1
|
Meng Q, Zhang Y, He D, Xia Y, Fu J, Dang C. Metagenomic perspectives on antibiotic resistance genes in tap water: The environmental characteristic, potential mobility and health threat. J Environ Sci (China) 2025; 147:582-596. [PMID: 39003073 DOI: 10.1016/j.jes.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 07/15/2024]
Abstract
As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.
Collapse
Affiliation(s)
- Qiyue Meng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Yu J, Fang M, Shi L, Zhu J, Fu C, Zhang Y, Xu H, Li L, Shen Y, Wang M. High efficiency removal of antibiotic resistance gene with designer zinc-finger protein. BIORESOURCE TECHNOLOGY 2024; 413:131462. [PMID: 39260734 DOI: 10.1016/j.biortech.2024.131462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of agricultural biomass-based fertilizers, and the release of feces into the environment leads to last-lasting pollution of antibiotic resistance genes that cannot be removed from waters via traditional methods, resulting in significant health threats. To solve this issue, an antibiotic resistance gene removal method was proposed and tested that used sequence-specific DNA-binding designer zinc finger proteins, which target an 18-bp DNA sequence for specific antibiotic resistance gene binding and removal. Targeting the sulfonamide-resistant sul1 gene, sul1-binding zinc-finger protein was designed, overexpressed, and purified. This protein showed specific binding with sul1 over tetA that do not have the targeted sequence. This protein was further immobilized on agarose-based resins to prepare a sul1-removal column. When loaded with 10 mg protein, this column can remove over 99 % sul1 in water, suggesting high efficiency. This work presents a new method attempting to eliminate environmental and health threats posed by antibiotic resistance genes.
Collapse
Affiliation(s)
- Jianghao Yu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Guo J, Jin X, Zhou Y, Gao B, Li Y, Zhou Y. Microplastic and antibiotics in waters: Interactions and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123125. [PMID: 39488185 DOI: 10.1016/j.jenvman.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Antibiotics (ATs) are ubiquitously detected in natural waters worldwide, and their tendency to co-migrate with microplastics (MPs) post-adsorption leads to heightened environmental risk. Research on the adsorption of ATs on MPs and their subsequent effects on the environmental risks is gaining significant attention globally. This adsorption process predominantly occurs through hydrophobic forces, hydrogen bonds, and electrostatic interactions and is influenced by various environmental factors. The interaction between MPs and ATs exhibited varying degrees of efficiency across different pH levels and ionic strengths. Furthermore, this paper outlines the environmental risks associated with the co-presence of MPs and ATs in aquatic environments, emphasizing the potential effect of MPs on the distribution of antibiotic resistance genes (ARGs) and related environmental risks. The potential hazards posed by MPs and ATs in aquatic systems warrant serious consideration. Future research should concentrate on the adsorption of ATs/ARGs on MPs under real environmental conditions, horizontal gene transfer on MPs, as well as biofilm formation and agglomeration behavior on MPs that needs to be emphasized.
Collapse
Affiliation(s)
- Jiayi Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinbai Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, Shanghai, 200237, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
5
|
Bertrans-Tubau L, Martínez-Campos S, Lopez-Doval J, Abril M, Ponsá S, Salvadó V, Hidalgo M, Pico-Tomàs A, Balcazar JL, Proia L. Nature-based bioreactors: Tackling antibiotic resistance in urban wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100445. [PMID: 39055482 PMCID: PMC11269294 DOI: 10.1016/j.ese.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria, significantly impacting human, animal, and environmental health. As aquatic environments are vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000 population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We observe high removal efficiency for genes that provide resistance to commonly used antibiotic families, as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a buildup of sulfonamide (sul1 and sul2) and tetracycline (tet(C), tet(G), and tetR) resistance genes specifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Sergio Martínez-Campos
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Julio Lopez-Doval
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Victoria Salvadó
- Chemistry Department, University of Girona. Campus Montilivi, 17005, Girona, Spain
| | - Manuela Hidalgo
- Chemistry Department, University of Girona. Campus Montilivi, 17005, Girona, Spain
| | - Anna Pico-Tomàs
- Catalan Institute Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Spain
| | - Jose Luis Balcazar
- Catalan Institute Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| |
Collapse
|
6
|
Hu Y, Li R, Bian K, Zhou Q, Pan Y, Ye L, Li A, Shi P. Biofilm formation dynamics in long-distance water conveyance pipelines: Impacts of nutrient levels and metal stress. WATER RESEARCH 2024; 268:122672. [PMID: 39461210 DOI: 10.1016/j.watres.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Biofilm formation in long-distance water conveyance pipelines poses significant risks to water quality, particularly under varying nutrient levels and heavy metal stress. However, the impacts of pipeline material on biofilm formation dynamics under different raw water conditions remain elusive. This study investigated the effects of nutrient availability and Fe-Mn stress on biofilm development, structural stability, bacterial community composition, and the occurrence of viable but non-culturable (VBNC) bacteria. Using reactors with different nutrient conditions, we observed that increased nutrient levels promote biofilm growth but lead to greater instability, heightening the risk of secondary contamination. Notably, nutrient escalation beyond a critical threshold had a diminishing impact on biofilm community composition. Additionally, Fe-Mn stress, while initially enhancing microbial adhesion and metabolic activity, ultimately inhibited biofilm formation over time and increases the prevalence of VBNC bacteria, particularly on stainless steel (SS) surfaces. Our findings also highlighted the importance of material selection for pipelines, with polyvinyl chloride (PVC) showing reduced biofilm formation compared to SS, making it a more suitable option for transporting raw water in environments with high metal content. Dispersal limitation determined the bacterial community assembly during the biofilm formation, accounting for 64.53-90.67 % of the variability in different scenarios. These insights offer valuable guidance for managing biofilm-related issues in water distribution systems, emphasizing the need for careful control of nutrient levels and material choice to ensure water safety over long distances.
Collapse
Affiliation(s)
- Yifan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ruiting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Kaiqin Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
8
|
Federigi I, Bonetta S, Tesauro M, De Giglio O, Oliveri Conti G, Atomsa NT, Bagordo F, Bonetta S, Consonni M, Diella G, Ferrante M, Grasso A, Macrì M, Montagna MT, Verani M, Carducci A. A systematic scoping review of antibiotic-resistance in drinking tap water. ENVIRONMENTAL RESEARCH 2024; 263:120075. [PMID: 39341535 DOI: 10.1016/j.envres.2024.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.
Collapse
Affiliation(s)
- Ileana Federigi
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy; Coordinated Research Center "EpiSoMI", University of Milan, Via Carlo Pascal 36, 20133, Milan, Italy.
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Nebiyu Tariku Atomsa
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy, Italy.
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy.
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Marco Verani
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| |
Collapse
|
9
|
Yang J, Zhang X, Xu Z, Wang X. Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:436. [PMID: 39316241 DOI: 10.1007/s10653-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
10
|
Moghaddam HS, Abkar L, Fowler SJ. Making waves: From tap to gut- exploring the impact of drinking water on gut microbiota. WATER RESEARCH 2024; 267:122503. [PMID: 39340867 DOI: 10.1016/j.watres.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Drinking water (DW) harbours diverse microbial species and chemical attributes. Water comprises the greatest portion of our daily diet, ingested both on its own and used in the preparation of food. DW is our major source of liquids, which is vital to maintaining homeostasis, and can also supply essential minerals. Limited evidence suggests that DW plays a role in shaping the gut microbiome, which implies that it may impact human health. Despite its significant contribution to diet, DW is often overlooked in studies examining dietary influences on the gut microbiota. This perspective explores our current understanding of the link between DW and the gut microbiota - an area of human microbiome science that has been surprisingly understudied. Existing studies reveal links between DW source, microbiota composition, and gut health, emphasizing the need for comprehensive investigations. Understanding the interplay between DW and gut microbiota holds potential for tailored interventions to enhance human health.
Collapse
Affiliation(s)
| | - Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
11
|
Zhang XY, Liu TS, Hu JY. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. WATER RESEARCH 2024; 261:122069. [PMID: 39003878 DOI: 10.1016/j.watres.2024.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Biological activated carbon (BAC) is one of the important treatment processes in wastewater and advanced water treatment. However, the BAC process has been reported to have antimicrobial resistance (AMR) risks. In this study, a new BAC-related treatment process was developed to reduce AMR caused by BAC treatment: ozone/peroxymonosulfate-BAC (O3/PMS-BAC). The O3/PMS-BAC showed better treatment performance on the targeted five antibiotics and dissolved organic matter removal than O3-BAC and BAC treatments. The O3/PMS-BAC process had better control over the AMR than the O3-BAC and BAC processes. Specifically, the amount of targeted antibiotic-resistant bacteria in the effluent and biofilm of O3/PMS-BAC was only 0.01-0.03 and 0.11-0.26 times that of the BAC process, respectively. Additionally, the O3/PMS-BAC process removed 1.76 %-62.83 % and 38.14 %-99.27 % more of the targeted ARGs in the effluent and biofilm than the BAC process. The total relative abundance of the targeted 12 ARGs in the O3/PMS-BAC effluent was decreased by 86 % compared to the effluent after BAC treatment. In addition, Proteobacteria and Bacteroidetes were probably the main hosts for transmitting ARGs in this study, and their relative abundance decreased by 9.6 % and 6.0 % in the effluent of the O3/PMS-BAC treatment compared to that in BAC treatment. The relationship analysis revealed that controlling antibiotic discharge was crucial for managing AMR, as antibiotics were closely related to both ARGs and bacteria associated with their emergence. The results showed that the newly developed treatment process could reduce AMR caused by BAC treatment while ensuring effluent quality. Therefore, O3/PMS-BAC is a promising alternative to BAC treatment for future applications.
Collapse
Affiliation(s)
- Xin Yang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Tai Shan Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang Yong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
12
|
Ghosh S, Wu X, Chen Y, Hu J. Application of UV LEDs to inactivate antibiotic resistant bacteria: Kinetics, efficiencies, and reactivations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173075. [PMID: 38750759 DOI: 10.1016/j.scitotenv.2024.173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Unregulated antibiotic use has led to the proliferation of antibiotic-resistant bacteria (ARB) in aquatic environments. Ultraviolet light-emitting diodes (UV LEDs) have evolved as an innovative technology for inactivating microorganisms offering several advantages over traditional mercury lamps. This research concentrated on utilizing UV LEDs with three distinct wavelengths (265 nm, 275 nm, and 285 nm) to inactivate E. coli DH10β encoding the ampicillin-resistant blaTEM-1 gene in its plasmid. Non-linear models, such as Geeraerd's and Weibull, provided more accurate characterization of the inactivation profiles than the traditional log-linear model due to the incorporation of both biological mechanisms and a deterministic approach within non-linear models. The inactivation rates of ARB were higher than antibiotic-sensitive bacteria (ASB) when subjected to UV LEDs. The highest inactivation rates were observed when all microorganisms were exposed to 265 nm. Photoreactivation emerged as the primary mechanism responsible for repairing DNA damage induced by UV LEDs. 285 nm showed the highest reactivation efficiencies for ARB under different fluences. At higher fluences, both 265 and 275 nm displayed similar effectiveness in suppressing reactivation, while at lower fluences, 275 nm exhibited better efficacies in controlling the reactivation. Therefore, the inhibition of reactivation was influenced by the extent of damage incurred to both DNA and enzymes. In nutrient-poor media (0.9 % NaCl), ASB did not exhibit any reactivation potential. However, the addition of Luria-Bertani (LB) broth promoted the reactivation of ASB. Lower fluence rate was more beneficial at 265 nm whereas higher fluence rates were more effective for longer wavelengths. The inactivation of ARB was enhanced by dissolved organic carbon (DOC) at low fluences. However, the removal of ARB was reduced due to the presence of DOC at higher fluences. The highest energy demand for ARB inactivation was reported at 285 nm. ENVIRONMENTAL IMPLICATION: The excessive and unregulated utilization of antibiotics has emerged as a significant issue for public health. This paper presents a comprehensive analysis of the effectiveness of UV LEDs, an emerging technology, in the inactivation of antibiotic-resistant bacteria (ARB). This research paper explores the kinetics of UV LEDs with different wavelengths to inactivate ARB along with the reactivation efficiencies. This research work also explores the impact and relevant mechanisms of the impact of dissolved organic carbon (DOC) on the inactivation of ARB by UV LEDs.
Collapse
Affiliation(s)
- Shayok Ghosh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Xinyu Wu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yiwei Chen
- NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, Singapore 117411, Singapore..
| |
Collapse
|
13
|
Li N, Fan XY, Li X. Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135194. [PMID: 39003808 DOI: 10.1016/j.jhazmat.2024.135194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging contaminants, often co-occur with mobile genetic elements (MGEs) and are prevalent in drinking water treatment plants (DWTPs). In this study, the characteristics of free-living (FL) and particle-associated (PA) ARGs associated with bacterial communities were investigated along two processes within a full-scale DWTP. A total of 13 ARGs and two MGEs were detected. FL-ARGs with diverse subtypes and PA-ARGs with high abundances displayed significantly different structures. PA-MGEs showed a strong positive correlation with PA-ARGs. Chlorine dioxide disinfection achieved 1.47-log reduction of FL-MGEs in process A and 0.24-log reduction of PA-MGEs in process B. Notably, PA-fraction virtually disappeared after treatment, while blaTEM, sul2, mexE, mexF and IntI1 of FL-fraction remained in the finished water. Moreover, Acinetobacter lwoffii (0.04 % ∼ 45.58 %) and Acinetobacter schindleri (0.00 % ∼ 18.54 %) dominated the 16 pathogens, which were more abundant in FL than PA bacterial communities. PA bacteria exhibited a more complex structure with more keystone species than FL bacteria. MGEs contributed 20.23 % and 19.31 % to the changes of FL-ARGs and PA-ARGs respectively, and water quality was a key driver (21.73 %) for PA-ARGs variation. This study provides novel insights into microbial risk control associated with size-fractionated ARGs in drinking water.
Collapse
Affiliation(s)
- Na Li
- China Architecture Design and Research Group, Beijing 100044, PR China; Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
14
|
Gholipour S, Nikaeen M, Mohammadi F, Rabbani D. Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. J Infect Public Health 2024; 17:102469. [PMID: 38838607 DOI: 10.1016/j.jiph.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Wei Y, Wu H, Zhang X, Liang Y, Shi D, Wang L, Li H, Yu H, Yang D, Zhou S, Chen T, Yang Z, Li J, Jin M. Comparative analysis of chlorine-resistant bacteria after chlorination and chloramination in drinking water treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134075. [PMID: 38508114 DOI: 10.1016/j.jhazmat.2024.134075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.
Collapse
Affiliation(s)
- Yijun Wei
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Haiyan Wu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Xudong Zhang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin 300240, China
| | - Yongbing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Lin Wang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin 300240, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Hongling Yu
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin 300240, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
16
|
Chen YR, Duan YP, Zhang ZB, Gao YF, Dai CM, Tu YJ, Gao J. Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: Emission, multimedia fate and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133247. [PMID: 38141293 DOI: 10.1016/j.jhazmat.2023.133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Antibiotics have attracted global attention because of their potential ecological and health risks. The emission, multimedia fate and risk of 18 selected antibiotics in the entire Yangtze River basin were evaluated by using a level Ⅳ fugacity model. High antibiotic emissions were found in the middle and lower reaches of the Yangtze River basin. The total antibiotic emissions in the Yangtze River basin exceeded 1600 tons per year between 2013 and 2021. The spatial distribution of antibiotics concentration was the upper Yangtze River > middle Yangtze River > lower Yangtze River, which is positively correlated with animal husbandry size in the basin. Temperature and precipitation increases may decrease the antibiotic concentrations in the environment. Transfer fluxes showed that source emission inputs, advection processes, and degradation fluxes contributed more to the total input and output. High ecological risks in the water environment were found in 2018, 2019, 2020, and 2021. The comprehensive health risk assessment through drinking water and fish consumption routes showed that a small part of the Yangtze River basin is at medium risk, and children have a relatively high degree of health risk. This study provides a scientific basis for the pollution control of antibiotics at the basin scale.
Collapse
Affiliation(s)
- Yu-Ru Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China
| | - Yan-Ping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China.
| | - Zhi-Bo Zhang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yao-Feng Gao
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China
| | - Chao-Meng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Yao-Jen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China
| | - Jun Gao
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China
| |
Collapse
|
17
|
Wang Z, Cai M, Du P, Li X. Wastewater surveillance for antibiotics and resistance genes in a river catchment: Spatiotemporal variations and the main drivers. WATER RESEARCH 2024; 251:121090. [PMID: 38219685 DOI: 10.1016/j.watres.2023.121090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Wastewater-based epidemiology (WBE) is used for mining information about public health such as antibiotics resistance. This study investigated the distribution profiles of six types of antibiotic resistance genes (ARGs) in wastewater and rivers in Wuhu City, China. The levels of ARGs found in the Qingyijiang River were significantly higher than other rivers, and were comparable to effluent levels. Among the ARGs, sulfonamides ARGs and intI1 were the predominant in both wastewaters and rivers. Additionally, the concentrations of ARGs were higher on weekends as opposed to weekdays. Their distribution patterns remained consistent inter-week and inter-season using linear regression analysis (p < 0.001). Interestingly, the occurrence levels of ARGs in wastewaters during spring were significantly higher than in autumn, although insignificant in rivers. The apparent removal rate of ARGs in domestic wastewater sources ranged from 61.52-99.29%, except for qepA (-1.91% to 81.09%), whereas the removal rates in mixed domestic and industrial wastewaters showed a marked decrease (-92.94% to 76.67%). A correlation network analysis revealed that azithromycin and erythromycin were key antibiotics, while blaNDM-1, tetM, tetB, and ermB were identified as key ARGs. Sulfonamide and fluoroquinolone antibiotics, and tetracycline and macrolide ARGs were the primary contributors. Linear mixed models demonstrated that socio-economic variables positively impacted the occurrence levels of ARGs, whereas wastewater flow and river runoff were the negative drivers for their concentrations in wastewaters and surface waters, respectively. Overall, this WBE study contributes to the understanding of spatiotemporal profiles and main drivers of the occurrence of ARGs in wastewater and receiving water.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041 PR China
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China.
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 PR China
| |
Collapse
|
18
|
Qin Y, Ren X, Zhang Y, Ju H, Liu J, Xie J, Altaf MM, Diao X. Distribution characteristics of antibiotic resistance genes and microbial diversity in the inshore aquaculture area of Wenchang, Hainan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169695. [PMID: 38160829 DOI: 10.1016/j.scitotenv.2023.169695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The rapid development of marine aquaculture has led to the increased use and release of antibiotics into the marine environment, consequently contributing to the emergence of antibiotic resistance. Information on antibiotic resistance in nearshore marine aquaculture areas remains limited, and research on the microbial composition and potential hosts of antibiotic resistance genes (ARGs) in marine aquaculture areas is scarce. This study used SmartChip real-time fluorescent quantitative PCR and qPCR to quantitatively analyze 44 ARGs and 10 mobile genetic elements (MGEs) genes in 12 sampling points in the nearshore aquaculture area of Wenchang. High-throughput sequencing of 16S rRNA was used to study microbial diversity in the study area, to clarify the correlation between ARGs, MGEs, and microbial diversity, and to determine the possible sources and potential hosts of ARGs. The results showed that a total of 37 ARGs and 8 MGEs were detected in the study area. The detection rate of 9 ARGs (aac(6')-Ib(aka aacA4)-02, catA1, cmlA, cfr, sul1, sul2, sulA/folP-01, tetC, tetX) was 100 %. The absolute abundance of ARGs in the 12 sampling points ranged from 2.75 × 107 to 3.79 × 1010 copies·L-1, and the absolute abundance of MGEs was 1.30 × 105 to 2.54 × 107 copies·L-1, which was relatively high compared to other research areas. ARGs and MGEs were significantly correlated, indicating that MGEs play an important role as a mediator in the spread of ARGs. At the phylum level, Proteobacteria and Cyanobacteria were the dominant bacteria in the study area, with HIMB11 and unidentifiedChloroplast being the dominant levels, respectively. Network analysis of ARGs and microorganisms (genus level) revealed that Cognatishimia, Thalassobius, Aestuariicoccus, Thalassotalea, and Vibrio were significantly correlated with multiple ARGs and were the main potential hosts of ARGs in the nearshore waters of Wenchang.
Collapse
Affiliation(s)
- Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Xiaoyu Ren
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou, Hainan 570228, China
| | - Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; College of Life Science Hainan Normal University, Haikou, Hainan 571158, China
| | - Jia Xie
- School of Marine Biology and Fisheries Hainan University, Haikou, Hainan 570228, China
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou, Hainan 570228, China.
| |
Collapse
|
19
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
20
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Ke Y, Sun W, Xue Y, Zhu Y, Yan S, Xie S. Effects of treatments and distribution on microbiome and antibiotic resistome from source to tap water in three Chinese geographical regions based on metagenome assembly. WATER RESEARCH 2024; 249:120894. [PMID: 38016224 DOI: 10.1016/j.watres.2023.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Antibiotic resistance genes (ARGs) represent emerging environmental pollutants that present health risks. Drinking water supply systems (DWSSs), including sources to tap water, play crucial roles in the dissemination and propagation of ARGs. However, there was a paucity of knowledge on the relative abundance, diversity, mobility, and pathogenic hosts of ARGs in DWSSs from source to tap. Therefore, the effects of treatments and distributions on the microbial community and ARGs from three geographical regions (downstream areas of the Yellow, Yangtze, and Pearl Rivers) were elucidated in the present study. Treatment processes lowered the complexity of the microbial community network, whereas transportation increased it. The assembly mechanisms of the microbial community and antibiotic resistome were primarily driven by stochastic processes. Distribution greatly increased the contribution of stochastic processes. Multidrug ARGs (for example, multidrug transporter and adeJ) and bacitracin ARG (bacA) were the primary mobile ARGs in drinking water, as identified by the metagenomic assembly. Achromobacter xylosoxidans, Acinetobacter calcoaceticus, and Acinetobacter junii harbored diverse multidrug ARGs and mobile genetic elements (MGEs) (recombinases, integrases, and transposases) as potential pathogens and were abundant in the disinfected water. Environmental factors, including pH, chlorine, latitude, longitude, and temperature, influenced the ARG abundance by directly regulating the MGEs and microbial community diversity. This study provides critical information on the fate, mobility, host pathogenicity, and driving factors of ARGs in drinking water, which is conducive to ARG risk assessment and management to provide high-quality drinking water to consumers.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Wanyan R, Pan M, Mai Z, Xiong X, Wang S, Han Q, Yu Q, Wang G, Wu S, Li H. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167068. [PMID: 37714353 DOI: 10.1016/j.scitotenv.2023.167068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs.
Collapse
Affiliation(s)
- Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
24
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
25
|
Abdurahman A, Li S, Li Y, Song X, Gao R. Ecotoxicological effects of antibiotic adsorption behavior of microplastics and its management measures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125370-125387. [PMID: 38006478 DOI: 10.1007/s11356-023-30970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023]
Abstract
Microplastics adsorb heavy metals and organic pollutants to produce combined pollution. Recently, the adsorption behavior of antibiotics on microplastics has received increasing attention. Exploring the sorption behavior of pollutants on microplastics is an important reference in understanding their ecological and environmental risk studies. In this paper, by reviewing the academic literature in recent years, we clarified the current status of research on the adsorption behavior of antibiotics on microplastics, discussed its potential hazards to ecological environment and human health, and summarized the influence of factors on the adsorption mechanisms. The results show that the adsorption behavior of antibiotics on microplastics is controlled by the physical and chemical properties of antibiotics, microplastics, and water environment. Antibiotics are adsorbed on microplastics through physical and chemical interactions, which include hydrophobic interaction, partitioning, electrostatic interaction, and other non-covalent interactions. Intensity of adsorption between them is mainly determined by their physicochemical properties. The basic physicochemical properties of the aqueous environment (e.g., pH, salinity, ionic strength, soluble organic matter content, and temperature) will affect the physicochemical properties of microplastics and antibiotics (e.g., particle size, state of dispersibility, and morphology), leading to differences in the type and strength of their interactions. This paper work is expected to provide a meaningful perspective for better understanding the potential impacts of antibiotic adsorption behavior of microplastics on aquatic ecology and human health. In the meantime, some indications for future related research are provided.
Collapse
Affiliation(s)
- Abliz Abdurahman
- Chemistry Department, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China.
| | - Shuocong Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yangjie Li
- Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Gao
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Tsagkari E, Sloan W. The Role of Chlorine in the Formation and Development of Tap Water Biofilms under Different Flow Regimes. Microorganisms 2023; 11:2680. [PMID: 38004692 PMCID: PMC10673482 DOI: 10.3390/microorganisms11112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Water companies make efforts to reduce the risk of microbial contamination in drinking water. A widely used strategy is to introduce chlorine into the drinking water distribution system (DWDS). A subtle potential risk is that non-lethal chlorine residuals may select for chlorine resistant species in the biofilms that reside in DWDS. Here, we quantify the thickness, density, and coverage of naturally occurring multi-species biofilms grown on slides in tap water with and without chlorine, using fluorescence microscopy. We then place the slides in an annular rotating reactor and expose them to fluid-wall shears, which are redolent of those on pipe walls in DWDS. We found that biofilms in chlorine experiment were thicker, denser and with higher coverage than in non-chlorine conditions under all flow regimes and during incubation. This suggests that the formation and development of biofilms was promoted by chlorine. Surprisingly, for both chlorinated and non-chlorinated conditions, biofilm thickness, density and coverage were all positively correlated with shear stress. More differences were detected in biofilms under the different flow regimes in non-chlorine than in chlorine experiments. This suggests a more robust biofilm under chlorine conditions. While this might imply less mobilization of biofilms in high shear events in pipe networks, it might also provide refuge from chlorine residuals for pathogens.
Collapse
Affiliation(s)
- Erifyli Tsagkari
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | | |
Collapse
|
27
|
Gu Q, Lin T, Wei X, Zhang Y, Wu S, Yang X, Zhao H, Wang C, Wang J, Ding Y, Zhang J, Wu Q. Prevalence of antimicrobial resistance in a full-scale drinking water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118396. [PMID: 37331316 DOI: 10.1016/j.jenvman.2023.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China.
| |
Collapse
|
28
|
Wang L, Cao X, Pei H, Liu P, Song Y, Wu Y. Anti-Biofilm Activity of Chlorogenic Acid against Pseudomonas Using Quorum Sensing System. Foods 2023; 12:3601. [PMID: 37835254 PMCID: PMC10572673 DOI: 10.3390/foods12193601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chlorogenic acid is a secondary metabolite produced by many traditional Chinese medicines. Its physiological activities (antibacterial, anti-inflammatory, antioxidant activities, etc.) have been well described. This study aimed to investigate the effects of chlorogenic acid on the biofilm of drinking water bacteria. The effects of chlorogenic acid on the metabolites of the biofilms were also evaluated. Chlorogenic acid was found to have an anti-biofilm effect against Pseudomonas, resulting in biofilm formation in a dose-dependent manner (0.53-25.4 mM CGA). Moreover, the biofilm structure was visibly attenuated. Furthermore, we identified and characterized 23 differential metabolites and associated two metabolic pathways involving beta-alanine metabolism and pyrimidine metabolism that were altered mostly during biofilm formation. A quantitative real-time PCR assay revealed that chlorogenic acid interfered with the signaling molecule synthesis and transcription regulators using the Las, Pqs and Rhl systems. These findings suggest that chlorogenic acid can be a quorum sensing (QS) inhibitor and inhibit biofilm formation. It may be a promising natural product for the prevention of contaminated drinking water.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.W.); (P.L.); (Y.S.); (Y.W.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100037, China
| | - Xueli Cao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.W.); (P.L.); (Y.S.); (Y.W.)
| | - Hairun Pei
- School of Light Industry, Beijing Technology and Business University, Beijing 100037, China
| | - Ping Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.W.); (P.L.); (Y.S.); (Y.W.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100037, China
| | - Ya Song
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.W.); (P.L.); (Y.S.); (Y.W.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100037, China
| | - Yulun Wu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.W.); (P.L.); (Y.S.); (Y.W.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100037, China
| |
Collapse
|
29
|
Mitchell J. Antimicrobial resistance (AMR) as a form of human-wildlife conflict: Why and how nondomesticated species should be incorporated into AMR guidance. Ecol Evol 2023; 13:e10421. [PMID: 37664497 PMCID: PMC10468991 DOI: 10.1002/ece3.10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The challenge of antimicrobial resistance (AMR) continues to receive significant global attention as common infections become increasingly resistant to the drugs used to treat them. Once an infectious microbe has developed a mechanism of resistance, it can cause longer, more damaging infections which are more costly, time-consuming, and sometimes impossible to treat. Such impacts occur across the health of humans, animals, plants, and the environment. Thus, AMR is considered a One Health issue. However, current narratives on AMR focus on humans, food-producing animals, crops, and their immediate environments. Very little attention is given to wildlife in terms of the impact of AMR on their health, nor their role in the evolution and spread of AMR. This article (1) discusses an absence of wildlife in current AMR guidance, (2) suggests how this absence of wildlife could limit understanding of, and action on, AMR, (3) proposes that considering AMR as a form of human-wildlife conflict could enable AMR guidance to better incorporate wildlife into action planning and create a truly One Health approach to tackle AMR.
Collapse
Affiliation(s)
- Jessica Mitchell
- Nuffield Centre for International Health and Development, Leeds Institute for Health Sciences, Faculty of Medicine and HealthUniversity of LeedsLeedsUK
| |
Collapse
|
30
|
Dwiyanto J, Huët MAL, Hussain MH, Su TT, Tan JBL, Toh KY, Lee JWJ, Rahman S, Chong CW. Social demographics determinants for resistome and microbiome variation of a multiethnic community in Southern Malaysia. NPJ Biofilms Microbiomes 2023; 9:55. [PMID: 37573460 PMCID: PMC10423249 DOI: 10.1038/s41522-023-00425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
The prevalence of antibiotic-resistant bacteria in Southeast Asia is a significant concern, yet there is limited research on the gut resistome and its correlation with lifestyle and environmental factors in the region. This study aimed to profile the gut resistome of 200 individuals in Malaysia using shotgun metagenomic sequencing and investigate its association with questionnaire data comprising demographic and lifestyle variables. A total of 1038 antibiotic resistance genes from 26 classes were detected with a mean carriage rate of 1.74 ± 1.18 gene copies per cell per person. Correlation analysis identified 14 environmental factors, including hygiene habits, health parameters, and intestinal colonization, that were significantly associated with the resistome (adjusted multivariate PERMANOVA, p < 0.05). Notably, individuals with positive yeast cultures exhibited a reduced copy number of 15 antibiotic resistance genes. Network analysis highlighted Escherichia coli as a major resistome network hub, with a positive correlation to 36 antibiotic-resistance genes. Our findings suggest that E. coli may play a pivotal role in shaping the resistome dynamics in Segamat, Malaysia, and its abundance is strongly associated with the community's health and lifestyle habits. Furthermore, the presence of yeast appears to be associated with the suppression of antibiotic-resistance genes.
Collapse
Affiliation(s)
- J Dwiyanto
- AMILI, Singapore, 118261, Singapore.
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - M A L Huët
- Faculty of Science, University of Mauritius, Reduit, 80837, Mauritius
| | - M H Hussain
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Malaysia
| | - T T Su
- South East Asia Community Observatory, Segamat, 85000, Malaysia
| | - J B L Tan
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Malaysia
| | - K Y Toh
- AMILI, Singapore, 118261, Singapore
| | - J W J Lee
- AMILI, Singapore, 118261, Singapore
- Department of Medicine, National University Hospital, Singapore, 119228, Singapore
| | - S Rahman
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, 47500, Malaysia
| | - C W Chong
- AMILI, Singapore, 118261, Singapore.
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Malaysia.
| |
Collapse
|
31
|
Hu D, Lin W, Zeng J, Zhang H, Wei Y, Yu X. To close or open the tank input water valve: Secondary water-supply systems with double tanks will induce a higher microbial risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162301. [PMID: 36801325 DOI: 10.1016/j.scitotenv.2023.162301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Secondary water supply systems (SWSSs) are widely used to supply water to high-rise households in urban residential buildings. A special mode of double tanks with one used while another was spared was noted in SWSSs, which would facilitate microbial growth due to longer water stagnation in the spare tank. There are limited studies on the microbial risk of water samples in such SWSSs. In this study, the input water valves of the operational SWSSs consisting of double tanks were artificially closed and opened on time. Propidium monoazide-qPCR and high-throughput sequencing were performed to systematically investigate the microbial risks in water samples. After closing the tank input water valve, it may take several weeks to replace the bulk water in the spare tank. The residual chlorine concentration in the spare tank decreased by up to 85 % within 2-3 days compared with that in the input water. The microbial communities in the spare and used tank water samples clustered separately. High bacterial 16S rRNA gene abundance and pathogens-like sequences were detected in the spare tanks. Most antibiotic-resistant genes (11/15) in the spare tanks showed an increase in their relative abundance. Moreover, when both tanks within one SWSS were in use, the water quality of the used tank water samples deteriorated to varying degrees. Overall, running SWSSs with double tanks will reduce the replacement rate of water in one storage tank, and consumers who use taps served by the presented SWSSs may have a higher microbial risk.
Collapse
Affiliation(s)
- Dong Hu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wenfang Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zeng
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Heng Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yating Wei
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
32
|
Wolf-Baca M, Siedlecka A. Seasonal and spatial variations of antibiotic resistance genes and bacterial biodiversity in biofilms covering the equipment at successive stages of drinking water purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131660. [PMID: 37210784 DOI: 10.1016/j.jhazmat.2023.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
The presence of ARGs (antibiotic resistance genes) in the aquatic environment is a serious threat to public health especially in environmental biofilms as natural reservoirs of ARGs in water treatment plants (WTP). It has been shown that the treatment technology and source of water have a significant impact on the abundance and type of genes determining antibiotic resistance. The following indicator genes were proposed that should absolutely be controlled in environmental biofilms: intl1, sul2, sul1, tetA, blaOXA, and blaTEM. In both studied WTPs, the highest number of copies was determined for the intI1 gene. Among the tested ARGs, the highest values were obtained for genes sul1 and tetA. The qPCR analysis also revealed that the amounts of determined ARGs decreased in the following order: sulphonamides>carbapenems >tetracyclines > β-lactams >macrolides. The dominant bacterial types in all analysed samples were Proteobacteria and Bacteroidetes. Both ARGs and bacterial biodiversity was determined rather by sampling site (spatial variation) than seasonality. The obtained results show that biofilms are reservoirs of ARGs. This may affect the microbiological quality of water entering the water system. It is therefore necessary to include their analysis in the classical studies of water quality.
Collapse
Affiliation(s)
- Mirela Wolf-Baca
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Agata Siedlecka
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
33
|
Calderón-Franco D, Corbera-Rubio F, Cuesta-Sanz M, Pieterse B, de Ridder D, van Loosdrecht MCM, van Halem D, Laureni M, Weissbrodt DG. Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. WATER RESEARCH 2023; 235:119905. [PMID: 36989799 DOI: 10.1016/j.watres.2023.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.
Collapse
Affiliation(s)
| | | | | | - Brent Pieterse
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH, Rotterdam, the Netherlands
| | | | | | | | - David G Weissbrodt
- Delft University of Technology, Delft, the Netherlands; Department of Biotechnology and Food Science, Division of Analysis and Control of Microbial Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Yang JT, Xiao DY, Zhang LJ, Chen HX, Zheng XR, Xu XL, Jiang HX. Antimicrobial resistome during the transition from an integrated to a monoculture aquaculture farm in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163511. [PMID: 37080303 DOI: 10.1016/j.scitotenv.2023.163511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Integrated and monoculture freshwater aquaculture systems are often regarded as important reservoirs for antimicrobial resistance genes (ARGs) and antimicrobial resistance bacteria (ARBs), yet only a few studies have assessed differences in the antimicrobial resistome and antibiotic residues between aquaculture modes. In this study, a metagenomic approach was used to comprehensively explore the dynamic patterns and potential transmission mechanisms of ARGs in ducks, human workers, fish, water and sediments during the transition from an integrated to a monoculture freshwater aquaculture mode and to investigate the associations of ARGs with potential hosts in microbial communities using network analysis and a binning approach. The results showed that the abundance and diversity of ARGs were higher under integrated fish-duck farming than in single fish ponds. During the transition from an integrated to a monoculture aquaculture farm, ARGs in workers and sediments were not easily removed. However, ARGs in the aquatic environment underwent regular changes. In addition, duck manure was probably the most dominant source of ARGs in the duck farm environment. Network analysis indicated that Escherichia spp. were the most dominant hosts of ARGs. Variation partitioning analysis (VPA) showed that in water samples, the bacterial community played an important role in the ARG profile. In addition, we identified a potential risk of the presence of highly virulent and antimicrobial-resistant Klebsiella pneumoniae in workers. These results help assess the risk of ARG transmission in integrated and monoculture aquaculture farms and suggest that we should strengthen the monitoring of long-term resistance in integrated aquaculture environments.
Collapse
Affiliation(s)
- Jin-Tao Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dan-Yu Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li-Juan Zhang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
| | - Hai-Xin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Run Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Li Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Xia Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Li F, Mai Z, Qiu C, Long L, Hu A, Huang S. Dissemination of antibiotic resistance genes from the Pearl River Estuary to adjacent coastal areas. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105978. [PMID: 37087846 DOI: 10.1016/j.marenvres.2023.105978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The spread of antibiotic resistance genes (ARGs) is a growing concern over the world's various environments. Coastal environments may receive pollutants from land runoffs via estuaries. However, the impact of ARG contamination from estuarine regions to coastal areas is rarely reported. This study used high-throughput quantitative PCR to examine the diversity and abundance of ARGs in Pearl River Estuary (PRE) and adjacent coastal areas. We found that the distribution of ARGs in seawater exhibited the distance-decay phenomenon from the estuary to coastal areas, while the sediment samples did not exhibit an obvious distribution pattern. The estuarine water was found to be the hotspot of ARGs, with 74 ARG species detected and absolute abundance being 5.93 × 105 copies per mL, on average, while less species and lower abundance of ARGs were detected in coastal waters. Ordination analysis showed that estuarine ARG communities were significantly different from coastal ARG communities for water samples. SourceTracker analysis revealed that ARGs from the estuarine environment contributed only a minor fraction of ARG contamination to downstream coastal areas (1.5%-7.4% for water samples, and 0.7-1.8% for sediment samples), indicating the strong dilution effect of seawater. Mantel tests, redundancy analysis and random forest model analysis identified salinity, nutrients, microbial community structure and mobile genetic elements (MGEs) as important factors influencing ARG distribution. Partial least squares-path model revealed that, among all environmental factors, MGEs directly affected the distribution of ARGs, while other factors indirectly contributed by affecting the MGEs assemblage. Our study provides insight into the dissemination of ARGs from the PRE to adjacent coastal areas.
Collapse
Affiliation(s)
- Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Huairou, Beijing, 101400, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chen Qiu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Huairou, Beijing, 101400, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
36
|
Javvadi Y, Mohan SV. Understanding the distribution of antibiotic resistance genes in an urban community using wastewater-based epidemiological approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161419. [PMID: 36623646 DOI: 10.1016/j.scitotenv.2023.161419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The study aimed to evaluate the community-wide antimicrobial resistance (AMR) profile of an urban setting using the culture-independent wastewater-based epidemiological surveillance (WBE) approach. The domestic wastewater sample was collected at the converging point of the drain connecting the Sewage Treatment Plant (STP). The collected water sample was evaluated for the presence of 125 antibiotic resistance genes (ARGs) and 13 mobile genetic elements (MGEs, 5 integrons and 8 transposons). Antibiotic residues and the composition of bacterial communities were also examined. Community's sewage showed a diverse resistance pattern, with the positive detection of targeted ARGs, notably aph, aadA1, and strB being particularly abundant. Resistance to aminoglycoside and trimethoprim classes was prevalent, followed by chloramphenicol, sulfonamide, and β-lactams. According to the microbial diversity assessment, Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi were abundant phyla observed, while Helicobacteraceae, Pseudomonadaceae, and Moraxellaceae were prevalent families. The study provided comprehensive baseline information of ARGs on a community scale and will be of use for ARG prevention and management.
Collapse
Affiliation(s)
- Yamini Javvadi
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
37
|
Li H, Yu H, Liang Y, Zhang X, Yang D, Wang L, Shi D, Chen T, Zhou S, Yin J, Yang Z, Li J, Jin M. Extended chloramination significantly enriched intracellular antibiotic resistance genes in drinking water treatment plants. WATER RESEARCH 2023; 232:119689. [PMID: 36739658 DOI: 10.1016/j.watres.2023.119689] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Chloramination and chlorination are both strong barriers that prevent the transmission of potential pathogens to humans through drinking water. However, the comparative effects of chloramination and chlorination on the occurrence of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) remain unknown. Herein, the antibiotic resistome in water before and after chloramination or chlorination was analyzed through metagenomic sequencing and then verified through quantitative real-time polymerase chain reaction (qPCR). After the treatment of 90 min, chloramination led to higher enrichment of the total relative abundance of intracellular ARGs (iARGs) in water than chlorination, whereas chlorination facilitated the release of more extracellular ARGs (eARGs) than chloramination. According to redundancy and Pearson's analyses, the total concentration of the observed iARGs in the finished water exhibited a strong positive correlation with ammonium nitrogen (NH4+-N) concentration, presenting a linear upward trend with an increase in the NH4+-N concentration. This indicated that NH4+-N is a crucial driving factor for iARG accumulation during chloramination. iARG enrichment ceases if the duration of chloramination is shortened to 40 min, suggesting that shortening the duration would be a better strategy for controlling iARG enrichment in drinking water. These findings emphasized the potential risk of antibiotic resistance after extended chloramination, shedding light on the control of transmission of antibiotic-resistant bacteria through water by optimizing disinfection procedures in DWTPs.
Collapse
Affiliation(s)
- Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hongling Yu
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin, 300240, China
| | - Yongbing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xudong Zhang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin, 300240, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Lin Wang
- Water Quality Monitoring Center of Tianjin Water Group Co. Ltd, Tianjin, 300240, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
38
|
Hilal MG, Han B, Yu Q, Feng T, Su W, Li X, Li H. Insight into the dynamics of drinking water resistome in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121185. [PMID: 36736566 DOI: 10.1016/j.envpol.2023.121185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance (AR) is a serious environmental hazard of the current age. Antibiotic resistance genes (ARGs) are the fundamental entities that spread AR in the environment. ARGs are likely to be transferred from the non-pathogenic to pathogenic microbes that might ultimately be responsible for the AR in humans and other organisms. Drinking water (DW) is the primary interaction route between ARGs and humans. Being the highest producer and consumer of antibiotics China poses a potential threat to developing superbugs and ARGs dissemination. Herein, we comprehensively seek to review the ARGs from dominant DW sources in China. Furthermore, the origin and influencing factors of the ARGs to the DW in China have been evaluated. Commonly used methods, both classical and modern, are being compiled. In addition, the risk posed and mitigation strategies of DW ARGs in China have been outlined. Overall, we believe this review would contribute to the assessment of ARGs in DW of China and their dissemination to humans and other animals and ultimately help the policymakers and scientists in the field to counteract this problem on an emergency basis.
Collapse
Affiliation(s)
- Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
39
|
Karwowska E, Miaśkiewicz-Pęska E, Gołębiewska K, Tomaszewska P. Microbiological Hazards Associated with the Use of Oligocene Waters: A Study of Water Intakes in Warsaw, Poland. Microorganisms 2023; 11:microorganisms11040826. [PMID: 37110249 PMCID: PMC10141681 DOI: 10.3390/microorganisms11040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Oligocene waters are widely recognized as excellent sources of drinking water. Due to the belief in their good quality, the water from Oligocene intakes in Warsaw, Poland, is made available to users without prior treatment or disinfection. The present study aimed at assessing possible microbiological risks associated with the use of this water. The occurrence of microbiological contaminants in selected intakes was evaluated, in addition to an assessment of possible changes in the microbiological quality of the water under typical storage conditions. The possibility of antibiotic resistance in bacteria isolated from Oligocene water samples was also investigated, as was their sensitivity to selected disinfectants. A small number of bacteria-27.0 ± 60.8 CFU/cm3 and 3.0 ± 3.0 CFU/cm3-were found in Oligocene water intakes for psychrophilic and mesophilic bacteria, respectively. Fecal bacteria were not detected. Bacteria present in Oligocene waters showed the ability to multiply intensively during standard water storage; this was especially true for mesophilic bacteria in water stored at room temperature. In some samples, bacterial counts reached 103-104 CFU/cm3 after 48 h. Almost all bacterial isolates were resistant to the commonly used antibiotics: ampicillin, vancomycin and rifampicin. The bacteria were also insensitive to some disinfectants.
Collapse
Affiliation(s)
- Ewa Karwowska
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Ewa Miaśkiewicz-Pęska
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Katarzyna Gołębiewska
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Paulina Tomaszewska
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| |
Collapse
|
40
|
Spatial and temporal distribution characteristics of antibiotics and heavy metals in the Yitong River basin and ecological risk assessment. Sci Rep 2023; 13:4202. [PMID: 36918716 PMCID: PMC10015007 DOI: 10.1038/s41598-023-31471-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
Due to rapid socioeconomic development, antibiotic pollution and heavy metal pollution are receiving increasing amounts of attention. Both antibiotics and heavy metals in the environment are persistent and toxic, and the interactions between the pollutants create potential long-term hazards for the ecological environment and human health as mixed pollutants. In this study, the surface water of the Yitong River in Changchun was used as the research object, and the hazards associated with antibiotics and heavy metals in the surface water were assessed by analyzing the spatial and temporal distribution characteristics of antibiotics and heavy metals and by using ecological risk assessment and human health risk assessment models. The results showed that ofloxacin (OFL) and norfloxacin (NOR) varied seasonally according to the seasonal climate, with total concentrations ranging from 17.65 to 902.47 ng/L and ND to 260.49 ng/L for OFL and NOR, respectively, and from 8.30 to 120.40 μg/L, 1.52 to 113.41 μg/L and 0.03 to 0.04 μg/L for copper (Cu), zinc (Zn) and cadmium (Cd), respectively. In terms of spatial distribution, the concentration of antibiotics in the urban sections, which had intensive human activities, was higher than that in the suburban sections, while the concentration of heavy metals in the suburban sections, which had intensive agricultural operations, was greater than that in the urban section. Ecological risk evaluation showed that NOR and OFL were present in the water bodies at a high-risk level, Cd was at a low pollution level, and the heavy metal Cd was the primary pollutant associated with health risks toward for adults and children, and it was mainly at a medium risk level. Additionally, both antibiotics and heavy metals posed higher health risks for children than for adults.
Collapse
|
41
|
Ma Y, Wang R, Gao C, Han R. Carbon nanotube-loaded copper-nickel ferrite activated persulfate system for adsorption and degradation of oxytetracycline hydrochloride. J Colloid Interface Sci 2023; 640:761-774. [PMID: 36905888 DOI: 10.1016/j.jcis.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
In this study, a new composite (MWCNTs-CuNiFe2O4) prepared by loading magnetic CuNiFe2O4 particles onto carboxylated carbon nanotubes (MWCNTs) through co-precipitation was applied to remove oxytetracycline hydrochloride (OTC-HCl) in solution. The magnetic properties of this composite could address of the issue of difficulty associated with the separation of MWCNTs from mixtures when applied as an adsorbent. In addition to the good adsorption properties recorded for MWCNTs-CuNiFe2O4 towards OTC-HCl, this developed composite could be used to activate potassium persulfate (KPS) for an efficient degradation of OTC-HCl. The MWCNTs-CuNiFe2O4 was systematically characterized using Vibrating Sample Magnetometer (VSM), Electron Paramagnetic Resonance (EPR) and X-ray Photoelectron Spectroscopy (XPS). The influence of dose of MWCNTs-CuNiFe2O4, the initial pH, the amount of KPS and the reaction temperature on the adsorption and degradation of OTC-HCl by MWCNTs-CuNiFe2O4 were discussed. The adsorption and degradation experiments showed that MWCNTs-CuNiFe2O4 exhibited an adsorption capacity of 270 mg·g-1 for OTC-HCl with the removal efficiency 88.6% at 303 K (at an initial pH 3.52, 5 mg KPS, 10 mg composite, 10 mL reaction concentration 300 mg·L-1 of OTC-HCl). The Langmuir and Koble-Corrigan models were used to describe the equilibrium process while the Elovich equation and Double constant model were suitable to describe the kinetic process. The adsorption process was based on single-molecule layer reaction and non-homogeneous diffusion process. The mechanisms of adsorption were complexation and hydrogen bond whereas active species such as SO4‧-, ‧OH and 1O2 were confirmed to have played a major role in the degradation of OTC-HCl. The composite was also found to be very stable with good reusability property. These results confirm the good potential associated with the use of MWCNTs-CuNiFe2O4/KPS system for the removal of some typical pollutants from wastewater.
Collapse
Affiliation(s)
- Yuting Ma
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China.
| | - Rong Wang
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China.
| | - Chenping Gao
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China.
| |
Collapse
|
42
|
Bonetta S, Di Cesare A, Pignata C, Sabatino R, Macrì M, Corno G, Panizzolo M, Bonetta S, Carraro E. Occurrence of antibiotic-resistant bacteria and resistance genes in the urban water cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35294-35306. [PMID: 36527555 DOI: 10.1007/s11356-022-24650-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, blaTEM, and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.
Collapse
Affiliation(s)
- Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Gianluca Corno
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
43
|
Ke Y, Sun W, Jing Z, Zhu Y, Zhao Z, Xie S. Antibiotic resistome alteration along a full-scale drinking water supply system deciphered by metagenome assembly: Regulated by seasonality, mobile gene elements and antibiotic resistant gene hosts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160887. [PMID: 36521611 DOI: 10.1016/j.scitotenv.2022.160887] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Both drinking water treatment processes and distribution can lead to antibiotic resistome variation, yet the variation of antibiotic resistome in the whole drinking water supply system (DWSS) combined with seasonality remains unknown. In this study, microbial community, antibiotic resistome, mobile genetic elements (MGEs) co-existing with antibiotic resistance genes (ARGs) and ARG hosts would be explored along a DWSS for four seasons with metagenome assembly. Multidrug and bacitracin ARGs were dominant ARGs in DWSS. Integrase, plasmids, recombinase and transposase were major MGEs co-existing with ARGs. Filtration and disinfection treatments could alter the ARG relative abundance, mainly via changing the abundance of ARG hosts (Limnohabitans and Polynucleobacter), which was influenced by water total organic carbon (TOC) content. When TOC was relatively high, filtration could proliferate ARGs via promoting antibiotic resistance bacteria (ARB) but chlorine dioxide could decrease ARGs via killing ARB. Filtration played an important role in controlling ARGs by reducing ARB when TOC was relatively low. The stimulation effect of disinfection on ARGs existed in more oligotrophic environment. Distribution could enrich ARGs in higher temperature by increasing MGEs co-occurring with ARGs and diversifying ARG hosts. MGEs co-occurring with ARGs became more abundant and diverse in disinfected water in warmer seasons. Microbial community was the most important factor determining the antibiotic resistome along a DWSS. These findings extend the knowledge about how and why water treatment processes and pipe distribution shape drinking water antibiotic resistome in different seasons.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
44
|
Yuan M, Huang Z, Malakar PK, Pan Y, Zhao Y, Zhang Z. Antimicrobial resistomes in food chain microbiomes. Crit Rev Food Sci Nutr 2023; 64:6953-6974. [PMID: 36785889 DOI: 10.1080/10408398.2023.2177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The safety and integrity of the global food system is in a constant state of flux with persistent chemical and microbial risks. While chemical risks are being managed systematically, microbial risks pose extra challenges. Antimicrobial resistant microorganism and persistence of related antibiotic resistance genes (ARGs) in the food chain adds an extra dimension to the management of microbial risks. Because the food chain microbiome is a key interface in the global health system, these microbes can affect health in many ways. In this review, we systematically summarize the distribution of ARGs in foods, describe the potential transmission pathway and transfer mechanism of ARGs from farm to fork, and discuss potential food safety problems and challenges. Modulating antimicrobial resistomes in the food chain facilitates a sustainable global food production system.
Collapse
Affiliation(s)
- Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
45
|
Wei M, Wang X, Zhou K, Yang R. Binary Adsorption and Migration Simulation of Levofloxacin with zinc at Concentrations Simulating Wastewater on Silty Clay and The Potential Environmental Risk in Groundwater. CHEMOSPHERE 2023; 311:136878. [PMID: 36419267 DOI: 10.1016/j.chemosphere.2022.136878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Migration of soil pollutants can cause groundwater pollution, which is dominated by the soil adsorption of pollutants. Heavy metals and fluoroquinolone antibiotics exist in the soil and form compound pollution, with different adsorption behaviors in the soil. It may make the levofloxacin (LVFX) migration and potential risk of LVFX to groundwater change. Therefore, this research on Zinc (Zn/Zn2+) and LVFX studied the binary adsorption on silty clay in the vadose zone using the batch equilibrium adsorption method. Besides, Hydrus-1D simulate vertical migration. As the results show: (1) Silty clay has excellent storage capacity (adsorption rate>90%) for LVFX and is a natural barrier to reducing groundwater risk; (2) Binary adsorption of LVFX with Zn on silty clay had could be influenced by metallic oxide, pH value, and cation species. The metallic oxides adsorption rate decreased by 10.3%; Compared with single adsorption, Zn2+ promoted the adsorption of LVFX on silty clay, with the exception that the pH value was 2.0; Based on the simulated migration, subtle changes in adsorption may lead to a significant difference in migration and impact on the environmental risk of LVFX to groundwater. This paper proposed three aspects of the research should be strengthened to further develop the potential of silty clay in the prevention and control of groundwater pollution.
Collapse
Affiliation(s)
- Mengxian Wei
- China University of Geosciences (Beijing), Beijing, 450003, China.
| | - Xueshuang Wang
- Northwest Engineering Corporation Limited, Xi'an, Shan Xi Province, 710065, China
| | - Kai Zhou
- Subterranean Hydrology, WuHan University, Wuhan, Hubei Province, 430072, China
| | - Rui Yang
- MCC HuaTian Engineering & Technology corporation, Nanjing, Jiangsu Province, 210000, China
| |
Collapse
|
46
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
47
|
Zhao J, Zhang C, Xu Y, Li X, Lin X, Lin Z, Luan T. Intestinal toxicity and resistance gene threat assessment of multidrug-resistant Shigella: A novel biotype pollutant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120551. [PMID: 36332708 DOI: 10.1016/j.envpol.2022.120551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/02/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Multidrug-resistant bacteria, especially pathogens, pose a serious threat to disease treatment and recovery, but their potential toxicity to animal development is not entirely clear. As the most important site for nutrient absorption, we studied the intestinal microbiome of Xenopus tropicalis by analyzing the effect of multidrug-resistant Shigella on its intestinal health. Unlike in the control, Shigella intake promoted the secretion of neutral mucus and inhibited intestinal development and weight gain. Following 60 days of exposure, intestinal crypt atrophy, intestinal villus shortening, internal cavity enlargement, and external mucosal muscle disintegration were observed. The circular and longitudinal intestinal muscles became thinner with increasing pathogen exposure. In addition, the presence of Shigella altered the expression of multiple cytokines and classic antioxidant enzyme activities in the gut, which may have caused the intestinal lesions that we observed. 16 S rDNA sequencing analysis of intestinal samples showed that exposure to Shigella destroyed the normal gut microbial abundance and diversity and increased the functional bacterial ratio. Notably, the increased abundance of intestinal antibiotic resistance genes (ARGs) may imply that the resistance genes carried by Shigella easily migrate and transmit within the intestine. Our results expand existing knowledge concerning multidrug-resistant Shigella-induced intestinal toxicity in X. tropicalis and provide new insights for the threat assessment of resistance genes carried by drug-resistant pathogens.
Collapse
Affiliation(s)
- Jianbin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Guangdong University of Technology, Jieyang, 515200, China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Guangdong University of Technology, Jieyang, 515200, China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zitao Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Guangdong University of Technology, Jieyang, 515200, China.
| |
Collapse
|
48
|
Wan C, Qu A, Deng L, Liu X, Wu C. Preparation of electrochemical sensor based on glassy carbon electrode and its specificity and sensitivity for directional detection of antibiotic resistance genes spreading in the water environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7904-7913. [PMID: 36048394 DOI: 10.1007/s11356-022-22787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-resistant bacteria/resistance genes (ARB/ARGs) have been paid much attention due to the environmental risks they might bring. They were demonstrated to be widespread in surface water and wastewater. Determining the concentrations of ARGs is the first step to evaluate the degree of pollution. In this study, electrochemical detection technology was studied due to its advantages of low cost, fast response, and satisfactory selectivity. Additionally, the electrochemical sensor technology was used to determine the concentration of a ubiquitous ARG (ampicillin gene blaTEM) in the water environment. A kind of electrochemical sensor was prepared on a glassy carbon electrode (GCE). The results of X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) curves indicated that the single-stranded DNA (ssDNA) probe can be successfully immobilized on the surface of the GCE. In addition, the performance of hybridization between the ssDNA probe and the target DNA at diverse temperatures was compared, of which 35 °C was the optimum. Moreover, the change of charge transfer resistance (ΔRct) for the GCE sensor hybridizing with complementary DNA was much higher than that of DNA with the mismatched base, which indicated that the electrochemical sensor prepared in this study was specific. The sensitivity of the sensor was also proved by the strong correlation between the concentrations of ARGs and ΔRct (with the correlation coefficient (R2) of 0.9905). All in all, this study is meaningful for the comprehend on the detection of ARGs through the electrochemical method.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Aoxuan Qu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
- Shanghai Chengtou Environmental Ecological Restoration Technology Co., Ltd., Shanghai, 200232, China
| | - Liyan Deng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
49
|
Xin H, Gao M, Wang X, Qiu T, Guo Y, Zhang L. Animal farms are hot spots for airborne antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158050. [PMID: 35985594 DOI: 10.1016/j.scitotenv.2022.158050] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 102 to 104 copies/m3 and was accompanied by a considerable intensity of MGEs and HPBs (approximately 103 copies/m3). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 102 in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 104 copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media.
Collapse
Affiliation(s)
- Huibo Xin
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
50
|
Inuwa AB, Mahmood Q, Iqbal J, Widemann E, Shafiq S, Irshad M, Irshad U, Iqbal A, Hafeez F, Nazir R. Removal of Antibiotic Resistance Genes, Class 1 Integrase Gene and Escherichia coli Indicator Gene in a Microalgae-Based Wastewater Treatment System. Antibiotics (Basel) 2022; 11:antibiotics11111531. [PMID: 36358186 PMCID: PMC9686833 DOI: 10.3390/antibiotics11111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Microalgae-based wastewater treatment systems (AWWTS) have recently shown promise in the mitigation of antibiotic resistance genes (ARGs) from municipal wastewater (MWW). However, due to the large number of ARGs that exist in MWW, the use of indirect conventional water quality parameters to monitor ARGs reduction in wastewater would make the process less burdensome and economically affordable. In order to establish a robust relationship between the ARGs and water quality parameters, the current study employed different microalgae strains in monoculture (CM2, KL10) and multi-species combinations (CK and WW) for the MWW treatment under outdoor environmental conditions. The studied genes were quantified in the MWW influents and effluents using real-time PCR. All the cultures substantially improved the physicochemical qualities of the MWW. Out of the 14 genes analyzed in this study, tetO, tetW, tetX and ermB were decreased beyond detection within the first 4 days of treatment in all the cultures. Other genes, including blaCTX, sul1, cmlA, aadA, int1 and uidA were also decreased beyond a 2 log reduction value (LRV). The mobile genetic element, int1, correlated positively with most of the ARGs, especially sul1 (r ≤ 0.99, p < 0.01) and aadA (r ≤ 0.97, p < 0.01). Similarly, the Escherichia coli indicator gene, uidA, correlated positively with the studied genes, especially with aadA, blaCTX, blaTEM and cmlA (r ≤ 0.99 for each, p < 0.01). Some of the studied genes also correlated positively with total dissolved solids (TDS) (r ≤ 0.98, p < 0.01), and/or negatively with total suspended solids (TSS) (r ≤ −0.98, p < 0.01) and pH (r ≤ −0.98, p < 0.01). Among the tested cultures, both monocultures, i.e., KL10 and CM2 were found to be more consistent in gene suppression than their multi-species counterparts. The findings revealed water quality parameters such as TDS, TSS and E. coli as reliable proxies for ARGs mitigation in AWWTS and further highlight the superiority of monocultures over multi-species cultures in terms of gene suppression from the MWW stream.
Collapse
Affiliation(s)
- Abdullahi B. Inuwa
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Microbiology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, Kano 700006, Nigeria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Biology, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, 67084 Strasbourg, France
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond St., London, ON N6A5B8, Canada
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Rashid Nazir
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence:
| |
Collapse
|