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bei Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Dan Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Kun Luo
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Min Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, 410125, Changsha, People's Republic of China
| | - Xiaoyun Li
- Department of Evironmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Kailin Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, 410125, Changsha, People's Republic of China.
| |
Collapse
|
15
|
Kanwischer M, Asker N, Wernersson AS, Wirth MA, Fisch K, Dahlgren E, Osterholz H, Habedank F, Naumann M, Mannio J, Schulz-Bull DE. Substances of emerging concern in Baltic Sea water: Review on methodological advances for the environmental assessment and proposal for future monitoring. AMBIO 2022; 51:1588-1608. [PMID: 34637089 PMCID: PMC9005613 DOI: 10.1007/s13280-021-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 41390 Göteborg, Sweden
| | - Ann-Sofie Wernersson
- Department for Management of Contaminated Sites, Swedish Geotechnical Institute, Hugo Grauers gata 5 B, 41296 Göteborg, Sweden
| | - Marisa A. Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Elin Dahlgren
- Swedish University of Agricultural Sciences, Stångholmsvägen 2, 178 93 Drottningholm, Sweden
| | - Helena Osterholz
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Friederike Habedank
- State Office for Agriculture, Food Safety and Fisheries, Mecklenburg-Western Pomerania, Thierfelderstraße 18, 18059 Rostock, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jaakko Mannio
- Centre for Sustainable Consumption and Production/Contaminants, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Detlef E. Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
16
|
Passive Sampling with Active Carbon Fibres in the Determination of Organic Pollutants in Groundwater. WATER 2022. [DOI: 10.3390/w14040585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Legislation addressing the quality of groundwater and increasing concerns over public health calls for the development of analytical methods that can produce accurate and precise results at the ppt level. Passive sampling has been recognised as a helpful tool in identifying various organic pollutants in groundwater, even when their presence had not yet been identified through conventional groundwater quality monitoring. The article presents an analytical method involving a simple and cost-effective passive sampling device using Zorflex® activated carbon fibres (ACFs) for the qualitative monitoring of a broad range of organic pollutants in water in a single run. The applicability of the method developed was tested in three hydrogeological studies. In the first case, we present a non-targeted qualitative screening and a list of 892 different contaminants detected in the groundwater in Slovenia. In the second case, we discuss the presence and origin of organic compounds in the groundwater from a pilot area of the urban aquifer, Ljubljansko polje. The third case presents a comparison of results between passive and grab sampling. Passive sampling with ACFs confirmed the presence of a pollutant, even when it had not been previously detected through a quantitative method.
Collapse
|
17
|
Unravelling the role of membrane pore size in polar organic chemical integrative samplers (POCIS) to broaden the polarity range of sampled analytes. Anal Bioanal Chem 2022; 414:1963-1972. [PMID: 35028687 DOI: 10.1007/s00216-021-03832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/01/2022]
Abstract
Polar organic chemical integrative samplers (POCIS) are widely used in their standard configuration for sampling contaminants in water bodies. A wider polyethersulfone (PES) membrane pore size was employed in POCIS exposed in a static calibration experiment to investigate the uptake of 21 emerging contaminants ranging from hydrophilic (perfluoroalkyl compounds, xanthines, an artificial sweetener) to more hydrophobic compounds (pharmaceuticals, oestrogens, UV filters). Compared to standard POCIS with 0.1-µm pore size PES membranes, the POCIS with 5-µm pore size PES membranes did not increase sampling rates for compounds of relatively low and mid-hydrophobicity. However, the uptake of more hydrophobic and anionic compounds, which either poorly diffuse through or are retained within the standard 0.1-µm PES membrane, showed a marked increase. This led to the first ever recorded sampling rates for triclosan (0.249 L day-1) and two UV filters (0.075-0.123 L day-1). Based on these results, more attention should be placed on the choice of the appropriate membrane for each POCIS application. The most suitable configuration depends on the studied compound physico-chemical characteristics-such as the polarity and the compound membrane-to-sorbent partitioning coefficient-but also on the site conditions (deployment time, fouling, flow variations, et.).
Collapse
|
18
|
Ivančev-Tumbas I, Lužanin Z, Česen M, Bogunović M, Sekulić TD, Heath D, Heath E. Insight into selected emerging micropollutant interactions with wastewater colloidal organic carbon: implications for water treatment and analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59368-59381. [PMID: 33146819 DOI: 10.1007/s11356-020-11309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This study reports how adding a membrane filter (0.45-μm cellulose nitrate filter) between a glass fibre filter and the solid phase extraction (SPE) cartridge affected the GC/MS analysis of 48 emerging organic micropollutants in wastewater. Most of them are widely used as active pharmaceuticals, cosmetic and packaging material ingredients including classes of parabens, benzophenones and bisphenols among other chemicals tested. A high artificial organic carbon (OC) content in wastewater (DOC = 280 ± 14 mg/L) was investigated to gain insight into micropollutants/colloidal OC filter cake interactions. The results show that even with the use of matrix-matched calibration, the introduction of a second (membrane) filtration step can affect the analysis. Both positive, negative and no effects on the theoretical concentrations calculated from the calibration curves with and without additional filtration were observed. Positive effects on the concentration for the same analyte peak area relative to its surrogate standard were the consequence of a reduced signal for the same concentration, while the negative effects are the consequence of increasing signal for the same concentration. Effect types were dependent on the concentration and the nature of the analytes. Results show that bisphenols and parabens significantly interact with colloidal OC. Statistical analysis of molecular descriptor distribution with effect type showed that micropollutants that have a stronger interaction with colloidal OC have significantly higher ability to act as hydrogen bond donors (HBD) and have larger molar volume (MV). All compounds that experienced either positive or negative effects have a significantly higher median logD. However, further exploration within a single class of compounds (parabens, benzophenones and bisphenols) revealed that selected descriptors are unrelated to an effect type. Pearson's correlations showed that a correlation exists for certain concentration levels and groups of compounds between a negative effect and MV and logD and a positive effect with MV, MW and rotatable bond (RB) count.
Collapse
Affiliation(s)
- Ivana Ivančev-Tumbas
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia.
| | - Zorana Lužanin
- Department of Mathematics and Informatics, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 4, 21000, Novi Sad, Republic of Serbia
| | - Marjeta Česen
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Minja Bogunović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia
| | - Tatjana Djaković Sekulić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia
| | - David Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
19
|
Cristóvão MB, Bento-Silva A, Bronze MR, Crespo JG, Pereira VJ. Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147477. [PMID: 33971591 DOI: 10.1016/j.scitotenv.2021.147477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of six anticancer drugs was evaluated in wastewater effluents. Several grab samples from wastewater effluent were collected throughout a year. Capecitabine, cyclophosphamide and ifosfamide were detected at concentrations ranging from 8 to 46 ng·L-1. Capecitabine was detected in all the sampling events whereas cyclophosphamide and ifosfamide were detected less frequently. Additionally, the suitability of using pharmaceutical-polar organic chemical integrative samplers (POCIS) to monitor the target drugs in wastewater effluents was assessed. Capecitabine, ifosfamide and cyclophosphamide were detected with POCIS and showed a linear uptake over 15 days. The sampling rates, determined in situ, were used to estimate time-weighted average concentrations. A good correlation was found between the concentration of capecitabine detected with POCIS deployed during five days (32 ± 1 ng·L-1) and the average concentrations obtained in grab samples. The use of passive samplers has advantages over grab samples: easier analysis, less time and costs associated with the analytical method. Passive samplers also provide a time-weighted information about the concentration of pollutants in the aquatic environment. However, information may be lost when the concentration of the target compounds in wastewater effluents is low and the passive samplers are deployed for a short time.
Collapse
Affiliation(s)
- Maria B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
20
|
Caban M, Lis H, Stepnowski P. Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment - A Critical Review with the Latest Innovations. Crit Rev Anal Chem 2021; 52:1386-1407. [PMID: 33673780 DOI: 10.1080/10408347.2021.1881755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review starts with a presentation of the theory of kinetic uptake by passive sampling (PS), which is traditionally used to distinguish between integrative and equilibrium samplers. Demonstrated limitations of this model for the passive sampling of pharmaceuticals from water were presented. Most notably, the contribution of the protective membrane in the resistance to mass transfer of lipophilic analytes and the well documented effect of external parameters on sampling rates contributed to the greatest uncertainty in PS application. The diffusion gradient in thin layer (DGT) technique seems to reduce the effect of external parameters (e.g., flow rate) to some degree. The laboratory-determined integrative uptake periods over defined sampler deployments was compared, and the discrepancy found suggests that the most popular Polar Organic Chemical Integrative Sampler (POCIS) could in some cases utilized as an equilibrium sampler. This assertion is supported by own calculations for three pharmaceuticals with extremely different lipophilic characters. Finally, the reasons performance reference compounds (PRCs) are not recommended for the reduction in uncertainty of the TWAC found by adsorptive samplers were presented. It was concluded that techniques of passive sampling of pharmaceuticals need a new uptake model to fit the current situation.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
21
|
Castro V, Quintana JB, Carpinteiro I, Cobas J, Carro N, Cela R, Rodil R. Combination of different chromatographic and sampling modes for high-resolution mass spectrometric screening of organic microcontaminants in water. Anal Bioanal Chem 2021; 413:5607-5618. [PMID: 33625537 DOI: 10.1007/s00216-021-03226-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
This study explores the combination of two sampling strategies (polar organic compounds integrative sampler (POCIS) vs. spot sampling) and four chromatographic retention modes (reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), mixed-mode liquid chromatography (MMLC) and supercritical fluid chromatography (SFC)) for high-resolution mass spectrometry (HRMS) screening of organic pollutants in water samples. To this end, a suspect screening approach, using iterative data-dependent tandem mass spectrometry (MS/MS) driven by a library of 3227 chemicals (including pharmaceuticals, pesticides, drugs of abuse, human metabolites, industrial chemicals and other pollutants), was employed. Results show that POCIS can afford a larger number of positive identifications as compared to spot sampling. On the other hand, the best suited retention mechanisms, in terms of identified analytes, are SFC, and followed by RPLC, MMLC and HILIC. However, the best combination (POCIS + SFC) would only allow the identification of 67% of the detected analytes. Thus, the combination of the two sampling strategies, spot and passive sampling, with two orthogonal retention mechanisms, RPLC and SFC, is proposed in order to maximize the number of analytes detected (89%). This strategy was applied to different surface water (river and estuary) samples from Galicia (NW Spain). A total of 155 compounds were detected at a confidence level 2a, from which the major class was pharmaceuticals (61%).
Collapse
Affiliation(s)
- Verónica Castro
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Inmaculada Carpinteiro
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Julio Cobas
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Nieves Carro
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Vrana B, Urík J, Fedorova G, Švecová H, Grabicová K, Golovko O, Randák T, Grabic R. In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116121. [PMID: 33272798 DOI: 10.1016/j.envpol.2020.116121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d-1, with the overall median value of 0.10 L d-1. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.
Collapse
Affiliation(s)
- Branislav Vrana
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Jakub Urík
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
23
|
Taylor RB, Toteu Djomte V, Bobbitt JM, Hering AS, Chen S, Chambliss CK. Effects of Environmentally Relevant Concentration Exposure Profiles on Polar Organic Chemical Integrative Sampler (POCIS) Sampling Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8848-8856. [PMID: 32598138 DOI: 10.1021/acs.est.0c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polar organic chemical integrative sampler (POCIS) is a passive sampling device that offers many advantages over traditional discrete sampling methods, but quantitative time-weighted average (TWA) concentrations rely heavily on the robustness of sampling rates. The effects of changing chemical concentration exposures on POCIS sampling rates and its ability to operate in an integrative regime were investigated for 12 pesticides across a range of environmentally relevant concentrations. In five independent 21-day experiments, POCIS devices were exposed to these compounds at constant concentrations ranging from 3 to 60 μg/L and multiple pulsed concentrations with maximum peaks ranging from 5 to 150 μg/L (TWA concentrations = 3 to 92 μg/L). For the 21-day exposures to constant and pulsed concentrations, there were no significant differences in the POCIS sampling rates between corresponding TWA concentrations. Similarly, there was no significant effect on POCIS ability to operate in an integrative regime. However, loss of linearity was visible for some replicates when exposed to higher pulsed concentrations over an extended period. Modeling and Freundlich isotherms did not predict sorbent saturation, but the extraction and reconstitution protocol likely contributed to atrazine dissolution and subsequent underestimation of sorbed chemical mass when HLB adsorption exceeded 400 μg.
Collapse
Affiliation(s)
- Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Valerie Toteu Djomte
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Jonathan M Bobbitt
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Amanda S Hering
- Department of Statistical Science, Baylor University, Waco, Texas 76798, United States
| | - Sunmao Chen
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27409, United States
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
24
|
Berho C, Robert S, Coureau C, Coisy E, Berrehouc A, Amalric L, Bruchet A. Estimating 42 pesticide sampling rates by POCIS and POCIS-MIP samplers for groundwater monitoring: a pilot-scale calibration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18565-18576. [PMID: 32198689 DOI: 10.1007/s11356-020-08385-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Pesticides occur in groundwater as a result of agricultural activity. Their monitoring under the Water Framework Directive is based on only a few spot-sampling measurements per year despite their temporal variability. Passive sampling, which was successfully tested in surface water to provide a more representative assessment of contamination, could be applied to groundwater for a better definition of its contamination. However, few reliable calibration data under low water flow are available. The objective of our study thus consisted in determining sampling rates by two types of passive samplers, a POCIS (polar organic chemical integrative sampler) for polar pesticides, and a POCIS-MIP sampler based on a receiving phase of molecular imprinted polymers, specific for AMPA and glyphosate under low flow conditions as exist in groundwater. To our knowledge, this is the first time that sampling rates (sampling rate represents the volume of water from which the analyte is quantitatively extracted by the sampler per unit time) are estimated for groundwater applications. Our calibrations took place in an experimental pilot filled with groundwater and with low water flow (a few metres per day). Pesticide uptake in POCIS showed good linearity, with up to 28 days before reaching equilibrium. Two types of accumulation in POCIS were noted (a linear pattern up to 28 days, and after a time lag of 7 to 14 days). Sampling rates for 38 compounds were calculated and compared with those available in the literature or obtained previously under laboratory conditions. The values obtained were lower by a factor 1 to 14 than those estimated under stirring conditions in the literature, whereas water flow velocity (m s-1) differed by a factor of 2000 to 10,000.
Collapse
Affiliation(s)
- Catherine Berho
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France.
| | - Samuel Robert
- SUEZ, CIRSEE, 38 rue du président Wilson, 78230, le Pecq, France
| | - Charlotte Coureau
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Emeline Coisy
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Anne Berrehouc
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Laurence Amalric
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Auguste Bruchet
- SUEZ, CIRSEE, 38 rue du président Wilson, 78230, le Pecq, France
| |
Collapse
|
25
|
Gallé T, Frelat M, Huck V, Bayerle M, Pittois D, Braun C. Quantitative use of passive sampling data to derive a complete seasonal sequence of flood event loads: a case study for maize herbicides in Luxembourg. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:294-304. [PMID: 31939971 DOI: 10.1039/c9em00487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pesticides are the class of compounds with the most dynamic behaviour in their surface water occurrence: their episodic release to surface waters is closely related to the date of application and the following weather conditions and poses substantial challenges to monitoring in order to yield accurate mass transfer figures. Moreover, pesticide use, dose and time of application are largely unknown catchment wide and pose an essential problem as to the realism and reliability of pesticide fate modelling as well as accurate farmer counselling. Spatially and temporally highly resolved monitoring establishing pesticide sources was logistically unthinkable until the advent of passive samplers which combine ease of deployment and continuous sampling. However, because research on passive sampler performance has been mainly driven by analytical precision issues, doubts were high as to whether passive samplers could yield accurate time weighted averages in the field, all the more so that the number of field validations is to this day very limited. Here we present a study that used a combination of spatially distributed passive- and autosamplers to capture the runoff dynamics of pesticides used for maize crops in a 82 km2 catchment in Luxembourg. We demonstrate that passive samplers are capable of accurately monitoring episodic emissions of pesticides through a longitudinal profile in a catchment, thus allowing the identification of pesticide source areas. Thanks to the time-proportional nature of the passive sampling it was furthermore possible to calculate event mean concentrations and loads which were behaving temporally according to the physico-chemical properties of the compounds and to the timing and extent of mobilising discharge.
Collapse
Affiliation(s)
- Tom Gallé
- Luxembourg Institute of Science and Technology (LIST), ERIN Dept., 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Marion Frelat
- Luxembourg Institute of Science and Technology (LIST), ERIN Dept., 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Viola Huck
- Luxembourg Institute of Science and Technology (LIST), ERIN Dept., 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Michael Bayerle
- Luxembourg Institute of Science and Technology (LIST), ERIN Dept., 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Denis Pittois
- Luxembourg Institute of Science and Technology (LIST), ERIN Dept., 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Christian Braun
- Luxembourg Institute of Science and Technology (LIST), ERIN Dept., 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
26
|
Djomte VT, Chen S, Chambliss CK. Effects of suspended sediment on POCIS sampling rates. CHEMOSPHERE 2020; 241:124972. [PMID: 31610458 DOI: 10.1016/j.chemosphere.2019.124972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Effects of chemical uptake onto polar organic chemical integrative samplers (POCIS) exposed to total suspended solid (TSS) sediment concentrations of 0 and 3600 ppm were investigated for 12 pesticides at constant concentration, temperature, and flow velocity. The effects of sediment exposure on POCIS uptake were negligible for compounds with polyethersulfone-water partition coefficients greater than three (i.e., log KPESW > 3). However, significant effects were observed for 3 of 12 compounds tested, and the maximum effect was an approximate 4-fold increase in sampling rate for the sediment experiment relative to the control. Effects of sediment on the pesticide distribution between polyethersulfone (PES) membranes and Oasis HLB sorbent were also investigated. The fraction of pesticide accumulated on PES membranes was relatively low for most compounds and ranged from 0 to 33%. In contrast, four compounds with higher affinity for PES accumulated preferentially on the membranes (fraction ranging from 64 to 96%), suggesting that a sampling rate derived from the additive contribution of membrane extraction and the more typical extraction of analytes from HLB sorbent would improve the sensitivity of sampling rate estimations for these compounds. However, for these same compounds, the combined sampling rate, Rs (HLB + PES), was considerably more susceptible to a sediment effect than the traditional sampling rate determination, relying solely on extraction from HLB sorbent.
Collapse
Affiliation(s)
| | - Sunmao Chen
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - C Kevin Chambliss
- Baylor University, Department of Chemistry & Biochemistry, Waco, TX, USA.
| |
Collapse
|
27
|
Chepchirchir BS, Zhou X, Paschke A, Schüürmann G. Polyethersulfone as suitable passive sampler for waterborne hydrophobic organic compounds - Laboratory calibration and field test in the Sosiani river, Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134056. [PMID: 31678870 DOI: 10.1016/j.scitotenv.2019.134056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
We report the application of polyethersulfone (PES) membrane as a cost-saving and less labour-intensive single-phase passive sampler for waterborne hydrophobic organic compounds (HOCs) like organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs). The uptake kinetics of 31 HOCs from water to porous polyethersulfone (PES) membranes and their partitioning behaviour were investigated in laboratory studies. Sampling rates (Rs) of HOCs with PES were determined in a range from 1.15 to 12.9 L/d. The uptake of test chemicals and the elimination of analogous (pre-loaded) performance reference compounds (PRCs) showed anisotropy, both under laboratory and field conditions, implying that PRCs are not suitable for determining in situ sampling rates with PES. The PES-water partition coefficients (Kpw) are, on average, ten times higher than the related Kow. A Linear Solvation Energy Relationship for modelling the measured log Kpw with PES under inclusion of all available published data yields a poor fit in comparison to what is usually obtained with homogeneous polymers like polydimethylsiloxane or low-density polyethylene. At least a strong linear relationship was found between log Rs and log Kpw for the narrow log Kow range of HOCs investigated in this work which can be used for interpolation to other HOCs in this range. The PES membranes were also tested in a field trial in a tropical river against the well-established silicone rubber (SR) sheets. With laboratory-based Rs for PES generated under field-relevant temperature and water flow velocity it was possible to obtain time-weighted average concentrations in the lower ng/L range which are comparable (within a factor of two) with those derived from accumulated amounts in SR sheets (using in situ sampling rates).
Collapse
Affiliation(s)
- Bilha Saina Chepchirchir
- UFZ - Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany
| | - Xiaolong Zhou
- UFZ - Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany
| | - Albrecht Paschke
- UFZ - Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Gerrit Schüürmann
- UFZ - Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany
| |
Collapse
|
28
|
Abu Al-Rub FA, Fares MM, Mohammad AR. Use of nanohybrid nanomaterials in water treatment: highly efficient removal of ranitidine. RSC Adv 2020; 10:37050-37063. [PMID: 35521255 PMCID: PMC9057075 DOI: 10.1039/d0ra05530a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022] Open
Abstract
Entire elimination of pharmaceutical drugs from waste- and domestic-waters has attracted great attention due to their potent adverse effects on human health, particularly the human immune system. Many risks have been related to the presence of different types of drugs at different concentrations in wastewater. These risks include antimicrobial resistance (AMR), endocrine action, hormonal activation of cancers, and photodegradation of drugs. In this study, new nanohybrid materials consisting of graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were developed to remove a well-known drug, namely, ranitidine that treats stomach ulcers and gastrointestinal (GI) reflux disease from aqueous solutions. The characterization of synthesized nanohybrid GO-OCNTs was performed using spectroscopic (FTIR, and XRD), thermogravimetric (TGA) and microscopic (SEM) techniques. Batch adsorption experiments were used to investigate the technical feasibility of using synthesized GO-OCNTs for the removal of ranitidine from aqueous solutions. The effects of different operating conditions such as contact time, nanohybrid mass, solution temperature, solution pH, % crosslinking agent, and GO-to-OCNT ratio on the entire elimination of ranitidine were investigated. The experimental results indicated that the removal of ranitidine was very efficient, where 98.3% removal of the drug from aqueous solutions was achieved with a drug uptake of 97.8 mg g−1. Moreover, the results indicated the optimum conditions for the removal of ranitidine, which are as follows: contact time = 140 minutes, nanohybrid GO-OCNT mass = 10 mg, solution temperature = 290 K, solution pH = 6.4, % crosslinking agent = 0.5%, and GO to O-CNT ratio = 1 : 4. The equilibrium data were fitted to different adsorption isotherms and Langmuir was found to best describe our data. Dynamic studies demonstrated that ranitidine adsorption followed pseudo-second order, and the thermodynamic parameters confirmed exothermic drug adsorption as well as the physisorption process. Entire elimination of pharmaceutical drugs from waste- and domestic-waters has attracted great attention due to their potent adverse effects on human health, particularly the human immune system.![]()
Collapse
Affiliation(s)
- Fahmi A. Abu Al-Rub
- Department of Chemical Engineering
- Faculty of Engineering
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Mohammad M. Fares
- Department of Chemical Sciences
- Faculty of Science & Arts
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Ahmad R. Mohammad
- Department of Chemical Engineering
- Faculty of Engineering
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| |
Collapse
|
29
|
Estoppey N, Mathieu J, Gascon Diez E, Sapin E, Delémont O, Esseiva P, de Alencastro LF, Coudret S, Folly P. Monitoring of explosive residues in lake-bottom water using Polar Organic Chemical Integrative Sampler (POCIS) and chemcatcher: determination of transfer kinetics through Polyethersulfone (PES) membrane is crucial. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:767-776. [PMID: 31200202 DOI: 10.1016/j.envpol.2019.04.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/21/2023]
Abstract
Between 1920 and 1967, approximatively 8200 tons of ammunition waste were dumped into some Swiss lakes. This study is part of the extensive historical and technical investigations performed since 1995 by Swiss authorities to provide a risk assessment. It aims to assess whether explosive monitoring by passive sampling is feasible in lake-bottom waters. Polar organic chemical integrative sampler (POCIS) and Chemcatcher were first calibrated in a channel system supplied with continuously refreshed lake water spiked with two nitroamines (HMX and RDX), one nitrate ester (PETN), and six nitroaromatics (including TNT). Exposure parameters were kept as close as possible to the ones expected at the bottom of two affected lakes. Sixteen POCIS and Chemcatcher were simultaneously deployed in the channel system and removed in duplicates at 8 different intervals over 21 days. Sorbents and polyethersulfone (PES) membranes were separately extracted and analyzed by UPLC-MS/MS. When possible, a three-compartment model was used to describe the uptake of compounds from water, over the PES membrane into the sorbent. Uptake of target compounds by sorbents was shown not to approach equilibrium during 21 days. However, nitroaromatics strongly accumulated in PES, thus delaying the transfer of these compounds to sorbents (lag-phase up to 9 days). Whereas sampling rate (RS) of nitroamines were in the range of 0.06-0.14 L day-1, RS of nitroaromatics were up to 10 times lower. As nitroaromatic accumulation in PES was integrative over 21 days, PES was used as receiving phase for these compounds. The samplers were then deployed at lake bottoms. To ensure that exposure conditions were similar between calibration and field experiments, low-density polyethylene strips spiked with performance reference compounds were co-deployed in both experiments and dissipation data were compared. Integrative concentrations of explosives measured in the lakes confirmed results obtained by previous studies based on grab sampling.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Federal office for defence procurement (armasuisse), Feuerwerkerstrasse 39, 3602 Thun, Switzerland; School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland.
| | - Jörg Mathieu
- Federal office for defence procurement (armasuisse), Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Elena Gascon Diez
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland; Direction générale de la santé, Secteur des produits chimiques, République et Canton de Genève, Switzerland
| | - Eric Sapin
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland
| | - Olivier Delémont
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland
| | - Pierre Esseiva
- School of Criminal Justice, University of Lausanne, Batochime building, 1015 Lausanne, Switzerland
| | - Luiz Felippe de Alencastro
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne, Switzerland
| | - Sylvain Coudret
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne, Switzerland
| | - Patrick Folly
- Federal office for defence procurement (armasuisse), Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|
30
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
31
|
Endo S, Matsuura Y, Vermeirssen ELM. Mechanistic Model Describing the Uptake of Chemicals by Aquatic Integrative Samplers: Comparison to Data and Implications for Improved Sampler Configurations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1482-1489. [PMID: 30608657 DOI: 10.1021/acs.est.8b06225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquatic integrative passive samplers are used to determine aqueous concentrations of polar organic pollutants, yet their uptake mechanisms are poorly understood. We introduce a one-dimensional model to simulate uptake by a passive sampler, Chemcatcher. The model considers the uptake as molecular diffusion through a series consisting of the aqueous boundary layer (ABL), the membrane filter (MF), and the sorbent disk with concurrent sorption by matrix of the MF and the disk. Uptake profiles of ∼20 polar chemicals measured over a week and a month were accurately modeled. Characteristic behaviors such as lag phases, linear and curved uptake, and equilibrating behavior were explained well by the model. As the model is mechanistically based, it was able to show the combined influences of the MF/water ( KMF/w) and disk/water ( Kdisk/w) partition coefficients, diffusion coefficients, and the ABL thickness on the sampling rates. On the basis of the model results, we offer three concrete recommendations for achieving the linear uptake needed for measuring time-weighted average concentrations: (i) use a MF that does not significantly sorb chemicals (e.g., log KMF/w < 3) to avoid lag phases, (ii) use a sorbent with strong sorption properties (e.g., log Kdisk/w > 6) for effective trapping of chemicals on the disk top layer, and (iii) make the ABL and/or the MF thicker so that the diffusion toward the disk slows.
Collapse
Affiliation(s)
- Satoshi Endo
- Graduate School of Engineering , Osaka City University , Sugimoto 3-3-138 , Sumiyoshi 558-8585 , Osaka , Japan
| | - Yunosuke Matsuura
- Graduate School of Engineering , Osaka City University , Sugimoto 3-3-138 , Sumiyoshi 558-8585 , Osaka , Japan
| | - Etiënne L M Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland
| |
Collapse
|
32
|
Miller TH, Gallidabino MD, MacRae JI, Owen SF, Bury NR, Barron LP. Prediction of bioconcentration factors in fish and invertebrates using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:80-89. [PMID: 30114591 PMCID: PMC6234108 DOI: 10.1016/j.scitotenv.2018.08.122] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 04/14/2023]
Abstract
The application of machine learning has recently gained interest from ecotoxicological fields for its ability to model and predict chemical and/or biological processes, such as the prediction of bioconcentration. However, comparison of different models and the prediction of bioconcentration in invertebrates has not been previously evaluated. A comparison of 24 linear and machine learning models is presented herein for the prediction of bioconcentration in fish and important factors that influenced accumulation identified. R2 and root mean square error (RMSE) for the test data (n = 110 cases) ranged from 0.23-0.73 and 0.34-1.20, respectively. Model performance was critically assessed with neural networks and tree-based learners showing the best performance. An optimised 4-layer multi-layer perceptron (14 descriptors) was selected for further testing. The model was applied for cross-species prediction of bioconcentration in a freshwater invertebrate, Gammarus pulex. The model for G. pulex showed good performance with R2 of 0.99 and 0.93 for the verification and test data, respectively. Important molecular descriptors determined to influence bioconcentration were molecular mass (MW), octanol-water distribution coefficient (logD), topological polar surface area (TPSA) and number of nitrogen atoms (nN) among others. Modelling of hazard criteria such as PBT, showed potential to replace the need for animal testing. However, the use of machine learning models in the regulatory context has been minimal to date and is critically discussed herein. The movement away from experimental estimations of accumulation to in silico modelling would enable rapid prioritisation of contaminants that may pose a risk to environmental health and the food chain.
Collapse
Affiliation(s)
- Thomas H Miller
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Matteo D Gallidabino
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - James I MacRae
- Metabolomics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
| | - Nicolas R Bury
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Faculty of Science, Health and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk IP3 0FS, UK
| | - Leon P Barron
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
33
|
Townsend I, Jones L, Broom M, Gravell A, Schumacher M, Fones GR, Greenwood R, Mills GA. Calibration and application of the Chemcatcher® passive sampler for monitoring acidic herbicides in the River Exe, UK catchment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25130-25142. [PMID: 29943243 PMCID: PMC6133114 DOI: 10.1007/s11356-018-2556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 05/05/2023]
Abstract
Acidic herbicides are used to control broad-leaved weeds. They are stable, water-soluble, and with low binding to soil are found frequently in surface waters, often at concentrations above the EU Drinking Water Directive limit of 0.10 μg L-1. This presents a problem when such waters are abstracted for potable supplies. Understanding their sources, transport and fate in river catchments is important. We developed a new Chemcatcher® passive sampler, comprising a 3M Empore™ anion-exchange disk overlaid with a polyethersulphone membrane, for monitoring acidic herbicides (2,4-D, dicamba, dichlorprop, fluroxypyr, MCPA, MCPB, mecoprop, tricolpyr). Sampler uptake rates (Rs = 0.044-0.113 L day-1) were measured in the laboratory. Two field trials using the Chemcatcher® were undertaken in the River Exe catchment, UK. Time-weighted average (TWA) concentrations of the herbicides obtained using the Chemcatcher® were compared with concentrations measured in spot samples of water. The two techniques gave complimentary monitoring data, with the samplers being able to measure stochastic inputs of MCPA and mecoprop occurring in field trial 1. Chemcatcher® detected a large input of MCPA not found by spot sampling during field trial 2. Devices also detected other pesticides and pharmaceuticals with acidic properties. Information obtained using the Chemcatcher® can be used to develop improved risk assessments and catchment management plans and to assess the effectiveness of any mitigation and remediation strategies.
Collapse
Affiliation(s)
- Ian Townsend
- South West Water Ltd, Peninsula House, Rydon Lane, Exeter, Devon, EX2 7HR, UK
| | - Lewis Jones
- South West Water Ltd, Peninsula House, Rydon Lane, Exeter, Devon, EX2 7HR, UK
| | - Martin Broom
- South West Water Ltd, Peninsula House, Rydon Lane, Exeter, Devon, EX2 7HR, UK
| | - Anthony Gravell
- Natural Resources Wales, NRW Analytical Services at Swansea University, Faraday Building, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Melanie Schumacher
- Natural Resources Wales, NRW Analytical Services at Swansea University, Faraday Building, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Gary R Fones
- School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK.
| | - Richard Greenwood
- School of Biological Sciences, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire, PO1 2DY, UK
| | - Graham A Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, Hampshire, PO1 2DT, UK
| |
Collapse
|