1
|
Kwak N, Tsameret S, Gaire TN, Mendoza KM, Cortus EL, Cardona C, Noyes N, Li J. Influence of rainfall on size-resolved bioaerosols around a livestock farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176184. [PMID: 39276997 DOI: 10.1016/j.scitotenv.2024.176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Bioaerosols, capable of transporting microorganisms, can impact human health and agriculture by spreading to nearby communities. Their transmissions are influenced by various factors, including weather conditions and human activities. However, the scarcity of detailed, taxon-specific data on bioaerosols' sizes limits our ability to assess risks associated with bioaerosols' generation and spread. This study examined the composition and size of bioaerosols at a livestock farm and a non-agricultural site, focusing on how bioaerosols evolve at different locations and meteorological conditions. The location had an impact on bioaerosol samples. We conducted 16S rRNA gene amplicon sequencing to identify bacteria genera in bioaerosols. We observed consistently higher concentrations of bioaerosols across all sizes at the livestock farm, and samples from the livestock farm exhibited greater bacterial diversity, where we identified Staphylococcus and Corynebacterium as the most abundant species. The effects of rainfall on bioaerosol diversity are complex, suggesting a dynamic interplay between bioaerosol removal and generation. After rainfall, the bioaerosol fraction of particles larger than 2.5 μm increased by nearly 400% compared to post-rain levels. Conversely, for bioaerosols below 1 μm size, the fraction decreased by 50%. Furthermore, the sequencing results showed that precipitation differentially responded to the abundance of various genera in the bioaerosols. Moreover, even for the same genus, the response to precipitation varied depending on the size of the bioaerosols. Our research reveals how size, location, and environmental conditions influence bioaerosol dynamics, enhancing our understanding of bioaerosol formation and transmission.
Collapse
Affiliation(s)
- Nohhyeon Kwak
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Shahar Tsameret
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Tara N Gaire
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Erin L Cortus
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Noelle Noyes
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA.
| |
Collapse
|
2
|
Bøifot KO, Skogan G, Dybwad M. Sampling efficiency and nucleic acid stability during long-term sampling with different bioaerosol samplers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:577. [PMID: 38795190 PMCID: PMC11127824 DOI: 10.1007/s10661-024-12735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
Aerosol microbiome studies have received increased attention as technological advancements have made it possible to dive deeper into the microbial diversity. To enhance biomass collection for metagenomic sequencing, long-term sampling is a common strategy. While the impact of prolonged sampling times on microorganisms' culturability and viability is well-established, its effect on nucleic acid stability remains less understood but is essential to ensure representative sample collection. This study evaluated four air samplers (SKC BioSampler, SASS3100, Coriolis μ, BioSpot-VIVAS 300-P) against a reference sampler (isopore membrane filters) to identify nucleic acid stability during long-term sampling. Physical sampling efficiencies determined with a fluorescent tracer for three particle sizes (0.8, 1, and 3 μm), revealed high efficiencies (> 80% relative to reference) for BioSampler, SASS3100, and BioSpot-VIVAS for all particle sizes, and for Coriolis with 3 μm particles. Coriolis exhibited lower efficiency for 0.8 μm (7%) and 1 μm (50%) particles. During 2-h sampling with MS2 and Pantoea agglomerans, liquid-based collection with Coriolis and BioSampler showed a decrease in nucleic acid yields for all test conditions. BioSpot-VIVAS displayed reduced sampling efficiency for P. agglomerans compared to MS2 and the other air samplers, while filter-based collection with SASS3100 and isopore membrane filters, showed indications of DNA degradation for 1 μm particles of P. agglomerans after long-term sampling. These findings show that long-term air sampling affects nucleic acid stability in both liquid- and filter-based collection methods. These results highlight bias produced by bioaerosol collection and should be considered when selecting an air sampler and interpreting aerosol microbiome data.
Collapse
Affiliation(s)
- Kari Oline Bøifot
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway.
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Gunnar Skogan
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
| | - Marius Dybwad
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
3
|
Hou J, Fujiyoshi S, Perera IU, Nishiuchi Y, Nakajima M, Ogura D, Yarimizu K, Maruyama F. Perspectives on Sampling and New Generation Sequencing Methods for Low-Biomass Bioaerosols in Atmospheric Environments. J Indian Inst Sci 2023; 103:1-11. [PMID: 37362849 PMCID: PMC10176311 DOI: 10.1007/s41745-023-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Bioaerosols play essential roles in the atmospheric environment and can affect human health. With a few exceptions (e.g., farm or rainforest environments), bioaerosol samples from wide-ranging environments typically have a low biomass, including bioaerosols from indoor environments (e.g., residential homes, offices, or hospitals), outdoor environments (e.g., urban or rural air). Some specialized environments (e.g., clean rooms, the Earth's upper atmosphere, or the international space station) have an ultra-low-biomass. This review discusses the primary sources of bioaerosols and influencing factors, the recent advances in air sampling techniques and the new generation sequencing (NGS) methods used for the characterization of low-biomass bioaerosol communities, and challenges in terms of the bias introduced by different air samplers when samples are subjected to NGS analysis with a focus on ultra-low biomass. High-volume filter-based or liquid-based air samplers compatible with NGS analysis are required to improve the bioaerosol detection limits for microorganisms. A thorough understanding of the performance and outcomes of bioaerosol sampling using NGS methods and a robust protocol for aerosol sample treatment for NGS analysis are needed. Advances in NGS techniques and bioinformatic tools will contribute toward the precise high-throughput identification of the taxonomic profiles of bioaerosol communities and the determination of their functional and ecological attributes in the atmospheric environment. In particular, long-read amplicon sequencing, viability PCR, and meta-transcriptomics are promising techniques for discriminating and detecting pathogenic microorganisms that may be active and infectious in bioaerosols and, therefore, pose a threat to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s41745-023-00380-x.
Collapse
Affiliation(s)
- Jianjian Hou
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - So Fujiyoshi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| | - Ishara Uhanie Perera
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Yukiko Nishiuchi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Makiko Nakajima
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193 Japan
| | - Daisuke Ogura
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540 Japan
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| |
Collapse
|
4
|
Dillon KP, Krumins V, Deshpande A, Kerkhof LJ, Mainelis G, Fennell DE. Characterization and DNA Stable-Isotope Probing of Methanotrophic Bioaerosols. Microbiol Spectr 2022; 10:e0342122. [PMID: 36409096 PMCID: PMC9769660 DOI: 10.1128/spectrum.03421-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
The growth and activity of bacteria have been extensively studied in nearly every environment on Earth, but there have been limited studies focusing on the air. Suspended bacteria (outside of water droplets) may stay in the atmosphere for time frames that could allow for growth on volatile compounds, including the potent greenhouse gas methane. We investigated the ability of aerosolized methanotrophic bacteria to grow on methane in the airborne state in rotating gas-phase bioreactors. The physical half-life of the aerial bacterium-sized particles was 3 days. To assess the potential for airborne growth, gas-phase bioreactors containing the aerosolized cultures were amended with 1,500 ppmv 13CH4 or 12CH4. Three of seven experiments demonstrated 13C incorporation into DNA, indicating growth in air. Bacteria associated with the genera Methylocystis and Methylocaldum were detected in 13C-DNA fractions, thus indicating that they were synthesizing new DNA, suggesting growth in air. We conclude that methanotrophs outside of water droplets in the air can potentially grow under certain conditions. Based on our data, humidity seems to be a major limitation to bacterial growth in air. Furthermore, low biomass levels can pose problems for detecting 13C-DNA synthesis in our experimental system. IMPORTANCE Currently, the cellular activities of bacteria in the airborne state outside of water droplets have not been heavily studied. Evidence suggests that these airborne bacteria produce ribosomes and metabolize gaseous compounds. Despite having a potentially important impact on atmospheric chemistry, the ability of bacteria in the air to metabolize substrates such as methane is not well understood. Demonstrating that bacteria in the air can metabolize and grow on substrates will expand knowledge about the potential activities and functions of the atmospheric microbiome. This study provides evidence for DNA synthesis and, ultimately, growth of airborne methanotrophs.
Collapse
Affiliation(s)
- Kevin P. Dillon
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Aishwarya Deshpande
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Lee J. Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Donna E. Fennell
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
5
|
Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, Yao X, Wang J, Xi C, Zheng P, Xu X, Hu B. PM 2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118715. [PMID: 34933062 DOI: 10.1016/j.envpol.2021.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM2.5) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM2.5 samples, all of which are the important components of PM2.5. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM2.5 concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM2.5 concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM2.5 and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM2.5, offering a new perspective for atmospheric ecology and pollution control.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Civil Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Investigation of Sources, Diversity, and Variability of Bacterial Aerosols in Athens, Greece: A Pilot Study. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We characterized the composition, diversity, and potential bacterial aerosol sources in Athens’ urban air by DNA barcoding (analysis of 16S rRNA genes) during three seasons in 2019. Air samples were collected using the recently developed Rutgers Electrostatic Passive Sampler (REPS). It is the first field application of REPS to study bacterial aerosol diversity. REPS samplers captured a sufficient amount of biological material to demonstrate the diversity of airborne bacteria and their variability over time. Overall, in the air of Athens, we detected 793 operational taxonomic units (OTUs), which were fully classified into the six distinct taxonomic categories (Phylum, Class, Order, etc.). These OTUs belonged to Phyla Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. We found a complex community of bacterial aerosols with several opportunistic or potential pathogens in Athens’ urban air. Referring to the available literature, we discuss the likely sources of observed airborne bacteria, including soil, plants, animals, and humans. Our results on bacterial diversity are comparable to earlier studies, even though the sampling sites are different or geographically distant. However, the exact functional and ecological role of bioaerosols and, even more importantly, their impact on public health and the ecosystem requires further air monitoring and analysis.
Collapse
|
8
|
Herrmann M, Geesink P, Richter R, Küsel K. Canopy Position Has a Stronger Effect than Tree Species Identity on Phyllosphere Bacterial Diversity in a Floodplain Hardwood Forest. MICROBIAL ECOLOGY 2021; 81:157-168. [PMID: 32761502 PMCID: PMC7794210 DOI: 10.1007/s00248-020-01565-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 05/17/2023]
Abstract
The phyllosphere is a challenging microbial habitat in which microorganisms can flourish on organic carbon released by plant leaves but are also exposed to harsh environmental conditions. Here, we assessed the relative importance of canopy position-top, mid, and bottom at a height between 31 and 20 m-and tree species identity for shaping the phyllosphere microbiome in a floodplain hardwood forest. Leaf material was sampled from three tree species-maple (Acer pseudoplatanus L.), oak (Quercus robur L.), and linden (Tilia cordata MILL.)-at the Leipzig canopy crane facility (Germany). Estimated bacterial species richness (Chao1) and bacterial abundances approximated by quantitative PCR of 16S rRNA genes exhibited clear vertical trends with a strong increase from the top to the mid and bottom position of the canopy. Thirty operational taxonomic units (OTUs) formed the core microbiome, which accounted for 77% of all sequence reads. These core OTUs showed contrasting trends in their vertical distribution within the canopy, pointing to different ecological preferences and tolerance to presumably more extreme conditions at the top position of the canopy. Co-occurrence analysis revealed distinct tree species-specific OTU networks, and 55-57% of the OTUs were unique to each tree species. Overall, the phyllosphere microbiome harbored surprisingly high fractions of Actinobacteria of up to 66%. Our results clearly demonstrate strong effects of the position in the canopy on phyllosphere bacterial communities in a floodplain hardwood forest and-in contrast to other temperate or tropical forests-a strong predominance of Actinobacteria.
Collapse
Affiliation(s)
- Martina Herrmann
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| | - Patricia Geesink
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743, Jena, Germany
| | - Ronny Richter
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Geoinformatics and Remote Sensing, Institute of Geography, Leipzig University, Johannisallee 19a, 04103, Leipzig, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Kim HR, An S, Hwang J. Aerosol-to-Hydrosol Sampling and Simultaneous Enrichment of Airborne Bacteria For Rapid Biosensing. ACS Sens 2020; 5:2763-2771. [PMID: 32493010 DOI: 10.1021/acssensors.0c00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid monitoring of biological particulate matter (Bio-PM, bioaerosols) requires an enrichment technique for concentrating the Bio-PM dispersed in the air into a small volume of liquid. In this study, an electrostatic air sampler is employed to capture aerosolized test bacteria in a carrier liquid (aerosol-to-hydrosol (ATH) enrichment). Simultaneously, the captured bacteria are carried into a fluid channel for hydrosol-to-hydrosol (HTH) enrichment with Concanavalin A coated magnetic particles (CMPs). The ATH enrichment capacity of the air sampler was evaluated with an aerosol particle counter for the following test bacteria: Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Acinetobacter baumannii. Then, the HTH enrichment capacity for the ATH-collected sample was evaluated using the colony-counting method, scanning electron microscopy based image analysis, fluorescence microscopy, electrical current measurements, and real-time quantitative polymerase chain reaction (qPCR). The ATH and HTH enrichment capacities for the given operation conditions were up to 80 000 and 14.9, respectively, resulting in a total enrichment capacity of up to 1.192 × 106. Given that air-to-liquid enrichment required to prepare detectable bacterial samples for real-time qPCR in field environments is of the order of at least 106, our method can be used to prepare a detectable sample from low-concentration airborne bacteria in the field and significantly reduce the time required for Bio-PM monitoring because of its enrichment capacity.
Collapse
Affiliation(s)
- Hyeong Rae Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sanggwon An
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Bøifot KO, Gohli J, Skogan G, Dybwad M. Performance evaluation of high-volume electret filter air samplers in aerosol microbiome research. ENVIRONMENTAL MICROBIOME 2020; 15:14. [PMID: 33902714 PMCID: PMC8067322 DOI: 10.1186/s40793-020-00362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Reliable identification and quantification of bioaerosols is fundamental in aerosol microbiome research, highlighting the importance of using sampling equipment with well-defined performance characteristics. Following advances in sequencing technology, shotgun metagenomic sequencing (SMS) of environmental samples is now possible. However, SMS of air samples is challenging due to low biomass, but with the use of high-volume air samplers sufficient DNA yields can be obtained. Here we investigate the sampling performance and comparability of two hand-portable, battery-operated, high-volume electret filter air samplers, SASS 3100 and ACD-200 Bobcat, previously used in SMS-based aerosol microbiome research. RESULTS SASS and Bobcat consistently delivered end-to-end sampling efficiencies > 80% during the aerosol chamber evaluation, demonstrating both as effective high-volume air samplers capable of retaining quantitative associations. Filter recovery efficiencies were investigated with manual and sampler-specific semi-automated extraction procedures. Bobcat semi-automated extraction showed reduced efficiency compared to manual extraction. Bobcat tended towards higher sampling efficiencies compared to SASS when combined with manual extraction. To evaluate real-world sampling performance, side-by-side SASS and Bobcat sampling was done in a semi-suburban outdoor environment and subway stations. SMS-based microbiome profiles revealed that highly abundant bacterial species had similar representation across samplers. While alpha diversity did not vary for the two samplers, beta diversity analyses showed significant within-pair variation in subway samples. Certain species were found to be captured only by one of the two samplers, particularly in subway samples. CONCLUSIONS SASS and Bobcat were both found capable of collecting sufficient aerosol biomass amounts for SMS, even at sampling times down to 30 min. Bobcat semi-automated filter extraction was shown to be less effective than manual filter extraction. For the most abundant species the samplers were comparable, but systematic sampler-specific differences were observed at species level. This suggests that studies conducted with these highly similar air samplers can be compared in a meaningful way, but it would not be recommended to combine samples from the two samplers in joint analyses. The outcome of this work contributes to improved selection of sampling equipment for use in SMS-based aerosol microbiome research and highlights the importance of acknowledging bias introduced by sampling equipment and sample recovery procedures.
Collapse
Affiliation(s)
- Kari Oline Bøifot
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway
- Department of Analytics, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Jostein Gohli
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway
| | - Gunnar Skogan
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway
| | - Marius Dybwad
- Norwegian Defence Research Establishment FFI, P O Box 25, NO-2027, Kjeller, Norway.
- Department of Analytics, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
11
|
Mainelis G. Bioaerosol Sampling: Classical Approaches, Advances, and Perspectives. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2020; 54:496-519. [PMID: 35923417 PMCID: PMC9344602 DOI: 10.1080/02786826.2019.1671950] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Bioaerosol sampling is an essential and integral part of any bioaerosol investigation. Since bioaerosols are very diverse in terms of their sizes, species, biological properties, and requirements for their detection and quantification, bioaerosol sampling is an active, yet challenging research area. This paper was inspired by the discussions during the 2018 International Aerosol Conference (IAC) (St. Louis, MO) regarding the need to summarize the current state of the art in bioaerosol research, including bioaerosol sampling, and the need to develop a more standardized set of guidelines for protocols used in bioaerosol research. The manuscript is a combination of literature review and perspectives: it discusses the main bioaerosol sampling techniques and then overviews the latest technical developments in each area; the overview is followed by the discussion of the emerging trends and developments in the field, including personal sampling, application of passive samplers, and advances toward improving bioaerosol detection limits as well as the emerging challenges such as collection of viruses and collection of unbiased samples for bioaerosol sequencing. The paper also discusses some of the practical aspects of bioaerosol sampling with particular focus on sampling aspects that could lead to bioaerosol determination bias. The manuscript concludes by suggesting several goals for bioaerosol sampling and development community to work towards and describes some of the grand bioaerosol challenges discussed at the IAC 2018.
Collapse
Affiliation(s)
- Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Shen F, Niu M, Zhou F, Wu Y, Zhu T. Culturability, metabolic activity and composition of ambient bacterial aerosols in a surrogate lung fluid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:76-84. [PMID: 31284198 DOI: 10.1016/j.scitotenv.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Interactions of particulate matter (PM) and respiratory tract play a crucial role in PM-related respiratory diseases. The majority of the work focuses on the oxidative stress induced by reactions between PM-borne redox-active components and lung lining fluid (LLF). The effects of PM-borne biological components are largely unknown. Of all PM-borne biologicals, bacteria, as living microorganisms, are closely related with inflammatory immune responses. However, its inhalation risk is usually determined without considering the respiratory physiological conditions. In this study, a surrogate lung fluid (SLF) with four typical antioxidants was applied to characterize the ambient bacteria, including concentrations of total bacteria/viable bacteria/culturable bacteria, metabolic activity, bacteria-derived endotoxin, as well as the community structure. Comparing to those determined by SLF, we find that use of PBS leads to an underestimation of the bacterial culturability and metabolic activity. No effect was seen regarding the number of total bacteria and viable bacteria (with intact membrane). Population structure change was seen for bacteria cultured from SLF-collected samples, when compared to that from PBS. Spore-forming bacteria, e.g., genus Bacillus, were found to be easily recovered with SLF. This implies that use of PBS could underestimate the bacteria inhalation risk, especially those bacterial endospores. Our work highlights the necessity to consider the respiratory airway environment when evaluating microbial inhalation risk.
Collapse
Affiliation(s)
- Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China.
| | - Mutong Niu
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Feng Zhou
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 250100, China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 100083, China
| |
Collapse
|
13
|
Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:789-804. [PMID: 30821643 DOI: 10.1080/10962247.2019.1587552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols are recognized as one of the main transmission routes for infectious diseases and are responsible for other various types of health effects through inhalation and potential ingestion. Associating exposure with bioaerosol and health problems is challenging, and adequate exposure monitoring is a top priority for aerosol scientists. The multiple factors affecting bioaerosol content, the variability in the focus of each bioaerosol exposure study, and the variations in experimental design and the standardization of methods make bioaerosol exposure studies very difficult. Therefore, the health impacts of bioaerosol exposure are still poorly understood. This paper presents a brief description of a state-of-the-art development in bioaerosol exposure studies supported by studies on several related subjects. The main objective of this paper is to propose new considerations for bioaerosol exposure guidelines and the development of tools and study designs to better interpret bioaerosol data. The principal observations and findings are the discrepancy of the applicable methods in bioaerosol studies that makes result comparison impossible. Furthermore, the silo mentality helps in creating a bigger gap in the knowledge accumulated about bioaerosol exposure. Innovative and original ideas are presented for aerosol scientists and health scientists to consider and discuss. Although many examples cited herein are from occupational exposure, the discussion has relevance to any human environment. This work gives concrete suggestions for how to design a full bioaerosol study that includes all of the key elements necessary to help understand the real impacts of bioaerosol exposure in the short term. The creation of the proposed bioaerosol public database could give crucial information to control the public health. Implications: How can we move toward a bioaerosol exposure guidelines? The creation of the bioaerosol public database will help accumulate information for long-term association studies and help determine specific exposure biomarkers to bioaerosols. The implementation of such work will lead to a deeper understanding and more efficient utilization of bioaerosol studies to prevent public health hazards.
Collapse
Affiliation(s)
- Hamza Mbareche
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| | - Lidia Morawska
- c School of Chemistry, Physics, and Mechanical Engineering, Department of Environmental Technologies , Queensland University of Technology , Brisbane , Queensland , Australia
| | - Caroline Duchaine
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| |
Collapse
|
14
|
Nieto-Caballero M, Savage N, Keady P, Hernandez M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J Microbiol Methods 2019; 157:1-3. [DOI: 10.1016/j.mimet.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
|
15
|
Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity. Appl Environ Microbiol 2018; 84:AEM.01589-18. [PMID: 30217848 DOI: 10.1128/aem.01589-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Bioaerosol studies aim to describe the microbial content and increase understanding of the aerosolization processes linked to diseases. Air samplers are used to collect, identify, and quantify bioaerosols. Studies comparing the performances of air samplers have typically used a culture approach or have targeted a specific microorganism in laboratory settings. The objective of this study was to use environmental field samples to compare the efficiencies of 3 high-airflow-rate samplers for describing bioaerosol diversity using a next-generation sequencing approach. Two liquid cyclonic impactors and one electrostatic filter dry sampler were used in four wastewater treatment plants to target bacterial diversity and in five dairy farms to target fungal diversity. The dry electrostatic sampler was consistently more powerful in collecting more fungal and bacterial operational taxonomic units (OTUs). Substantial differences in OTU abundances between liquid and dry sampling were revealed. The majority of the diversity revealed by dry electrostatic sampling was not identified using the cyclonic liquid impactors. The findings from this work suggest that the choice of a bioaerosol sampler should include information about the efficiency and ability of samplers to cover microbial diversity. Although these results suggest that electrostatic filters result in better coverage of the microbial diversity among the tested air samplers, further studies are needed to confirm this hypothesis. While it is difficult to determine a single universally optimal air sampler, this work provides an in-depth look at some of the considerations that are essential when choosing an air sampler for studying the microbial ecology of bioaerosols.IMPORTANCE Associating bioaerosol exposure and health problems is challenging, and adequate exposure monitoring is a priority for scientists in the field. Conclusions that can be drawn from bioaerosol exposure studies are highly dependent on the design of the study and the methodologies used. The air sampling strategy is the first methodological step leading to an accurate interpretation of what is present in the air. Applying new molecular approaches to evaluate the efficiencies of the different types of samplers used in the field is necessary in order to circumvent traditional approaches and the biases they introduce to such studies. The results and conclusions provided in this paper should be taken in consideration when conducting a bioaerosol study.
Collapse
|