1
|
Zhao X, Ma Y, Dai W, Song Z, Wang Y, Shen J, He X, Yang F, Zhang Z. Alginate and chitosan surface coating reduces the phytotoxicity of CeO 2 nanoparticles to duckweed (Lemna minor L.). CHEMOSPHERE 2024; 362:142649. [PMID: 38901699 DOI: 10.1016/j.chemosphere.2024.142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Little is known about the effect of surface coatings on the fate and toxicity of CeO2 nanoparticles (NPs) to aquatic plants. In this study, we modified nCeO2 with chitosan (Cs) and alginate (Al) to obtain positively charged nCeO2@Cs and negatively charged nCeO2@Al, respectively, and exposed them to a representative aquatic plant, duckweed (Lemna minor L.). Uncoated nCeO2 could significantly inhibit the growth of duckweed, induce oxidative damage and lead to cell death, whereas nCeO2@Cs and nCeO2@Al exhibited lower toxicity to duckweed. ICP-MS analysis revealed that the Ce content in duckweed from the nCeO2 group was 1.74 and 2.85 times higher than that in the nCeO2@Cs and nCeO2@Al groups, respectively. Microscopic observations indicated that the positively charged nCeO2@Cs was more readily adsorbed on the root surface of duckweed than the negatively charged nCeO2@Al. The results of XANES and LCF demonstrated that a certain percentage of Ce(Ⅳ) was reduced to Ce(Ⅲ) after the interaction of the three NPs with duckweed, but the degree of biotransformation differed among the treatments. Specifically, the absolute contents of Ce(III) produced of nCeO2@Cs and nCeO2@Al through biotransformation were reduced by 55.5% and 83.5%, respectively, compared with that of the nCeO2 group, which might be the key factor for the diminished phytotoxicity of the coated nCeO2 to the duckweed. These findings were valuable for understanding the toxicity of metal-based NPs to aquatic plants and for the synthesis of environmentally friendly nanomaterials.
Collapse
Affiliation(s)
- Xuepeng Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Shen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Shahraki SH, Javar FM, Jamali B, Sargazi F. Beneficial role of Coronatine on the morphological and physiological responses of Cress Plants (Lepidium sativum) exposed to Silver Nanoparticle. BOTANICAL STUDIES 2024; 65:17. [PMID: 38985236 PMCID: PMC11236835 DOI: 10.1186/s40529-024-00425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Silver nanoparticles are widely used in various fields such as industry, medicine, biotechnology, and agriculture. However, the inevitable release of these nanoparticles into the environment poses potential risks to ecosystems and may affect plant productivity. Coronatine is one of the newly identified compounds known for its beneficial influence on enhancing plant resilience against various stress factors. To evaluate the effectiveness of coronatine pretreatment in mitigating the stress induced by silver nanoparticles on cress plants, the present study was carried out. RESULTS Our findings indicated a decrease in multiple growth parameters, proline content, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in cress plants exposed to silver nanoparticle treatment. This decline could be attributed to the oxidative stress induced by the presence of silver nanoparticles in the plants. Conversely, when coronatine treatment was applied, it effectively mitigated the reduction in growth parameters and pigments induced by the silver nanoparticles. Furthermore, we observed an increase in silver content in both the roots and shoot portions, along with elevated levels of malondialdehyde (MDA) content, hydrogen peroxide (H2O2), anthocyanins, glutathione (GSH), and antioxidant enzyme activities in plants exposed to silver nanoparticles. Concurrently, there was a decrease in total phenolic compounds, ascorbate, anthocyanins, and proline content. Pre-treatment of cress seeds with coronatine resulted in increased levels of GSH, total phenolic compounds, and proline content while reducing the silver content in both the root and shoot parts of the plant. CONCLUSIONS Coronatine pre-treatment appeared to enhance both enzymatic and non-enzymatic antioxidant activities, thereby alleviating oxidative stress and improving the response to stress induced by silver nanoparticles.
Collapse
Affiliation(s)
- Shahla Hashemi Shahraki
- Biology Department, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | | - Babak Jamali
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Fatemeh Sargazi
- Biology Department, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
3
|
Ulusoy E, Bozkurt A, Durmaz S, Servi H, Vardar F, Erisen S. Impact of silver nanoparticles on secondary metabolite composition and toxicity in anise (Pimpinella anisum L.) callus culture. BMC PLANT BIOLOGY 2024; 24:362. [PMID: 38702604 PMCID: PMC11069286 DOI: 10.1186/s12870-024-05067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND There are numerous challenges associated with producing desired amounts of secondary metabolites (SMs), which are mostly unique and cannot be chemically synthesized. Many studies indicate that nanoparticles (NPs) can boost the production of SMs. Still, the precise manner in which NPs induce metabolic changes remains unidentified. This study examines the influence of eco-friendly silver NPs (AgNPs) on the chemical makeup and toxicity of Pimpinella anisum L. (anise). RESULTS AgNPs were introduced into anise callus cultures at different concentrations (0, 1.0, 5.0, 10, and 20 mg/L). The induced oxidative stress was tracked over intervals of 7, 14, 28, and 35 days. Chemical composition evaluations were carried out on the 35th day. Within the first 14 days, plant stress was evident, though the plant adapted to the stress later on. Notably, the plant showed high tolerance at 1 mg/L and 5 mg/L concentrations despite increased toxicity levels. However, relatively high toxicity levels were identified at 10 and 20 mg/L. The AgNP-induced stress significantly impacted anise SMs, particularly affecting fatty acid content. In the 10 and 20 mg/L AgNP groups, essential metabolites, including palmitic and linoleic acid, showed a significant increase. Polyunsaturated (omega) and monounsaturated fatty acids, vital for the food and pharmaceutical industries, saw substantial growth in the 1 and 5 mg/L AgNP groups. For the first time, vanillyl alcohol and 4-Hydroxybenzoic acid were detected along with various phenolic compounds, such as t-anethole, Salicylic acid, and Thiamazole. CONCLUSION AgNPs can function as an elicitor to efficiently generate essential SMs such as omegas and phenolic compounds in anise callus culture. This study explores the application of AgNPs as plant elicitors in anise SM production, offering invaluable insight into potential uses.
Collapse
Affiliation(s)
- Esma Ulusoy
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, P. O. Box 34662, Istanbul, Turkey.
| | - Aysenur Bozkurt
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, P. O. Box 34662, Istanbul, Turkey
| | - Sumeyye Durmaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, P. O. Box 34662, Istanbul, Turkey
| | - Huseyin Servi
- Department of Pharmacy, Faculty of Pharmacy, Yeni Yüzyıl University, Istanbul, Turkey
| | - Filiz Vardar
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Turkey
| | - Semiha Erisen
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Zeng Y, Molnárová M, Motola M. Metallic nanoparticles and photosynthesis organisms: Comprehensive review from the ecological perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120858. [PMID: 38614005 DOI: 10.1016/j.jenvman.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.
Collapse
Affiliation(s)
- Yilan Zeng
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic; Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| | - Marianna Molnárová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
6
|
Irfan M, Mészáros I, Szabó S, Oláh V. Comparative Phytotoxicity of Metallic Elements on Duckweed Lemna gibba L. Using Growth- and Chlorophyll Fluorescence Induction-Based Endpoints. PLANTS (BASEL, SWITZERLAND) 2024; 13:215. [PMID: 38256768 PMCID: PMC10821045 DOI: 10.3390/plants13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
In this study, we exposed a commonly used duckweed species-Lemna gibba L.-to twelve environmentally relevant metals and metalloids under laboratory conditions. The phytotoxic effects were evaluated in a multi-well-plate-based experimental setup by means of the chlorophyll fluorescence imaging method. This technique allowed the simultaneous measuring of the growth and photosynthetic parameters in the same samples. The inhibition of relative growth rates (based on frond number and area) and photochemical efficiency (Fv/Fo and Y(II)) were both calculated from the obtained chlorophyll fluorescence images. In the applied test system, growth-inhibition-based phytotoxicity endpoints proved to be more sensitive than chlorophyll-fluorescence-based ones. Frond area growth inhibition was the most responsive parameter with a median EC50 of 1.75 mg L-1, while Fv/Fo, the more responsive chlorophyll-fluorescence-based endpoint, resulted in a 5.34 mg L-1 median EC50 for the tested metals. Ag (EC50 0.005-1.27 mg L-1), Hg (EC50 0.24-4.87 mg L-1) and Cu (EC50 0.37-1.86 mg L-1) were the most toxic elements among the tested ones, while As(V) (EC50 47.15-132.18 mg L-1), Cr(III) (EC50 6.22-19.92 mg L-1), Se(VI) (EC50 1.73-10.39 mg L-1) and Zn (EC50 3.88-350.56 mg L-1) were the least toxic ones. The results highlighted that multi-well-plate-based duckweed phytotoxicity assays may reduce space, time and sample volume requirements compared to the standard duckweed growth inhibition tests. These benefits, however, come with lowered test sensitivity. Our multi-well-plate-based test setup resulted in considerably higher median EC50 (3.21 mg L-1) for frond-number-based growth inhibition than the 0.683 mg L-1 median EC50 derived from corresponding data from the literature with standardized Lemna-tests. Under strong acute phytotoxicity, frond parts with impaired photochemical functionality may become undetectable by chlorophyll fluorometers. Consequently, the plant parts that are still detectable display a virtually higher average photosynthetic performance, leading to an underestimation of phytotoxicity. Nevertheless, multi-well-plate-based duckweed phytotoxicity assays, combined with chlorophyll fluorescence imaging, offer definite advantages in the rapid screening of large sample series or multiple species/clones. As chlorophyll fluorescence images provide information both on the photochemical performance of the test plants and their morphology, a joint analysis of the two endpoint groups is recommended in multi-well-plate-based duckweed phytotoxicity assays to maximize the information gained from the tests.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| | - Ilona Mészáros
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| | - Sándor Szabó
- Department of Biology, Institute of Environmental Sciences, University of Nyiregyhaza, H-4401 Nyiregyhaza, Hungary
| | - Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| |
Collapse
|
7
|
Sukul U, Das K, Chen JS, Sharma RK, Dey G, Banerjee P, Taharia M, Lee CI, Maity JP, Lin PY, Chen CY. Insight interactions of engineered nanoparticles with aquatic higher plants for phytoaccumulation, phytotoxicity, and phytoremediation applications: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106713. [PMID: 37866164 DOI: 10.1016/j.aquatox.2023.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
With the growing age of human civilization, industrialization has paced up equally which is followed by the innovation of newer concepts of science and technology. One such example is the invention of engineered nanoparticles and their flagrant use in widespread applications. While ENPs serve their intended purposes, they also disrupt the ecological balance by contaminating pristine aquatic ecosystems. This review encompasses a comprehensive discussion about the potent toxicity of ENPs on aquatic ecosystems, with a particular focus on their impact on aquatic higher plants. The discussion extends to elucidating the fate of ENPs upon release into aquatic environments, covering aspects ranging from morphological and physiological effects to molecular-level phytotoxicity. Furthermore, this level of toxicity has been correlated with the determination of competent plants for the phytoremediation process towards the mitigation of this ecological stress. However, this review further illustrates the path of future research which is yet to be explored. Determination of the genotoxicity level of aquatic higher plants could explain the entire process comprehensively. Moreover, to make it suitable to be used in natural ecosystems phytoremediation potential of co-existing plant species along with the presence of different ENPs need to be evaluated. This literature will undoubtedly offer readers a comprehensive understanding of the stress induced by the irresponsible release of engineered nanoparticles (ENP) into aquatic environments, along with insights into the resilience characteristics of these pristine ecosystems.
Collapse
Affiliation(s)
- Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Raju Kumar Sharma
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Md Taharia
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Cheng-I Lee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Environmental Science Laboratory, Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pin-Yun Lin
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
8
|
Li F, Li R, Lu F, Xu L, Gan L, Chu W, Yan M, Gong H. Adverse effects of silver nanoparticles on aquatic plants and zooplankton: A review. CHEMOSPHERE 2023; 338:139459. [PMID: 37437614 DOI: 10.1016/j.chemosphere.2023.139459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
With the rapid development of nanotechnology in the past decades, AgNPs are widely used in various fields and have become one of the most widely used nanomaterials, which leads to the inevitable release of AgNPs to the aquatic environment through various pathways. It is important to understand the effects of AgNPs on aquatic plants and zooplankton, which are widely distributed and diverse, and are important components of the aquatic biota. This paper reviews the effects of AgNPs on aquatic plants and zooplankton at the individual, cellular and molecular levels. In addition, the internal and external factors affecting the toxicity of AgNPs to aquatic plants and zooplankton are discussed. In general, AgNPs can inhibit growth and development, cause tissue damage, induce oxidative stress, and produce genotoxicity and reproductive toxicity. Moreover, the toxicity of AgNPs is influenced by the size, concentration, and surface coating of AgNPs, environmental factors including pH, salinity, temperature, light and co-contaminants such as NaOCl, glyphosate, As(V), Cu and Cd, sensitivity of test organisms, experimental conditions and so on. In order to investigate the toxicity of AgNPs in the natural environment, it is recommended to conduct toxicity evaluation studies of AgNPs under the coexistence of multiple environmental factors and pollutants, especially at natural environmental concentrations.
Collapse
Affiliation(s)
- Feng Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengru Lu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
10
|
Kumar S, Masurkar P, Sravani B, Bag D, Sharma KR, Singh P, Korra T, Meena M, Swapnil P, Rajput VD, Minkina T. A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:54. [DOI: 10.1007/s11051-023-05708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
11
|
Tran IT, Heiman JA, Lydy VR, Kissoon LT. Silver Inhibits Lemna minor Growth at High Initial Frond Densities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1104. [PMID: 36903968 PMCID: PMC10004846 DOI: 10.3390/plants12051104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) are the most popular engineered nanomaterials in consumer products due to their antimicrobial properties. They enter aquatic ecosystems via insufficient purified wastewaters from manufacturers or consumers. AgNPs inhibit growth of aquatic plants, including duckweeds. Growth media nutrient concentration and initial duckweed frond density can affect growth. However, it is not well understood how frond density affects nanoparticle toxicity. We investigated the toxicity of 500 µg/L AgNPs and AgNO3 on Lemna minor at different initial frond densities (20, 40, and 80 fronds per 28.5 cm2) over 14 days. Plants were more sensitive to silver at high initial frond densities. Growth rates based on frond number and area were lower for plants at 40 and 80 initial frond density in both silver treatments. AgNPs had no effect on frond number, biomass, and frond area at 20 initial frond density. However, AgNO3 plants had lower biomass than control and AgNP plants at 20 initial frond density. Competition and crowding at high frond densities resulted in reduced growth when silver was present, therefore plant density and crowding effects should be considered in toxicity studies.
Collapse
Affiliation(s)
- Indigo T. Tran
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| | - Jordan A. Heiman
- Department of Biology, The University of Mississippi, University, MS 38677, USA
| | - Victoria R. Lydy
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - La Toya Kissoon
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
12
|
Boersma PJ, Lagugné-Labarthet F, McDowell T, Macfie SM. Silver nanoparticles inhibit nitrogen fixation in soybean (Glycine max) root nodules. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32014-32031. [PMID: 36456673 DOI: 10.1007/s11356-022-24446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial silver nanoparticles (AgNPs) are popular in consumer and industrial products, leading to increasing concentrations in the environment. We tested whether exposure to AgNPs could be detrimental to a microbe, its host plant, and their symbiotic relationship. When subjected to 10 µg/mL AgNPs, growth of Bradyrhizobium japonicum USDA 110 was halted. Axenic nitrogen-fertilized Glycine max seedlings were unaffected by 2.5 µg/mL of 30 nm AgNPs, but growth was inhibited with the same dose of 16 nm AgNPs. With 2.5 µg/mL AgNPs, biomass of inoculated plants was 50% of the control. Bacteroids were not found in nodules on plants treated with 2.5 µg/mL AgNPs and plants given 0.5-2.5 µg/mL AgNPs had 40-65% decreased nitrogen fixation. In conclusion, AgNPs not only interfere with general plant and bacterial growth but also inhibit nodule development and bacterial nitrogen fixation. We should be mindful of not releasing AgNPs to the environment or to agricultural land.
Collapse
Affiliation(s)
- Paul J Boersma
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, University of Western Ontario, London, ON, N6A 3K7, Canada
- Centre for Advanced Material and Biomaterial Research (CAMBR), University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON, N5V 4T3, Canada
| | - Sheila M Macfie
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
- Centre for Advanced Material and Biomaterial Research (CAMBR), University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
13
|
Glavaš Ljubimir K, Domijan AM, Radić Brkanac S. Phytotoxic Action of Silver Nanoparticles on Lemna minor: Multi-Parameter Analysis of Different Physiological Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:343. [PMID: 36679056 PMCID: PMC9861787 DOI: 10.3390/plants12020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Considering the widespread use of silver nanoparticles (AgNPs) and their consequent build-up in waterways, there is a concern about the hazardous effect of AgNPs for aquatic ecosystems. The aim of this study was to clarify the mechanism of the action of AgNPs on duckweed (Lemna minor L.) by evaluating multiple parameters in different physiological processes. Duckweed was treated with AgNPs in a concentration range of 0.5 to 5 mg/L over a 7-day period. The analysis revealed that the AgNP-treated duckweed accumulated Ag in accordance with increasing AgNP concentrations. Furthermore, higher concentrations (2 and 5 mg/L) of AgNPs negatively affected N, P and especially K and Mg levels in the plant tissue. Accordingly, the plant growth and photosynthetic parameters were more inhibited in response to higher concentrations of AgNPs. Nanosilver significantly increased the generation of ROS at higher concentrations, although lipid peroxidation was significant even at the lowest concentration of AgNPs. However, defense mechanisms were able to counteract AgNP-induced oxidative stress and balance the intracellular redox status, as evidenced by increased activities of the main detoxification enzymes. With this experimental setting, AgNPs exhibited a relatively weak phytotoxicity at 0.5 and 1 mg/L; nevertheless, silver in a nano form poses a hazard for plants, considering its continuous release into aquatic environments.
Collapse
Affiliation(s)
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Sandra Radić Brkanac
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
14
|
Moreno-Rubio N, Ortega-Villamizar D, Marimon-Bolívar W, Bustillo-Lecompte C, Tejeda-Benítez LP. Potential of Lemna minor and Eichhornia crassipes for the phytoremediation of water contaminated with Nickel (II). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:119. [PMID: 36396866 DOI: 10.1007/s10661-022-10688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Phytoextraction of Nickel (II) in water by two types of aquatic macrophytes (Lemna minor and Eichhornia crassipes) was investigated using synthetic aqueous solutions of NiSO4 at concentrations of 0.5, 1.5 and 2.5 mg/L. The toxic effects of nickel salt in plants were evaluated through the presence of necrosis and chlorosis. The bioconcentration factor, Nickel (II) removal efficiency and kinetics of removal were also calculated. Results of this study show bioconcentration factors higher than 1000, which categorize L. minor and E. crassipes as hyperaccumulators. Besides, L. minor presented a removal percentage higher than 68%, compared to E. crassipes that did not exceed 50% in any of the three concentrations studied. However, E. crassipes showed better resistance to the effects of nickel and obtained a greater removal capacity during the phytoremediation process that lasted for 10 days. In contrast, L. minor suffered necrosis and chlorosis in a concentration-dependent way. Consequently, both macrophytes are sustainable alternatives for nickel removal from contaminated water.
Collapse
Affiliation(s)
- Nataly Moreno-Rubio
- Grupo de Investigación de Desarrollo y Uso de la Biomasa, IDAB, Campus Piedra de Bolívar, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia
| | - Daniela Ortega-Villamizar
- Grupo de Investigación de Desarrollo y Uso de la Biomasa, IDAB, Campus Piedra de Bolívar, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia
| | - Wilfredo Marimon-Bolívar
- Gestión y tecnología para la sustentabilidad de las comunidades - GRIIS, Facultad de Ingeniería, Universidad Católica de Colombia, Bogota, Colombia
- Center for Research in GeoAgroEnvironmental Science and Resources - CENIGAA, Neiva, Colombia
| | - Ciro Bustillo-Lecompte
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada
| | - Lesly Patricia Tejeda-Benítez
- Grupo de Investigación de Desarrollo y Uso de la Biomasa, IDAB, Campus Piedra de Bolívar, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia.
- Grupo de Investigación de Ciencias biomédicas, BIOTOXAM, toxicológicas y ambientales, Cartagena, Colombia.
| |
Collapse
|
15
|
Iannelli MA, Bellini A, Venditti I, Casentini B, Battocchio C, Scalici M, Ceschin S. Differential phytotoxic effect of silver nitrate (AgNO 3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106260. [PMID: 35933908 DOI: 10.1016/j.aquatox.2022.106260] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Duckweeds are aquatic plants often used in phytotoxic studies for their small size, simple structure, rapid growth, high sensitivity to pollutants and facility of maintaining under laboratory conditions. In this paper, induced phytotoxic effects were investigated in Lemna minor and Lemna minuta after exposition to silver nitrate (AgNO3) and silver nanoparticles stabilized with sodium citrate and L-Cysteine (AgNPs-Cit-L-Cys) at different concentrations (0, 20 and 50 mg/L) and times (7 and 14 days). Lemna species responses were evaluated analyzing plant growth (mat thickness, fresh and dry biomass, relative growth rate - RGR) and physiological parameters (chlorophyll - Chl, malondialdehyde - MDA, ascorbate peroxidase - APX and catalase - CAT). Ag content was measured in the fronds of the two Lemna species by inductively coupled plasma optical emission spectrometry. AgNO3 and AgNPs-Cit-L-CYs produced phytotoxic effects on both duckweed species (plant growth and Chl reduction, MDA increase) that enhanced in response to increasing concentrations and exposure times. AgNPs-Cit-L-Cys caused much less alteration in the plants compared to AgNO3 suggesting that the presence of bifunctionalized AgNPs-Cit-L-Cys have a reduced phytotoxic effect as compared to Ag+ released in water. Based on the physiological performance, L. minuta plants showed a large growth reduction and higher levels of chlorosis and stress in respect to L. minor plants, probably due to greater Ag+ ions accumulation in the fronds. Albeit with some differences, both Lemna species were able to uptake Ag+ ions from the aqueous medium, especially over a period of 14 days, and could be considered adapt as phytoremediation agents for decontaminating silver ion-polluted water.
Collapse
Affiliation(s)
- M A Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - A Bellini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - I Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - B Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - C Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - M Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - S Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
16
|
Tejeda-Benitez L, Castellon-Castro C, Lorduy S. P07-06 Chlorosis, necrosis and biomass loss in two aquatic plants associated with nickel bioaccumulation. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Asad S, Anwar N, Shah M, Anwar Z, Arif M, Rauf M, Ali K, Shah M, Murad W, Albadrani GM, Altyar AE, Abdel-Daim MM. Biological Synthesis of Silver Nanoparticles by Amaryllis vittata (L.) Herit: From Antimicrobial to Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5478. [PMID: 36013613 PMCID: PMC9410328 DOI: 10.3390/ma15165478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The current study sought to synthesize silver nanoparticles (AgNPs) from Amaryllis vittata (L.) leaf and bulb extracts in order to determine their biological significance and use the toxic plants for human health benefits. The formation of silver nanoparticles was detected by a change in color from whitish to brown for bulb-AgNPs and from light green to dark brown for leaf-AgNPs. For the optimization of silver nanoparticles, various experimental physicochemical parameters such as pH, temperature, and salt were determined. UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray dispersion spectroscopy, scanning electron microscopy, and energy dispersion spectroscopy analysis were used to characterize nanoparticles. Despite the fact that flavonoids in plant extracts were implicated in the reduction and capping procedure, the prepared nanoparticles demonstrated maximum absorbency between 400 and 500 nm. SEM analysis confirmed the preparation of monodispersed spherical crystalline particles with fcc structure. The bioinspired nanoparticles were found to show effective insecticidal activity against Tribolium castaneum and phytotoxic activity against Lemna aequincotialis. In comparison to plant extracts alone, the tested fabricated nanoparticles showed significant potential to scavenge free radicals and relieve pain. Antibacterial testing against human pathogenic strains, i.e., Escherichia coli and Pseudomonas aureginosa, and antifungal testing against Aspergillus niger revealed the significant potential for microbe resistance using AgNPs. As a result of the findings, the tested silver nanoparticles demonstrated promising potential for developing new and effective pharmacological and agricultural medications. Furthermore, the effects of biogenic AgNPs on an in vitro culture of Solanum tuberosum L. plants were investigated, and the findings indicated that bulb-AgNPs and leaf-AgNPs produced biomass and induced antioxidants via their active constituents. As a result, bulb-AgNPs and leaf-AgNPs may be recommended for use in Solanum tuberosum L. tissue culture for biomass fabrication and metabolic induction.
Collapse
Affiliation(s)
- Sehrish Asad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Natasha Anwar
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, NARC, Islamabad 44000, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
18
|
Lu Z, Yin L, Li W, Jiang HS. Low Concentrations of Silver Nanoparticles Inhibit Spore Germination and Disturb Gender Differentiation of Ceratopteris thalictroides (L.) Brongn. NANOMATERIALS 2022; 12:nano12101730. [PMID: 35630950 PMCID: PMC9143685 DOI: 10.3390/nano12101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Because of their excellent antibacterial properties, silver nanoparticles (AgNPs) are widely used in all walks of life, which has caused them to be discharged into aquatic environments with possible negative effects on aquatic plants. In the present study, we used an aquatic fern, Ceratopteris thalictroides, as a model to investigate the effects of AgNPs on its spore germination, gametophytes, sex differentiation, and growth. The results demonstrated that AgNPs significantly inhibited spore germination of C. thalictroides at a AgNP concentration higher than 0.02 mg/L. Additionally, we found sex-dependent effects of AgNPs on the development and growth of the gametophyte of C. thalictroides. The proportion of hermaphrodites in the gametophytes and the area of gametophytes significantly decreased under AgNP treatment, while no significant effect was observed in the male gametophytes. Using the AgNP filtrate (without nanoparticles) and AgNPs plus cysteine (Ag+ chelator), we found that the release of Ag+ from nanoparticles was not the cause of the toxicity of AgNPs on C. thalictroides. The EC50 of AgNPs on spore germination was 0.0492 mg/L, thus indicating an ecological risk of AgNPs on this species even at concentrations lower than the Ag element concentration of the WHO guidelines for drinking-water quality.
Collapse
Affiliation(s)
- Zhenwei Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China;
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China;
- One Health Institute, Hainan University, Haikou 570228, China
- Correspondence: (L.Y.); (H.-S.J.); Tel.: +86-898-6616-0721 (L.Y.); +86-27-8770-0855 (H.-S.J.)
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Hong-Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
- Correspondence: (L.Y.); (H.-S.J.); Tel.: +86-898-6616-0721 (L.Y.); +86-27-8770-0855 (H.-S.J.)
| |
Collapse
|
19
|
Liu M, Zhang S, Wang Y, Liu J, Hu W, Lu X. Hexavalent Chromium as a Smart Switch for Peroxidase-like Activity Regulation via the Surface Electronic Redistribution of Silver Nanoparticles Anchored on Carbon Spheres. Anal Chem 2022; 94:1669-1677. [PMID: 35020355 DOI: 10.1021/acs.analchem.1c04219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although some ions, due to their unique chemical properties, can regulate the enzyme-like activity of nanomaterials, it is still a huge challenge to explore the mechanism of regulation. Herein, we found that Cr6+ (CrO42-) as a smart switch can significantly increase the peroxidase-like (POD-like) activity of silver nanoparticles (Ag NPs), which were anchored efficiently on carbon spheres (Cal-CS/PEG/Ag) using amino-modified poly(ethylene glycol) (PEG) as a bridge. Density functional theory (DFT) calculations demonstrated that the addition of Cr6+ can not only adjust the surface electronic redistribution of Ag atoms but also improve the geometric structure of the adsorbed intermediate, which resulted in the optimization of free energy and change of bond lengths in the catalytic reaction process, increasing the POD-like activity of Cal-CS/PEG/Ag. Based on the Cr6+-increased POD-like activity of Cal-CS/PEG/Ag, we successfully constructed a visual sensor of Cr6+ along with quantitative analysis by the UV spectrum. The sensor has good selectivity for other 29 interfering ions and molecules with a detection limit of 79 nM. In this work, the detailed mechanism of the Cr6+-increased POD-like activity of Ag NPs was studied and a new possibility for the rational design of ion visual sensors using nanomaterials was proposed.
Collapse
Affiliation(s)
- Meili Liu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yingsha Wang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
20
|
Wang L, Yang D, Ma F, Wang G, You Y. Recent advances in responses of arbuscular mycorrhizal fungi - Plant symbiosis to engineered nanoparticles. CHEMOSPHERE 2022; 286:131644. [PMID: 34346335 DOI: 10.1016/j.chemosphere.2021.131644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The application of engineered nanomaterials (ENMs) is increasing in all walks of life, inevitably resulting in a high risk of ENMs entering the natural environment. Recent studies have demonstrated that phytoaccumulation of ENMs in the environment may be detrimental to plants to varying degrees. However, plants primarily assimilate ENMs through the roots, which are inevitably affected by rhizomicroorganisms. In this review, we focus on a group of common rhizomicroorganisms-arbuscular mycorrhizal fungi (AMF). These fungi contribute to ENMs immobilization and inhibition of phytoaccumulation, improvement of host plant growth and activation of systematic protection in response to excess ENMs stress. In present review, we summarize the biological responses of plants to ENMs and the modulatory mechanisms of AMF on the immobilization of ENMs in substrate-plant interfaces, and indirectly regulatory mechanisms of AMF on the deleterious effects of ENMs on host plants. In addition, the information of feedback of ENMs on mycorrhizal symbiosis and the prospects of future research on the fate and mechanism of phyto-toxicity of ENMs mediated by AMF in the environment are also addressed. In view of above, synergistic reaction of plants and AMF may prove to be a cost-effective and eco-friendly technology to bio-control potential ENMs contamination on a sustainable basis.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Dongguang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Gen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Yongqiang You
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| |
Collapse
|
21
|
Biba R, Košpić K, Komazec B, Markulin D, Cvjetko P, Pavoković D, Peharec Štefanić P, Tkalec M, Balen B. Surface Coating-Modulated Phytotoxic Responses of Silver Nanoparticles in Plants and Freshwater Green Algae. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:24. [PMID: 35009971 PMCID: PMC8746378 DOI: 10.3390/nano12010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (R.B.); (K.K.); (B.K.); (D.M.); (P.C.); (D.P.); (P.P.Š.); (M.T.)
| |
Collapse
|
22
|
Lehutso RF, Wesley-Smith J, Thwala M. Aquatic Toxicity Effects and Risk Assessment of 'Form Specific' Product-Released Engineered Nanomaterials. Int J Mol Sci 2021; 22:12468. [PMID: 34830350 PMCID: PMC8621863 DOI: 10.3390/ijms222212468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The study investigated the toxicity effects of 'form specific' engineered nanomaterials (ENMs) and ions released from nano-enabled products (NEPs), namely sunscreens, sanitisers, body creams and socks on Pseudokirchneriella subcapitata, Spirodela polyrhiza, and Daphnia magna. Additionally, risk estimation emanating from the exposures was undertaken. The ENMs and the ions released from the products both contributed to the effects to varying extents, with neither being a uniform principal toxicity agent across the exposures; however, the effects were either synergistic or antagonistic. D. magna and S. polyrhiza were the most sensitive and least sensitive test organisms, respectively. The most toxic effects were from ENMs and ions released from sanitisers and sunscreens, whereas body creams and sock counterparts caused negligible effects. The internalisation of the ENMs from the sunscreens could not be established; only adsorption on the biota was evident. It was established that ENMs and ions released from products pose no imminent risk to ecosystems; instead, small to significant adverse effects are expected in the worst-case exposure scenario. The study demonstrates that while ENMs from products may not be considered to pose an imminent risk, increasing nanotechnology commercialization may increase their environmental exposure and risk potential; therefore, priority exposure cases need to be examined.
Collapse
Affiliation(s)
- Raisibe Florence Lehutso
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - James Wesley-Smith
- Electron Microscope Unit, Sefako Makgatho Health Sciences University, Pretoria 0001, South Africa;
| | - Melusi Thwala
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Centre for Environmental Management, University of the Free State, Bloemfontein 9031, South Africa
| |
Collapse
|
23
|
Souza LRR, Corrêa TZ, Bruni AT, da Veiga MAMS. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16720-16733. [PMID: 33398747 DOI: 10.1007/s11356-020-11862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The use of silver nanoparticles (AgNPs) in commercial products has increased due to their antibacterial properties and their impacts on the environment must be investigated. This scenario has motivated the conduction of this study, which relates different factors that affect the toxicity of AgNPs to the aquatic plant Lemna minor such as size, accumulation, concentration, and dissolution of AgNPs. To this end, synthesized AgNPs measuring 30, 85, and 110 nm were added into the culture medium to observe toxicity for 30 days. The mapping by SEM showed that the smallest AgNPs can translocate from roots to leaves due to its mobility and internalization. As predicted by the Ostwald equation, the solubility for 30-nm AgNPs increased almost 3 times at the end of 30 days, while for 85 and 110 nm size nanoparticles, after 7 days, the solubility decreased due to "Ostwald ripening" process. Plant mortality was assessed and, after 1 month, the size of 30 nm was the most toxic with negative growth in all studied concentrations, with 60% mortality in the worst case. The concentration of 50 μg mL-1 was toxic in all sizes with negative growth in the period. Therefore, the investigation of AgNPs' toxicity needs to consider a different factor to better understand their effects on aquatic plants and the environment.
Collapse
Affiliation(s)
- Lilian R R Souza
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Tuany Z Corrêa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Aline Thaís Bruni
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Márcia A M S da Veiga
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| |
Collapse
|
24
|
Ziotti ABS, Ottoni CA, Correa CN, de Almeida OJG, de Souza AO, Neto MCL. Differential physiological responses of a biogenic silver nanoparticle and its production matrix silver nitrate in Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13069-4. [PMID: 33625697 DOI: 10.1007/s11356-021-13069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNP) have been extensively applied in different industrial areas, mainly due to their antibiotic properties. One of the environmental concerns with AgNP is its incorrect disposal, which might lead to severe environmental pollution. The interplay between AgNP and plants is receiving increasing attention. However, little is known regarding the phytotoxic effects of biogenic AgNP on terrestrial plants. This study aimed to compare the effects of a biogenic AgNP and AgNO3 in Sorghum bicolor seedlings. Seeds were germinated in increasing concentrations of a biogenic AgNP and AgNO3 (0, 10, 100, 500, and 1000 μM) in a growth chamber with controlled conditions. The establishment and development of the seedlings were evaluated for 15 days. Physiological and morpho-anatomical indicators of stress, enzymatic, and non-enzymatic antioxidants and photosynthetic yields were assessed. The results showed that both AgNP and AgNO3 disturbed germination and the establishment of sorghum seedlings. AgNO3 released more free Ag+ spontaneously compared to AgNP, promoting increased Ag+ toxicity. Furthermore, plants exposed to AgNP triggered more efficient protective mechanisms compared with plants exposed to AgNO3. Also, the topology and connectivity of the correlation-based networks were more impacted by the exposure of AgNO3 than AgNP. In conclusion, it is plausible to say that the biogenic AgNP is less toxic to sorghum than its matrix AgNO3.
Collapse
Affiliation(s)
- Ana Beatriz Sicchieri Ziotti
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cristiane Angélica Ottoni
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Instituto de Estudos Avançados do Mar (IEAMar), São Paulo State University, São Vicente, SP, Brazil
| | - Cláudia Neves Correa
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Odair José Garcia de Almeida
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Ana Olivia de Souza
- Innovation and Development Laboratory, Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Costa Lima Neto
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Ceschin S, Bellini A, Scalici M. Aquatic plants and ecotoxicological assessment in freshwater ecosystems: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4975-4988. [PMID: 33244691 PMCID: PMC7838074 DOI: 10.1007/s11356-020-11496-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 04/12/2023]
Abstract
This paper reviews the current state-of-the-art, limitations, critical issues, and new directions in freshwater plant ecotoxicology. We selected peer-reviewed studies using relevant databases and for each (1) publication year, (2) test plant species, (3) reference plant group (microalgae, macroalgae, bryophytes, pteridophytes, flowering plants), (4) toxicant tested (heavy metal, pharmaceutical product, hydrocarbon, pesticide, surfactant, plastic), (5) experiment site (laboratory, field), and (6) toxicant exposure duration. Although aquatic plant organisms play a key role in the functioning of freshwater ecosystems, mainly linked to their primary productivity, their use as biological models in ecotoxicological tests was limited if compared to animals. Also, toxicant effects on freshwater plants were scarcely investigated and limited to studies on microalgae (80%), or only to a certain number of recurrent species (Pseudokirchneriella subcapitata, Chlorella vulgaris, Lemna minor, Myriophyllum spicatum). The most widely tested toxicants on plants were heavy metals (74%), followed by pharmaceutical products and hydrocarbons (7%), while the most commonly utilized endpoints in tests were plant growth inhibition, variations in dry or fresh weight, morpho-structural alterations, chlorosis, and/or necrosis. The main critical issues emerged from plant-based ecotoxicological tests were the narrow range of species and endpoints considered, the lack of environmental relevance, the excessively short exposure times, and the culture media potentially reacting with toxicants. Proposals to overcome these issues are discussed.
Collapse
Affiliation(s)
- Simona Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi, 446 00146, Rome, Italy
| | - Amii Bellini
- Department of Sciences, University of Roma Tre, Viale G. Marconi, 446 00146, Rome, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi, 446 00146, Rome, Italy
| |
Collapse
|
26
|
Mylona Z, Panteris E, Moustakas M, Kevrekidis T, Malea P. Physiological, structural and ultrastructural impacts of silver nanoparticles on the seagrass Cymodocea nodosa. CHEMOSPHERE 2020; 248:126066. [PMID: 32050317 DOI: 10.1016/j.chemosphere.2020.126066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are an emerging contaminant, currently considered to be a significant potential risk to the coastal environment. To further test potential risk, and to determine effect concentrations and sensitive response parameters, toxic effects of environmentally relevant AgNP concentrations on the seagrass Cymodocea nodosa were evaluated. Alterations of the cytoskeleton, endoplasmic reticulum, ultrastructure, photosystem II function, oxidative stress markers, cell viability, and leaf, rhizome and root elongation in C. nodosa exposed to AgNP concentrations (0.0002-0.2 mg L-1) under laboratory conditions for 8 days were examined. An increase in H2O2 level, indicating oxidative stress, occurred after the 4th day even at 0.0002 mg L-1. Increased antioxidant enzyme activity, potentially contributing to H2O2 level decline at the end of the experiment, and reduced protein content were also observed. Actin filaments started to diminish on the 6th day at 0.02 mg L-1; microtubule, endoplasmic reticulum, chloroplast and mitochondrion disturbance appeared after 8 days at 0.02 mg L-1, while toxic effects were generally more acute at 0.2 mg L-1. A dose-dependent leaf elongation inhibition was also observed; as for juvenile leaves, toxicity index increased from 2.8 to 40.7% with concentration. Hydrogen peroxide (H2O2) overproduction and actin filament disruption appeared to be the most sensitive response parameters, and thus could be utilized as early warning indicators of risk to seagrass meadows. A risk quotient of 1.33 was calculated, confirming previous findings, that AgNPs may pose a significant risk to the coastal environment.
Collapse
Affiliation(s)
- Zoi Mylona
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Theodoros Kevrekidis
- Laboratory of Environmental Research and Education, Democritus University of Thrace, Nea Hili, GR-68100, Alexandroupolis, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
27
|
Biba R, Matić D, Lyons DM, Štefanić PP, Cvjetko P, Tkalec M, Pavoković D, Letofsky-Papst I, Balen B. Coating-Dependent Effects of Silver Nanoparticles on Tobacco Seed Germination and Early Growth. Int J Mol Sci 2020; 21:E3441. [PMID: 32414057 PMCID: PMC7279453 DOI: 10.3390/ijms21103441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
Silver nanoparticles (AgNPs) are used in a wide range of consumer products because of their excellent antimicrobial properties. AgNPs released into the environment are prone to transformations such as aggregation, oxidation, or dissolution so they are often stabilised by coatings that affect their physico-chemical properties and change their effect on living organisms. In this study we investigated the stability of polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) coated AgNPs in an exposure medium, as well as their effect on tobacco germination and early growth. AgNP-CTAB was found to be more stable in the solid Murashige and Skoog (MS) medium compared to AgNP-PVP. The uptake and accumulation of silver in seedlings was equally efficient after exposure to both types of AgNPs. However, AgNP-PVP induced only mild toxicity on seedlings growth, while AgNP-CTAB caused severe negative effects on all parameters, even compared to AgNO3. Moreover, CTAB coating itself exerted negative effects on growth. Cysteine addition generally alleviated AgNP-PVP-induced negative effects, while it failed to improve germination and growth parameters after exposure to AgNP-CTAB. These results suggest that the toxic effects of AgNP-PVP are mainly a consequence of release of Ag+ ions, while phytotoxicity of AgNP-CTAB can rather be ascribed to surface coating itself.
Collapse
Affiliation(s)
- Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| | - Dajana Matić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia;
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| | - Dubravko Pavoković
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010 Graz, Austria;
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (R.B.); (D.M.); (P.P.Š.); (P.C.); (M.T.); (D.P.)
| |
Collapse
|
28
|
Boros BV, Ostafe V. Evaluation of Ecotoxicology Assessment Methods of Nanomaterials and Their Effects. NANOMATERIALS 2020; 10:nano10040610. [PMID: 32224954 PMCID: PMC7221575 DOI: 10.3390/nano10040610] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
This paper describes the ecotoxicological effects of nanomaterials (NMs) as well as their testing methods. Standard ecotoxicity testing methods are applicable to nanomaterials as well but require some adaptation. We have taken into account methods that meet several conditions. They must be properly researched by a minimum of ten scientific articles where adaptation of the method to the NMs is also presented; use organisms suitable for simple and rapid ecotoxicity testing (SSRET); have a test period shorter than 30 days; require no special equipment; have low costs and have the possibility of optimization for high-throughput screening. From the standard assays described in guidelines developed by organizations such as Organization for Economic Cooperation and Development and United States Environmental Protection Agency, which meet the required conditions, we selected as methods adaptable for NMs, some methods based on algae, duckweed, amphipods, daphnids, chironomids, terrestrial plants, nematodes and earthworms. By analyzing the effects of NMs on a wide range of organisms, it has been observed that these effects can be of several categories, such as behavioral, morphological, cellular, molecular or genetic effects. By comparing the EC50 values of some NMs it has been observed that such values are available mainly for aquatic ecotoxicity, with the most sensitive test being the algae assay. The most toxic NMs overall were the silver NMs.
Collapse
|
29
|
Lalau CM, Simioni C, Vicentini DS, Ouriques LC, Mohedano RA, Puerari RC, Matias WG. Toxicological effects of AgNPs on duckweed (Landoltia punctata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136318. [PMID: 32050368 DOI: 10.1016/j.scitotenv.2019.136318] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely applied in several types of products since they act as a biocide. However, their high level of release into the environment can bring risks to ecosystems. Thus, the toxicity of AgNPs toward duckweed (Landoltia punctata) was investigated by monitoring the growth rate inhibition and the effect on the photosynthetic metabolism through morphological and ultrastructural analysis. The AgNPs were characterized by transmission electron microscopy and the effective diameter (dynamic light scattering) and zeta potential were determined. Plants were grown according to the environmental conditions recommended in ISO/DIS 20079 and then exposed to different concentrations of AgNPs. Inhibition of the growth rate was measured based on the EC50 and changes in the morphology, cellular structures and photosynthetic pigments were evaluated along with the silver accumulation. Although the results showed low growth inhibition when compared to other studies, significant damage to the ultrastructure, decreases in the photosynthetic pigments and starch grains, an increase in the phenolic compounds and physiological changes, such as a loss of color, were observed. Moreover, the accumulation of silver ions was noted and this could lead to bioamplification in consumer organisms, since duckweed belongs to the first level of the food chain.
Collapse
Affiliation(s)
- Cristina M Lalau
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Carmen Simioni
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88049-900, CP 476, Brazil
| | - Denice S Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Luciane C Ouriques
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88049-900, CP 476, Brazil.
| | - Rodrigo A Mohedano
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil.
| | - Rodrigo C Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - William G Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil.
| |
Collapse
|
30
|
Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai PC, Pugazhendhi A, Ponnusamy VK. Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111823. [PMID: 32120184 DOI: 10.1016/j.jphotobiol.2020.111823] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 01/02/2023]
Abstract
The current scenario of water resources shows the dominance of pollution caused by the draining of industrial effluents. The polluted waters have resulted in severe health and environmental hazards urging for a suitable alternative to resolve the implications. Various physical and chemical treatment steps currently in use for dye effluent treatment are more time consuming, cost-intensive, and less effective. Alternatively, nanoparticles due to their excellent surface properties and chemical reactivity have emerged as a better solution for dye removal and degradation. In this regard, the potential of silver nanoparticles in dye effluent treatment was greatly explored. Efforts were taken to unravel the kinetics and statistical optimization of the treatment conditions for the efficient removal of dyes. In addition, the role of silver nanocomposites has also experimented with colossal success. On the contrary, studies have also recognized the mechanisms of silver nanoparticle-mediated toxicity even at deficient concentrations and their deleterious biological effects when present in treated water. Hence, the fate of the silver nanoparticles released into the treated water and sludge, contaminating the soil, aquatic environment, and underground water is of significant concern. This review summarizes the current state of knowledge regarding the use of silver nanoparticles and silver-based nanocomposites in effluent treatment and comprehends the recent research on mitigation of silver nanoparticle-induced toxicity.
Collapse
Affiliation(s)
- Sivasankari Marimuthu
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Arul Jayanthi Antonisamy
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Sankar Malayandi
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan.
| |
Collapse
|
31
|
Mylona Z, Panteris E, Kevrekidis T, Malea P. Silver nanoparticle toxicity effect on the seagrass Halophila stipulacea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109925. [PMID: 31855841 DOI: 10.1016/j.ecoenv.2019.109925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Information on silver nanoparticle (AgNP) phytotoxicity on seagrasses is provided for the first time. Toxic effects of environmentally relevant AgNP concentrations on Halophila stipulacea were assessed to identify sensitive biomarkers, to determine threshold effect concentrations and to evaluate potential risks. Potential alterations in the cytoskeleton, endoplasmic reticulum, cell ultrastructure and viability, oxidative stress parameters and elongation in H. stipulacea leaves exposed to AgNP concentrations ranging from 0.0002 to 0.2 mg L-1 for 8 days were examined. The first signs of actin filament (AF) response in differentiating cells, exhibiting disorientation and slight bundling, were observed on the 4th day at 0.0002 mg L-1, while at the end of the experiment and at the higher concentrations, AFs were extremely bundled. Endoplasmic reticulum was affected in meristematic and differentiating cells; massive aggregations and loss of the "grainy" structure were observed, initially on the 6th day at 0.002 mg L-1. Effects on microtubules were detected on the last day at 0.2 mg L-1. An increase in H2O2 levels on the 4th and/or 6th day even at 0.0002 mg L-1 was followed by a decrease on, or up to the last day. On the 6th day at the lowest concentration, elevated malondialdehyde content, and superoxide dismutase and peroxidase activity were detected, indicating oxidative damage and antioxidant defense mechanism activation. Dead epidermal cells mainly occurred at 0.02 and 0.2 mg L-1, while no dead vein cells were detected. A significant inhibition in leaf elongation was observed only at 0.2 mg L-1. Therefore, AF disturbance in differentiating leaf cells, being a susceptible response parameter, could be regarded as an early warning indicator of risk posed by AgNPs to H. stipulacea meadows, while most of the remaining parameters examined also constitute useful biomarkers. The lowest observed effect concentration (0.0002 mg L-1), being within the range of environmentally relevant AgNPs concentrations, suggests the possibility of negative impacts of AgNPs on seagrass health. A risk quotient of 1.33 was calculated, indicating that AgNPs may pose a significant potential risk to the coastal environment. The data presented highlight the importance of future research to further investigate the seagrass-AgNP interactions, stress the need for a refinement of the environmental risk assessment of AgNPs and could be utilized for the design of biomonitoring programs for rational management of the coastal environment.
Collapse
Affiliation(s)
- Zoi Mylona
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Theodoros Kevrekidis
- Laboratory of Environmental Research and Education, Democritus University of Thrace, Nea Hili, GR-68100, Alexandroupolis, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
32
|
Radić S, Domijan AM, Glavaš Ljubimir K, Maldini K, Ivešić M, Peharec Štefanić P, Krivohlavek A. Toxicity of nanosilver and fumonisin B 1 and their interactions on duckweed (Lemna minor L.). CHEMOSPHERE 2019; 229:86-93. [PMID: 31078035 DOI: 10.1016/j.chemosphere.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
In the environment co-contamination of several toxicants commonly occurs. However, toxicological studies usually are focused on only one toxicant. The aim of this study was to investigate toxicity of silver nanoparticles (AgNP) and mycotoxin fumonisin B1 (FB1) and their possible interactions as well as to explore tentative mechanism of their toxic effect. Duckweed (Lemna minor L.) was treated with AgNP or FB1 (at concentrations 0.5 and 1.0 mg L-1) or with their combination at same concentrations for 3 days. Both AgNP and FB1, applied individually significantly affected levels of certain nutrients, reduced growth rate and the levels of photosynthetic pigments though AgNP at a much greater extent compared to FB1. Furthermore, AgNP induced ROS generation, lipid peroxidation and increase of antioxidative enzymes activities, while FB1 induced changes only in the activities of antioxidative enzymes. Those results implicate that phytotoxicity of both AgNP and FB1 can be associated with imbalance of mineral and cell redox status. However, toxic actions of AgNp singly applied were more pronounced. Combined treatment with AgNP and FB1 produced higher degree of changes in all parameters than corresponding concentrations of AgNP or FB1 alone implying their additive effects. Additionally, higher level of FB1 found in medium, and higher level of intracellular Ag following combined treatment indicates interaction of two toxicants at the transport level/uptake in the cell which resulted in higher accumulation of Ag in duckweed cells. The latter in turn exerted higher toxicity to duckweed compared to single treatment of AgNP.
Collapse
Affiliation(s)
- Sandra Radić
- University of Zagreb, Faculty of Science, Department of Biology, HR-10000, Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, HR-10000, Zagreb, Croatia
| | | | - Krešimir Maldini
- Croatian Waters, Main Water Management Laboratory, HR-10000, Zagreb, Croatia
| | - Martina Ivešić
- Institute of Public Health "Dr Andrija Štampar", Department of Environmental Protection and Health Ecology, HR-10000, Zagreb, Croatia
| | - Petra Peharec Štefanić
- University of Zagreb, Faculty of Science, Department of Biology, HR-10000, Zagreb, Croatia
| | - Adela Krivohlavek
- Institute of Public Health "Dr Andrija Štampar", Department of Environmental Protection and Health Ecology, HR-10000, Zagreb, Croatia
| |
Collapse
|
33
|
Adverse effects of nanosilver on human health and the environment. Acta Biomater 2019; 94:145-159. [PMID: 31125729 DOI: 10.1016/j.actbio.2019.05.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/02/2023]
Abstract
Silver and silver nanoparticles (AgNPs) exhibit antimicrobial properties against some bacteria, fungi and viruses, however, the ever-increasing application of nanosilver in consumer products, water disinfection and healthcare settings, have raised concerns over the public health/environmental safety of this nanomaterial. The current ubiquity of nanosilver may result in repeated exposure through various routes (skin, inhalation, or ingestion) which may lead to health complications. While there are a number of review articles and case studies published to date on the subject, an updated coherent review that clearly delineates thresholds and safe doses is lacking. Thus, it is plausible to have an overview of the most recent findings on the threshold limits, safe doses of silver and its related nanoscale forms, and the needed actions to ensure the safety and health of human, terrestrial and aquatic lives. This review provides an account of the effects of nanosilver in our daily lives. STATEMENT OF SIGNIFICANCE: This manuscripts is a review of the toxicity of nanosized silver. With respect to the existing literature, it goes beyond stating that there is a knowledge gap, drawing the attention of a wider readership to the ever-growing evidence of nanosilver toxicity to human and nature, and outlining the dose thresholds based on comprehensive data mining and visualisation. There are nearly 500 consumer products that claim to contain nanosilver. Thus, we trust a review of recent conclusive findings is timely. This manuscript is in line with the scope of the Journal, enabling a better understanding of the biological response to a widely-used bionanomaterial. Moreover, it provides a bigger picture of the link between surface properties and biocompatibility of nanosilver in different forms.
Collapse
|
34
|
Yan A, Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int J Mol Sci 2019; 20:E1003. [PMID: 30813508 PMCID: PMC6429054 DOI: 10.3390/ijms20051003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
Nanotechnology was well developed during past decades and implemented in a broad range of industrial applications, which led to an inevitable release of nanomaterials into the environment and ecosystem. Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in various fields, especially in the agricultural sector. Plants are the basic component of the ecosystem and the most important source of food for mankind; therefore, understanding the impacts of AgNPs on plant growth and development is crucial for the evaluation of potential environmental risks on food safety and human health imposed by AgNPs. The present review summarizes uptake, translocation, and accumulation of AgNPs in plants, and exemplifies the phytotoxicity of AgNPs on plants at morphological, physiological, cellular, and molecular levels. It also focuses on the current understanding of phytotoxicity mechanisms via which AgNPs exert their toxicity on plants. In addition, the tolerance mechanisms underlying survival strategy that plants adopt to cope with adverse effects of AgNPs are discussed.
Collapse
Affiliation(s)
- An Yan
- Natural Sciences and Sciences Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Zhong Chen
- Natural Sciences and Sciences Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
35
|
Welz PJ, Khan N, Prins A. The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1380-1390. [PMID: 30743850 DOI: 10.1016/j.scitotenv.2018.06.283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 06/09/2023]
Abstract
This study was conducted to determine and compare the effect of chemically-synthesised and biogenic silver nanoparticles on the benthic bacterial community structure in mesocosms containing sediment from three rivers in geographical sites with different population densities (low, medium, high), and therefore likely to be associated with respective low, moderate and high degrees of anthropogenic input. The nanoparticles were applied at the upper limit expected to accumulate in impacted environments (4 μg kgsed-1). The biomass, concentrations of elements, including selection metals (P, K, Na, K, Ca, Mg, Zn, Cu, Al, Ag) were all significantly higher at the high density than at the low density sites. Bacterial community profiling (terminal restriction fragment length polymorphism and amplicon sequencing) showed that the bacterial community structure in the sediments from the high population density site were resilient to environmental perturbations [adjustment from in-situ to ex-situ (laboratory) conditions], as well as to exposure to silver nanoparticles, with the converse being true for the low population density site. Results obtained from amplicon sequencing were interrogated to the lowest taxonomic level with a relative abundance >5%. Proteobacteria was the most abundant phylum in all the sediments. Notable resistance (increased relative abundance) to one or both forms of silver nanoparticles was seen in the class Thermoleophilia, and the orders Myxococcales, Bacteriodales, Pirellules CCU21 and iii 1-15 (class Acidobacteria 6). Conversely, sensitivity was demonstrated in the family Koribacteraceae and the orders Rhizobiales, Ellin 329 and Gemmatales. It is recommended that pro-active environmental monitoring is performed in aquatic systems receiving point source pollution from wastewater treatment plants in order to assess the accumulation of silver nanoparticles. If necessary, measures should be implemented to mitigate the entry of silver nanoparticles, especially into more vulnerable environments.
Collapse
Affiliation(s)
- Pamela J Welz
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7530, South Africa.
| | - Nuraan Khan
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7530, South Africa
| | - Alaric Prins
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7530, South Africa
| |
Collapse
|