1
|
Ali MU, Gulzar MZ, Sattar B, Sehar S, Abbas Q, Adnan M, Sun J, Luo Z, Hu G, Yu R, Wong MH. Silent threats of lead-based paints in toys and households to children's health and development. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136984. [PMID: 39740545 DOI: 10.1016/j.jhazmat.2024.136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Lead (Pb), a highly toxic heavy metal, poses a significant global health risk, particularly to children. Widely used in paint manufacturing for its remarkable corrosion-resistance properties Pb exposure has been linked to severe health issues, including reduced neurotransmitter levels, organ damage, potentially leading to death in extreme cases. Children Are particularly vulnerable, with Pb toxicity primarily affecting the brain, reproductive, kidneys, and cardiovascular systems. Approximately 0.6 million children worldwide suffer from cognitive impairments caused by Pb exposure. Despite varying Pb content regulations across countries, research has found that Pb concentration in paints often exceed permissible levels. A 0.01 mg/dL blood Pb level (BLL) is considered the threshold level as per the World Health Organization. However, recent studies reveal that significant health effects, including cognitive impairments in children, occur even at BLLs < 0.01 mg/dL. This review provides critical insights into the global production and use of Pb-based paints, release mechanisms of Pb, exposure pathways, and safety standards. It also highlights the harmful effects of Pb on human health, particularly in children, and its detailed toxicity mechanisms. Finally, this review identifies critical knowledge gaps and offers perspectives for future research.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Muhammad Zeeshan Gulzar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bisma Sattar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Sajeela Sehar
- Department of Soil and Environmental Science, MNS University of Agriculture Multan, 60000, Pakistan
| | - Qumber Abbas
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland.
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Sun
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong.
| |
Collapse
|
2
|
Madsen J, Dascalos Z, Ramsey K, Mayer F, Wong C, Raposo Z, Hunter R, Reinhart M, Carlson A, Catlin A, Mihelic T, Pfahler Z, Carroll A, Angelich K, Stubler C, Sun D, Betts A, Appel C. Impacts of phosphorus amendments on legacy soil contamination from lead-based paint on a California, USA university campus. CHEMOSPHERE 2024; 362:142645. [PMID: 38897327 PMCID: PMC11441423 DOI: 10.1016/j.chemosphere.2024.142645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Lead (Pb) is one of the most common heavy metal urban soil contaminants with well-known toxicity to humans. This incubation study (2-159 d) compared the ability of bone meal (BM), potassium hydrogen phosphate (KP), and triple superphosphate (TSP), at phosphorus:lead (P:Pb) molar ratios of 7.5:1, 15:1, and 22.5:1, to reduce bioaccessible Pb in soil contaminated by Pb-based paint relative to control soil to which no P amendment was added. Soil pH and Mehlich 3 bioaccessible Pb and P were measured as a function of incubation time and amount and type of P amendment. XAS assessed Pb speciation after 30 and 159 d of incubation. The greatest reductions in bioaccessible Pb at 159 d were measured for TSP at the 7.5:1 and 15:1 P:Pb molar ratios. The 7.5:1 KP treatment was the only other treatment with significant reductions in bioaccessible Pb compared to the control soil. It is unclear why greater reductions of bioaccessible Pb occurred with lower P additions, but it strongly suggests that the amount of P added was not a controlling factor in reducing bioaccessible Pb. This was further supported because Pb-phosphates were not detected in any samples using XAS. The most notable difference in the effect of TSP versus other amendments was the reduction in pH. However, the relationship between increasing TSP additions, resulting in decreasing pH and decreasing Pb bioaccessibility was not consistent. The 22.5:1 P:Pb TSP treatment had the lowest pH but did not significantly reduce bioaccessible Pb compared to the control soil. The 7.5:1 and 15:1 P:Pb TSP treatments significantly reduced bioaccessible Pb relative to the control and had significantly higher pH than the 22.5:1 P:Pb treatment. Clearly, impacts of P additions and soil pH on Pb bioaccessibility require further investigation to decipher mechanisms governing Pb speciation in Pb-based paint contaminated soils.
Collapse
Affiliation(s)
- Julia Madsen
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Dascalos
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Ramsey
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Freddie Mayer
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Connie Wong
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zach Raposo
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Rachel Hunter
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mac Reinhart
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alexandra Carlson
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Austin Catlin
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Tanner Mihelic
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Pfahler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alec Carroll
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kyle Angelich
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Craig Stubler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Dennis Sun
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Betts
- U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Chip Appel
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
3
|
Alqattan ZA, Artiola JF, Walls D, Ramírez-Andreotta MD. Evaluating the portable X-ray fluorescence reliability for metal(loid)s detection and soil contamination status. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:765. [PMID: 39073501 DOI: 10.1007/s10661-024-12893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Marginalized communities experience barriers that can prevent soil monitoring efforts and knowledge transfer. To address this challenge, this study compared two analytical methods: portable X-ray fluorescence spectroscopy (pXRF, less time, cost) and inductively coupled plasma mass spectrometry (ICP-MS, "gold standard"). Surface soil samples were collected from residential sites in Arizona, USA (N = 124) and public areas in Troy, New York, USA (N = 33). Soil preparation differed between groups to account for community practice. Statistical calculations were conducted, paired t test, Bland-Altman plot, and a two-way ANOVA indicated no significant difference for As, Ba, Ca, Cu, Mn, Pb, and Zn concentrations except for Ba in the t test. Iron, Ni, Cr, and K were statistically different for Arizona soils and V, Ni, Fe, and Al concentrations were statistically different for New York soils. Zinc was the only element with high R2 and low p value. Pollution load index (PLI), enrichment factors (EF), and geo-accumulation index (Igeo) were calculated for both methods using U.S. Geological Survey data. The PLI were > 1, indicating soil pollution in the two states. Between pXRF and ICP-MS, the Igeo and EF in Arizona had similar degree of contamination for most elements except Zn in garden and Pb in yard, respectively. For New York, the Igeo of As, Cu, and Zn differed by only one classification index between the two methods. The pXRF was reliable in determining As, Ba, Ca, Cu, Mn, Pb, and Zn in impacted communities. Therefore, the pXRF can be a cost-effective alternative to using ICP-MS techniques to screen soil samples for several environmentally relevant contaminants to protect environmental public health.
Collapse
Affiliation(s)
- Zain Alabdain Alqattan
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Janick F Artiola
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Dan Walls
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA
- Department of Science and Technology Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mónica D Ramírez-Andreotta
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA.
- Division of Community, Mel and Enid Zuckerman College of Public Health, University of Arizona, Environment & Policy, Tucson, AZ, USA.
| |
Collapse
|
4
|
Sun R, Gao S, Zhang K, Cheng WT, Hu G. Recent advances in alginate-based composite gel spheres for removal of heavy metals. Int J Biol Macromol 2024; 268:131853. [PMID: 38679268 DOI: 10.1016/j.ijbiomac.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.
Collapse
Affiliation(s)
- Ruiyi Sun
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Sanshuang Gao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Kai Zhang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Wen-Tong Cheng
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
5
|
Luo S, Chen R, Han J, Zhang W, Petropoulos E, Liu Y, Feng Y. Urban green space area mitigates the accumulation of heavy metals in urban soils. CHEMOSPHERE 2024; 352:141266. [PMID: 38316278 DOI: 10.1016/j.chemosphere.2024.141266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Despite that the heavy metals in urban soils pose a threat to public health, the critical factors that influence their concentrations in urban soils are not well understood. In this study, we conducted a survey of surface soil samples from urban green spaces in Shanghai, to analyze the concentrations of the key heavy metals. The results showed that Zn was the most abundant metal with an average concentration of 122.99 mg kg-1, followed by Pb (32.72 mg kg-1) and Cd (0.23 mg kg-1). All concentrations were found to be below the risk screening values defined by the National Environmental Quality Standards for soils of development land in China (GB36600-2018), indicating no current risk in Shanghai. However, there was a clear accumulation of heavy metals, as the mean concentrations were significantly higher than the background values. Furthermore, we explored the relationships between key heavy metals with population density, GDP and green space area. Both Spearman correlation and Random Forest analysis indicated that per capita green space area (pGSA) and population density were the most crucial factors influencing the status of heavy metals in urban soils, unlike edaphic factors e.g. SOM content in farmland soils. Specifically, there was a significantly positive linear correlation between heavy metal concentrations and population density, with correlation coefficients ranging from 0.3 to 0.4. However, the correlation with pGSA was found to be non-linear. The nonlinear regression analysis revealed threshold values between heavy metals concentrations and pGSA (e.g Zn 22.22 m2, Pb 24.92 m2, and Cd 25.92 m2), with a sharp reduction in heavy metal concentrations below the threshold and a slow reduction above the threshold. It suggests that an increase in per capita green space area can mitigate the accumulation of heavy metals caused by growing population density, but the effect is limited after the threshold. Our findings not only provide insights into the distribution patterns of heavy metals in the urban soils at the local scale, but also contribute to the urban greening at the global scale and offer guidance for city planning in the face of increasing population densities over the coming decades.
Collapse
Affiliation(s)
- Shuhong Luo
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, 202150, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruirui Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jigang Han
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, 202150, China; Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Forestry and Grassland Innovation Alliance on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, 200232, China.
| | - Weiwei Zhang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Evangelos Petropoulos
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Stantec, UK, Newcastle upon Tyne, NE1 3DY, UK
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
6
|
Kim SW, Song WY, Waldman WR, Rillig MC, Kim TY. Toxicity of Aged Paint Particles to Soil Ecosystems: Insights from Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:231-241. [PMID: 38128904 DOI: 10.1021/acs.est.3c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Despite the extensive global consumption of architectural paint, the toxicological effects of aged exterior paint particles on terrestrial biota remain largely uncharacterized. Herein, we assessed the toxic effect of aged paint particles on soil environments using the nematode Caenorhabditis elegans (C. elegans) as a test organism. Various types of paint particles were generated by fragmentation and sequential sieving (500-1000, 250-500, 100-250, 50-100, 20-50 μm) of paint coatings collected from two old residential areas. The paint particles exerted different levels of toxicity, as indicated by a reduction in the number of C. elegans offspring, depending on their size, color, and layer structure. These physical characteristics were found to be closely associated with the chemical heterogeneity of additives present in the paint particles. Since the paint particle sizes were larger than what C. elegans typically consume, we attributed the toxicity to leachable additives present in the paint particles. To assess the toxicity of these leachable additives, we performed sequential washings of the paint particles with distilled water and ethanol. Ethanol washing of the paint particles significantly reduced the soil toxicity of the hydrophobic additives, indicating their potential environmental risk. Liquid chromatography-mass spectrometry analysis of the ethanol leachate revealed the presence of alkyl amines, which exhibited a high correlation with the toxicity of the paint particles. Further toxicity testing using an alkyl amine standard demonstrated that a paint particle concentration of 1.2% in soil could significantly reduce the number of C. elegans offspring. Our findings provide insights into the potential hazards posed by aged paint particles and their leachable additives in the terrestrial environment.
Collapse
Affiliation(s)
- Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany
| | - Woo-Young Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Walter R Waldman
- Science and Technology Center for Sustainability, Federal University of São Carlos, 18052-780 Sorocaba, SP, Brazil
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Hwang YH, Wu HC, Shyu MK, Lee CN, Lin SY, Chen PC, Chuang HY, Lin PW, Wu TH, Chen YT. Temporal transition trends of cord blood lead levels in various human development index countries and in the Taipei metropolitan area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121900. [PMID: 37244535 DOI: 10.1016/j.envpol.2023.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Since low-level lead exposure is still of concern for neonates, it is worth further characterizing the temporal transition trends of cord blood lead levels (CBLLs) globally and locally in Taipei, Taiwan, after the cessation of leaded gasoline use. A literature review on CBLLs around the world was performed by searching three databanks, i.e., PubMed, Google Scholar and Web of Science, with the search keywords "cord blood" combined with "lead" or "Pb" for studies published from 1975 to May 2021. In total, 66 articles were included. Linear regressions for the reciprocal of sample size weighed CBLLs against calendar year presented a high r2 value (0.722) for the very high Human Development Index (HDI) countries and a moderate r2 value (0.308) for the combined high and medium HDI countries. The predicted CBLLs in 2030 and 2040 were 6.92 (95% CI: 6.02-7.81) μg/L and 5.85 (95% CI: 5.04-6.66) μg/L, respectively, for the very high HDI countries and 13.10 (95% CI: 7.12-19.09) μg/L and 10.63 (95% CI: 5.37-15.89) μg/L, respectively, for the combined high and medium HDI countries. To characterize the CBLL transitions in the Great Taipei metropolitan area, data from five studies conducted from 1985 to 2018 were employed. Although the results of the early four studies indicated that the Great Taipei metropolitan area did not reach the pace in CBLL reduction among the very high HDI countries, the CBLLs of the latest study during 2016-2018 were pretty low (8.1 ± 4.5 μg/L), approximately 3 years in advance of the very high HDI countries as one group to reach this low CBLL. In conclusion, further effective reduction in environmental lead exposure is challenging and must be based on the efforts from the aspects reflected by the HDI index compositions, i.e., economics, education and health, mostly implying health disparity and inequality.
Collapse
Affiliation(s)
- Yaw-Huei Hwang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC.
| | - Hui-Chu Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Kwang Shyu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taiwan, ROC; National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, ROC
| | - Hung-Yi Chuang
- Department of Public Health and Environmental Medicine, Kaohsiung Medical University, Taiwan, ROC; Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Taiwan, ROC
| | - Pei-Wen Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Tso-Hsien Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Tzu Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Turner A, Filella M. Lead and chromium in European road paints. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120492. [PMID: 36279993 DOI: 10.1016/j.envpol.2022.120492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Lead chromate was commonly employed as a pigment in coloured road markings until restrictions led to the development of safer alternatives. In this study, the presence and concentrations of Pb and Cr have been determined in 236 road paints of various colours sampled from streets, highways, footways and carparks from eleven European countries. According to energy-dispersive X-ray fluorescence spectrometry, Pb was detected (>10 mg kg-1) in 148 samples at concentrations up to 17.2% by weight, and above 1000 mg kg-1 yellow was the dominant paint colour. Lead concentrations on an area basis varied from 0.02 to 8.46 mg cm-2 and the metal was located at different depths amongst the samples, suggesting that formulations had been painted both recently and historically (and overpainted). Chromium was detected (>5 to 50 mg kg-1) in 81 samples at concentrations between 20 and 20,000 mg kg-1 and most often in yellow paints, and concentrations co-varied with those of Pb. These observations, and results of scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, suggested that heterogeneously dispersed PbCrO4 was the dominant, but not the only, Pb-based pigment in the samples. Although there were significant international differences in frequency of Pb detection and median Pb concentrations, overall, and despite various, albeit complex, regulations, recent or extant road paint pigmented with Pb and Cr remains a pervasive environmental problem and a potential health risk in many European countries.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205, Geneva, Switzerland.
| |
Collapse
|
9
|
Peng C, Zhang K, Wang M, Wan X, Chen W. Estimation of the accumulation rates and health risks of heavy metals in residential soils of three metropolitan cities in China. J Environ Sci (China) 2022; 115:149-161. [PMID: 34969445 DOI: 10.1016/j.jes.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal concentrations in urban soils are likely to increase over time because of continuous urbanization and heavy metal emissions. To estimate the accumulation rates of heavy metals in urban soils, we collected soil samples from residential areas with different building ages in the metropolitan cities of Shanghai, Shenzhen, and Beijing, China. Heavy metal concentrations in the soils varied among the cities and were primarily affected by soil parent material and the intensity of anthropogenic sources. Regression analyses revealed that the accumulation rates of Cd and Cu in the soils ranged from 0.0034 to 0.0039 mg/(kg•year) and 0.343 to 0.391 mg/(kg•year), respectively, and were similar across the three cities, while accumulation rates of Zn and Pb in Shanghai were higher than those in Shenzhen and Beijing. The higher accumulation rates of Zn and Pb in Shanghai can be explained by differences in city history and industrial structures among the cities. Residential soils with high health risks posed by the heavy metals were mostly collected from old towns of Shanghai because of high Pb content in the areas. Although recent urbanization resulted in elevated concentrations of Cd, Cu, Zn, and Pb in the residential soils, the effect on the total health risks of residents exposed to the soils was negligible.
Collapse
Affiliation(s)
- Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Kai Zhang
- State key laboratory of urban and regional ecology, Research center for eco-environmental sciences, Chinese academy of sciences, Beijing 100085, China
| | - Meie Wang
- State key laboratory of urban and regional ecology, Research center for eco-environmental sciences, Chinese academy of sciences, Beijing 100085, China
| | - Xinxing Wan
- Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Weiping Chen
- State key laboratory of urban and regional ecology, Research center for eco-environmental sciences, Chinese academy of sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Characteristics and Health Risk Assessment of Mercury Exposure via Indoor and Outdoor Household Dust in Three Iranian Cities. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aims to increase our current knowledge on the concentration of particulate-bound mercury (PBM) in urban environments of three Iranian cities, where high concentrations of dust particles can act as carriers for mercury transport and deposition. A total of 172 dust samples were collected from Ahvaz, Asaluyeh, and Zabol residential houses and in outdoor air and were analyzed for total mercury content. Ahvaz is a highly industrialized city with large metallurgical plants, refineries, and major oil-related activities, which were assumed to contribute to elevated contents of PBM in this city. Very high levels of Hg contamination in Ahvaz indoor dust samples were calculated (Contamination Factor: CF > 6). Sampling sites in Asaluyeh are influenced by Hg emissions from the South Pars Gas Field. However, the results revealed a relatively lower concentration of PBM in Asaluyeh, with a low-to-moderate level of Hg contamination. This is likely ascribed to the lower content of total mercury in hydrocarbon gases than crude oil, in addition to the absence of metal smelting plants in this city compared to Ahvaz. Zabol, as a city devoid of industrial activity, presented the lowest levels of PBM concentration and contamination. Indoor dust in Ahvaz showed considerable potential to cause a non-carcinogenic health risk for children, mainly through the inhalation of PBM, while the health risk for other cities was below safe limits. The trend of health risk was found in the order of indoor > outdoor and children > adults in all studied cities.
Collapse
|
11
|
Wang Z, Wade AM, Richter DD, Stapleton HM, Kaste JM, Vengosh A. Legacy of anthropogenic lead in urban soils: Co-occurrence with metal(loids) and fallout radionuclides, isotopic fingerprinting, and in vitro bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151276. [PMID: 34717995 DOI: 10.1016/j.scitotenv.2021.151276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 05/25/2023]
Abstract
Anthropogenic lead (Pb) in soils poses risks to human health, particularly to the neuropsychological development of exposed children. Delineating the sources and potential bioavailability of soil Pb, as well as its relationship with other contaminants is critical in mitigating potential human exposure. Here, we present an integrative geochemical analysis of total elemental concentrations, radionuclides of 137Cs and 210Pb, Pb isotopic compositions, and in vitro bioaccessibility of Pb in surface soils sampled from different locations near Durham, North Carolina. Elevated Pb (>400 mg/kg) was commonly observed in soils from urban areas (i.e., near residential house foundation and along urban streets), which co-occurred with other potentially toxic metal(loids) such as Zn, Cd, and Sb. In contrast, soils from city parks and suburban areas had systematically lower concentrations of metal(loids) that were comparable to geological background. The activities of 137Cs and excess 210Pb, coupled with their correlations with Pb and co-occurring metal(loids) were used to indicate the persistence and remobilization of historical atmospherically deposited contaminants. Coupled with total Pb concentrations, the soil Pb isotopic compositions further indicated that house foundation soils had significant input of legacy lead-based paint (mean = 1.1895 and 2.0618 for 206Pb/207Pb and 208Pb/206Pb, respectively), whereas urban streetside soils exhibited a clear mixed origin, dominantly of legacy leaded gasoline (1.2034 and 2.0416) and atmospheric deposition (1.2004-1.2055 and 2.0484-2.0525). The in vitro bioaccessibility of Pb in contaminated urban soils furthermore revealed that more than half of Pb in the contaminated soils was potentially bioavailable, whose Pb isotope ratios were identical to that of bulk soils, demonstrating the utility of using Pb isotopes for tracking human exposure to anthropogenic Pb in soils and house dust. Overall, this study demonstrated a holistic assessment for comprehensively understanding anthropogenic Pb in urban soils, including its co-occurrence with other toxic contaminants, dominant sources, and potential bioavailability upon human exposure.
Collapse
Affiliation(s)
- Zhen Wang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Anna M Wade
- U.S. Environmental Protection Agency (EPA), Cincinnati, OH 45268, USA
| | - Daniel D Richter
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | | - James M Kaste
- Department of Geology, William & Mary, Williamsburg, VA 23185, USA
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Klinčić D, Tariba Lovaković B, Jagić K, Dvoršćak M. Polybrominated diphenyl ethers and the multi-element profile of house dust in Croatia: Indoor sources, influencing factors of their accumulation and health risk assessment for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149430. [PMID: 34399331 DOI: 10.1016/j.scitotenv.2021.149430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Given the large amount of time people spend indoors today, human exposure to indoor contaminants causes increasing public health concerns. The present study reports for the first time the levels of 7 polybrominated diphenyl ether (PBDE) congeners, and 18 trace elements measured in dust samples collected in 68 households from Zagreb, Croatia. Based on the obtained data from dust analysis and the questionnaire on the house characteristics and habits of the residents, we aimed to assess the possible indoor sources of PBDEs/elements, and the associated health risks. Mass concentrations of ΣPBDE ranged from 0.16 and 200.09 ng g-1 dust (median 4.19 ng g-1 dust). The most frequently detected congeners were BDE-99 and BDE-183 found in >88% of samples, while for trace elements, Al, Fe, Zn, Mn and Cu were found at the highest concentrations (enumerated in the descending order). The regression analysis indicated that renovation, number of residents and hours spent using electronic devices are significant predictors for determining PBDE dust concentrations, while the house age, and the house area were identified as the most important contributors for most trace elements. Our health risk assessment considering dust ingestion and dermal absorption of analyzed dust indicated that no adverse health effects are expected in toddlers and adults from exposure to PBDEs or trace elements in house dust. However, calculating the worst case exposure scenario based on the maximum measured concentrations and high dust intake rates, it was estimated that there is a risk of potential adverse health effects for Co (HI > 1). Even though the cases of high exposure to toxic elements from dust are sporadic, and not common among the general population, this exposure scenario should be included whenever assessing the background exposure of children.
Collapse
Affiliation(s)
- Darija Klinčić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia.
| | - Karla Jagić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia
| | - Marija Dvoršćak
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia
| |
Collapse
|
13
|
Torres FG, De-la-Torre GE. Environmental pollution with antifouling paint particles: Distribution, ecotoxicology, and sustainable alternatives. MARINE POLLUTION BULLETIN 2021; 169:112529. [PMID: 34058498 DOI: 10.1016/j.marpolbul.2021.112529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Antifouling paint particles (APPs) are a type of paint particle loaded with toxic biocidal compounds. The present review focused on the current knowledge in respect of the abundance, distribution, and ecotoxicological effects of APPs in the marine environment. Also, the recent advances in nontoxic biobased antifouling paints were discussed as potential alternatives to contemporary marine coatings. The presence of APPs is mainly associated with boat maintenance in boatyards and port areas. Conventional microplastic assessments showed a significant contribution of paint particles to the morphological composition. Moreover, recent ecotoxicological studies demonstrated that environmental concentrations of APPs induce mortality (LC50) in sediment dwellers and macroinvertebrates. Novel biocides from natural sources and biopolymer binders in the formulation of antifouling paints are proposed as potential alternatives to conventional antifouling paints. The toxicity of most natural biocides is negligible to nontargeted species, while biopolymers are expected to prevent the formation of APPs.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, 15088 Lima, Peru.
| | | |
Collapse
|
14
|
Turner A. Paint particles in the marine environment: An overlooked component of microplastics. WATER RESEARCH X 2021; 12:100110. [PMID: 34401707 PMCID: PMC8350503 DOI: 10.1016/j.wroa.2021.100110] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 05/22/2023]
Abstract
Because paint particles consist of a resin (polymer) combined with one or more additives, they bear compositional similarities with microplastics. Despite these shared characteristics, however, paint particles are often undetected, deliberately overlooked or evade classification in the pool of micro-debris (all synthetic debris of < 5 mm in size), and in particular in the marine setting where an extensive body of microplastic literature exists. Accordingly, the present paper provides a critical insight into the physico-chemical properties, sources, distributions, behaviour and toxicity of paint particles in the marine environment. Paint particles contain a greater proportion of additives than plastics and, consequently, are more brittle, angular, opaque, dense, heterogeneous and layered than microplastics of equivalent dimensions. Land-based sources of paint particles, including deteriorating or disturbed coatings on roads and building, are transported to the ocean with other microplastics via urban runoff, water treatment facilities and the atmosphere. However, inputs of paint particles are enhanced significantly and more directly by the disturbance, erosion and weathering of coatings on coastal structures, boats and ships. Estimates of paint particle emissions to the marine environment vary widely, with calculated contributions to the total synthetic micro-debris input as high as 35%. Upper estimates are consistent with available (albeit limited) quantitative information on the relative abundance of paint particles amongst synthetic material captured by sea surface trawls and ingested by marine animals. Of greatest environmental concern is the high chemical toxicity of paint particles compared with similarly-sized microplastics and other synthetic debris. This results from the contemporary and historical use of high concentrations of hazardous inorganic additives in marine antifouling and land-based paints, and the relatively ready mobilisation of harmful ions, like Cu+/Cu2+, TBT+, Pb2+ and CrO4 2-, from the matrix. Recommendations arising from this review include greater use of particulate capturing devices, waste collection systems and recycling facilities during paint disturbance, raising awareness of the potential impacts of discarded paint amongst users, and alerting the microplastic community to the significance of paint particles and developing means by which they are isolated from environmental samples.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus Plymouth PL4 8AA, UK
| |
Collapse
|
15
|
Shan B, Hao R, Xu H, Li J, Li Y, Xu X, Zhang J. A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30486-30498. [PMID: 33900555 DOI: 10.1007/s11356-021-14045-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a toxic metal originating from natural processes and anthropogenic activities such as coal power plants, mining, waste gas fuel, leather whipping, paint, and battery factories, which has adverse effects on the ecosystem and the health of human beings. Hence, the studies about investigating the remediation of Pb pollution have aroused extensive attention. Microbial remediation has the advantages of lower cost, higher efficiency, and less impact on the environment. This paper represented a review on the mechanism of biomineralization using microbial-induced precipitation for immobilizing Pb(II), including microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and direct mineralization. The main mechanisms including biosorption, bioaccumulation, complexation, and biomineralization could decrease Pb(II) concentrations and convert exchangeable state into less toxic residual state. We also discuss the factors that govern methods for the bioremediation of Pb such as microbe characteristics, pH, temperature, and humic substances. Based on the above reviews, we provide a scientific basis for the remediation performance of microbial-induced precipitation technique and theoretical guidance for the application of Pb(II) remediation in soils and wastewater.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yinhuang Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiyang Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
O'Shea MJ, Vigliaturo R, Choi JK, McKeon TP, Krekeler MPS, Gieré R. Alteration of yellow traffic paint in simulated environmental and biological fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141202. [PMID: 32853929 PMCID: PMC7657991 DOI: 10.1016/j.scitotenv.2020.141202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 05/27/2023]
Abstract
Pollution from heavy metals in urban environments is a topic of growing concern because many metals, including Pb and Cr, are a human health hazard. Exposure to Pb and Cr has been linked to the inhibition of neurological development as well as toxic effects on many organs. Yellow traffic paint (YTP) is a mixture that contains organic polymers, binders, and pigments, which in some cases consist of crocoite (PbCrO4) that may be coated by silica. The primary aim of this study was to investigate the behavior of the crocoite pigment grains within YTP and their silica coatings in simulated environmental and human body conditions. To do this, both YTP and asphalt were collected in Philadelphia, PA, USA. These samples as well as a standard PbCrO4 were investigated with powder X-ray diffraction, X-ray fluorescence, environmental scanning electron microscopy (ESEM), transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Using this multi-analytical approach, mineral phases were determined in the YTP, their shape, dimensional distributions, crystallinity, and chemical composition, as well as elemental distributions before and after experimental interactions. Three batch dissolution experiments with YTP, asphalt, and standard PbCrO4 were performed to simulate ingestion, inhalation, and environmental interaction with rainwater. Elemental releases were determined with inductively coupled plasma-optical emission spectrometry, and results indicated that little (ingestion) to no (environmental and inhalation) Pb and Cr were leached from the YTP during the three experimental procedures. This is likely due to the silica coating that encapsulates the crocoite particles, which persisted during all interactions. The ESEM results for YTP showed dimensional reductions after interactions with all three fluids. The silica coating must be further explored to determine how it breaks down in real environmental conditions.
Collapse
Affiliation(s)
- Michael J O'Shea
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.
| | - Ruggero Vigliaturo
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| | - Jessica K Choi
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| | - Thomas P McKeon
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| | - Mark P S Krekeler
- Department of Geology and Environmental Earth Science, Miami University Hamilton, Hamilton, OH 45011, USA; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| | - Reto Gieré
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| |
Collapse
|
17
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
18
|
Level, Source, and Spatial Distribution of Potentially Toxic Elements in Agricultural Soil of Typical Mining Areas in Xiangjiang River Basin, Hunan Province. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165793. [PMID: 32785185 PMCID: PMC7459521 DOI: 10.3390/ijerph17165793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
The concentrations, chemical availability, distribution, and sources of potentially toxic elements (PTEs) in the soil of Xiangjiang Basin in Hunan Province, China were investigated at 85 sites. The highest mean concentrations of Cd, Cu, Zn, As, and Pb were observed in Hengyang, whereas those for Mn, Co, and Hg were observed in Changde. The pollution index values followed the order: Cd > Hg > Cu > Zn > As > Pb; the mean geo-accumulation index values were in the order: Cd > Hg > Pb > Cu > Zn > As > Co > Mn. Cd was associated with moderate contaminated level, Hg and Pb were associated with moderate contaminated to uncontaminated level, and Cu, Zn, As, Co, and Mn were associated with uncontaminated level of pollution. Furthermore, 64.5% of Cd was water-soluble and exhibited exchangeable fractions; its chemical availability posed a risk to the ecosystem. Spatial analysis, principal component analysis, and a positive matrix factorization model were used to assess the PTE sources. Four principal components contributed to 88.8% of the 8 PTEs concentrations. Mining, smelting, industrial, and agricultural activities, alongside sewage irrigation, the use of agrochemicals, and vehicular emissions are the possible anthropogenic sources that pollute agricultural products and threaten human health in the Xiangjiang Basin.
Collapse
|
19
|
Chang X, Li YX. Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114307. [PMID: 32443187 DOI: 10.1016/j.envpol.2020.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an important pollutant and it is of significance to explore the Pb distribution, influencing factors and health risk. Pb concentration and mass load per unit area in 385 street dust samples collected from 19 cities in China were determined during 2011-2013. The results show that the Pb concentration are 68.8, 105.4, 41.7, 49.7, 75.6, 81.7, 131.9, 67.5, 109.3, 164.1, 74.8, 66.4, 99.8, 58.4, 114.0, 59.6, 103.7, 55.4 and 80.4 for Beijing, Chengdu, Daqing, Harbin, Jilin, Jinan, Kunming, Lanzhou, Luoyang, Panzhihua, Qingdao, Yinchuan, Guangzhou, Tangshan, Xi'an, Guangyuan, Nanjing, Taiyuan and Tianjin, respectively. The Pb pollution level of urban street dust varies among cities in the range of 1.72-5.56 times higher than soil background values. The allometric function can fit the change in Pb concentration with particle size well. The medium-sized (38-120 μm) particles contributed 60.2%-80.4% to the Pb load and should be highlighted when selecting street dust management techniques. Influenced by the distribution of Pb ore, the Pb concentration of urban street dust in China shows obvious regional differences, with value in the south 112% higher than that in the north. Among all kinds of mining types, metal-related mining activities discharge a large amount of Pb dust in the process of crushing and smelting, thus contributing most to the Pb load. The Pb load was also affected by transportation. The relationship between Pb load and gross domestic product (GDP) was described with the environmental Kuznets curve (EKC) model, which indicated that the Pb emissions of most cities were still increasing. Finally, the human health risk assessment model with adjusted parameters showed that the Pb risk of all cities was below the threshold. Despite all this, given the EKC law of Pb emission, long-term follow-up assessments are needed.
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
20
|
A Colorimetric Aptamer Sensor Based on the Enhanced Peroxidase Activity of Functionalized Graphene/Fe3O4-AuNPs for Detection of Lead (II) Ions. Catalysts 2020. [DOI: 10.3390/catal10060600] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lead (II) is regarded as one of the most hazardous heavy metals, and lead contamination has a serious impact on food chains, human health, and the environment. Herein, a colorimetric aptasensor based on the graphene/Fe3O4-AuNPs composites with enhanced peroxidase-like activity has been developed to monitor lead ions (Pb2+). In short, graphene/Fe3O4-AuNPs were fabricated and acted as an enzyme mimetic, so the color change could be observed by chromogenic reaction. The aptamer of Pb2+ was decorated on the surface of the amine magnetic beads by streptavidin–biotin interaction, and the complementary strands of the aptamer and target Pb2+ competed for the binding Pb2+ aptamer. In the presence of Pb2+, aptamers bonded the metal ions and were removed from the system by magnetic separation; the free cDNA was adsorbed onto the surface of the graphene/Fe3O4-AuNPs composites, thus inhibiting the catalytic activity and the color reaction. The absorbance of the reaction solution at 652 nm had a clear linear correlation with the Pb2+ concentration in the range of 1–300 ng/mL, and the limit of detection was 0.63 ng/mL. This assay is simple and convenient in operation, has good selectivity, and has been used to test tap water samples, which proves that it is capable for the routine monitoring of Pb2+.
Collapse
|
21
|
Zhang M, Wang X, Liu C, Lu J, Qin Y, Mo Y, Xiao P, Liu Y. Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the Yellow River using PMF analysis combined with multiple analysis methods-using Zhongwei city, Ningxia, as an example. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16203-16214. [PMID: 32112358 DOI: 10.1007/s11356-020-07986-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In recent years, with the frequent occurrences of heavy metal (HM) pollution in agriculture, the problem of HM pollution in farmland soil, especially in the areas irrigation by the Yellow River, has been attracted increasing attention because of the complex sources of pollution. Qualitative identification of pollution sources and quantification of their contributions to HMs in soil are the key links in the prevention and control of HM pollution. The contents of 11 heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sn, V, and Zn) in the rhizosphere soil of the Ningxia irrigation area were determined by inductively coupled plasma mass spectrometry (ICP-MS). Multiple methods were used for source identification, including positive matrix factorization (PMF) analysis combined with multiple other analyses (single factor index method (Pi), coefficient of variation(CV), correlation analysis(CA), enrichment factor(EF), and principal component analysis(PCA)). The results showed that (1) the over-standard rates of As, Cd, Cr, Mn, Pb, Sn, and Zn in the study area were 100%, of which Cd was seriously polluted, while As, Zn, and Sn were moderately polluted. (2) The HM contributions from irrigation and silt soil formed by the Yellow River sediment were the highest (42.45%), followed by the smelting industry and traffic pollution (16.06%). (3) The contribution of agricultural pollution to HMs in the region was 15.54%, in which As was mainly from pesticides and Cd was mainly from fertilizers.
Collapse
Affiliation(s)
- Min Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xueping Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535011, China
| | - Chang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jiayu Lu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuhong Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yunkan Mo
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Pengjun Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
22
|
Meza-Figueroa D, Barboza-Flores M, Romero FM, Acosta-Elias M, Hernández-Mendiola E, Maldonado-Escalante F, Pérez-Segura E, González-Grijalva B, Meza-Montenegro M, García-Rico L, Navarro-Espinoza S, Santacruz-Gómez K, Gallego-Hernández A, Pedroza-Montero M. Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136481. [PMID: 31954252 DOI: 10.1016/j.scitotenv.2019.136481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 μm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg-1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34-100%), arsenic (As = 14.7-100%), copper (Cu = 17.9-100%), and zinc (Zn = 35-52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 μm are dominant, particularly particles with a size range of 500-600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Marcelino Barboza-Flores
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Francisco M Romero
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | - Mónica Acosta-Elias
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ernesto Hernández-Mendiola
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | | | - Efrén Pérez-Segura
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Belem González-Grijalva
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | | | - Leticia García-Rico
- Center of Research in Food and Development, A.C. Carretera a la Victoria km 0.6, Hermosillo, Sonora 83304, Mexico
| | - Sofía Navarro-Espinoza
- Nanotechnology PhD Program, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Karla Santacruz-Gómez
- Physics Department, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ana Gallego-Hernández
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
23
|
Bao L, Wang S, Sun H, Huang W, Wang G, Nan Z. Assessment of source and health risk of metal(loid)s in indoor/outdoor dust of university dormitory in Lanzhou City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32333-32344. [PMID: 31599384 DOI: 10.1007/s11356-019-06365-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The pollution of metal(loid)s from indoor and outdoor dust is of great concern because of its impact on human health. The concentrations of nine metal(loid)s (Mn, Cu, Zn, Cd, Cr, Ni, Pb, Hg, and As) were investigated in indoor and outdoor dust samples of university dormitories in winter and summer seasons in Lanzhou City, China. This study revealed the variations of metal(loid) concentrations in dust samples with the seasonal scale and floor heights. The results showed that the concentrations of some metal(loid)s (Cu, Cd, Ni, Pb, and As) in dust samples collected in winter were higher than those of the dust samples collected in summer. The Hg in indoor dust was mainly derived from building materials and indoor human activities. Additionally, the concentrations of some metal(loid)s (Hg, Mn, As, Cu, Cd) in dust samples varied with the height of the floors from ground level. The concentrations of Hg in dust samples collected on upper floors (9-16th floors) were higher than those collected on down floors (1-8th floors), while Mn and As were the opposite of that. Cu and Cd concentrations increased as the floor height increased. Our results demonstrated that the adults and the children (particularly the children) endured potential health risks due to exposure to metal(loid)s from both indoor and outdoor dust in the studied area.
Collapse
Affiliation(s)
- Lili Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Huiling Sun
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wen Huang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guanxin Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongren Nan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
24
|
Ma L, Abuduwaili J, Liu W. Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193741. [PMID: 31590253 PMCID: PMC6801520 DOI: 10.3390/ijerph16193741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/07/2022]
Abstract
A geographically weighted regression and classical linear model were applied to quantitatively reveal the factors influencing the spatial distribution of potentially toxic elements of forty-eight surface soils from Bosten Lake basin in Central Asia. At the basin scale, the spatial distribution of the majority of potentially toxic elements, including: cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), thallium (Tl), vanadium (V), and zinc (Zn), had been significantly influenced by the geochemical characteristics of the soil parent material. However, the arsenic (As), cadmium (Cd), antimony (Sb), and mercury (Hg) have been influenced by the total organic matter in soils. Compared with the results of the classical linear model, the geographically weighted regression can significantly increase the level of simulation at the basin spatial scale. The fitting coefficients of the predicted values and the actual measured values significantly increased from the classical linear model (Hg: r2 = 0.31; Sb: r2 = 0.64; Cd: r2 = 0.81; and As: r2 = 0.68) to the geographically weighted regression (Hg: r2 = 0.56; Sb: r2 = 0.74; Cd: r2 = 0.89; and As: r2 = 0.85). Based on the results of the geographically weighted regression, the average values of the total organic matter for As (28.7%), Cd (39.2%), Hg (46.5%), and Sb (26.6%) were higher than those for the other potentially toxic elements: Cr (0.1%), Co (4.0%), Ni (5.3%), V (0.7%), Cu (18.0%), Pb (7.8%), Tl (14.4%), and Zn (21.4%). There were no significant non-carcinogenic risks to human health, however, the results suggested that the spatial distribution of potentially toxic elements had significant differences.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Wen Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
25
|
Turnbull R, Rogers K, Martin A, Rattenbury M, Morgan R. Human impacts recorded in chemical and isotopic fingerprints of soils from Dunedin City, New Zealand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:455-469. [PMID: 30991335 DOI: 10.1016/j.scitotenv.2019.04.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
We present results from the first urban chemical and isotopic soil baseline survey to be completed for a New Zealand city. The major, minor, trace and isotopic composition of soils from different depths across the city of Dunedin are shown to be spatially variable due to geogenic and anthropogenic influences. Based on Principal component analysis (PCA) for the shallow soil depth, at least 40% (PC1 and PC3) of the dataset variance is attributed to a geogenic source. Soils enriched in Al, Cr, Fe, Hf, Mo, Ni, Th, Ti, U, V and Zr (PC1) are spatially associated with mapped units of the basaltic Dunedin Volcanic Group, indicating a geogenic source. An anthropogenic influence is attributed to at least 23% (PC2 and PC5) of the dataset variance. The chemical elements As, B, Bi, Cd, Cu, P, Pb, Sb, Sn and Zn (PC2) are strongly spatially associated with soils sampled above high-density urban residential, commercial and industrial sites, and are interpreted to reflect heavy metal contamination from human activities. In conjunction with historical vehicle emissions from leaded petrol, we suggest that legacy leaded paint from residential, commercial and industrial buildings flaking into Dunedin City soils is a significant contributor to Pb in the Dunedin urban environment. Median heavy metal contents for shallow soils (0-2 cm) from a variety of land-uses throughout Dunedin City are shown to be almost an order of magnitude greater than median heavy metal concentrations in soils from regional baselines. Significantly, urban anthropogenic sources of heavy metals, and C, N and S isotopes are shown to exert a stronger influence on soil composition than rural anthropogenic sources. Results from this study provide an important case-study for urban soil contamination for a relatively young city from the Southern Hemisphere, for which there are currently few examples.
Collapse
Affiliation(s)
- Rose Turnbull
- GNS Science, Private Bag 1930, Dunedin, New Zealand.
| | - Karyne Rogers
- National Isotope Centre, GNS Science, PO Box 30-312, Lower Hutt, New Zealand
| | - Adam Martin
- GNS Science, Private Bag 1930, Dunedin, New Zealand
| | | | - Richard Morgan
- Department of Geography, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
26
|
González-Grijalva B, Meza-Figueroa D, Romero FM, Robles-Morúa A, Meza-Montenegro M, García-Rico L, Ochoa-Contreras R. The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1468-1479. [PMID: 30677913 DOI: 10.1016/j.scitotenv.2018.12.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Understanding the oral bioaccessibility of lead (Pb) present in soils in urbanized areas is important for the human exposure risk assessment. In particular, the role of the soil-mineralogy in the oral bioaccessibility has not been extensively studied. To investigate bioaccessibility, five types of periurban soils were collected, samples were spiked with the same amount of lead-chromates from traffic paint, and subjected to the in vitro Physiological Based Extraction Test (PBET). Ten samples of urban topsoils were collected at elementary schools playgrounds, Pb-bioaccessibility was measured, and a prediction equation for bioaccessibility was constructed. Mineralogy, and metal content were identified with a combination of X-ray powder diffraction, scanning electron microscopy, and portable X-ray fluorescence techniques. Traffic paint sample is made of 15% quartz (SiO2), 13% crocoite (PbCrO4), 55% calcite (CaCO3), and 17% kaolinite (Al2Si2O5(OH)4) and it contains high metal content (Pb, Cr, Zn, and Ca). Studied soils are characterized by variable amounts of acid-neutralizing minerals (carbonates) and low metal content. Spiked soils contained almost equal concentration of Pb, Cr, and Zn, because the contribution of these metals is from the added paint. However, obtained Pb-bioaccessibility at gastric and intestinal conditions are variable (40 to 51% gastric, 24 to 70.5% intestinal). Carbonate content shows significant correlation (p < 0.05) with Cr, Ca, calcite, crocoite, and Pb-bioaccessible at gastric conditions. Correlation of Pb-bioaccessible at intestinal conditions is significant (p < 0.05) with kaolinite. Variability of Pb-bioaccesibility in urban environments is commonly associated to differences in Pb-sources, however, our results show that the bioaccessibility of the same pollutant behaves different for each soil type. This suggests that soil mineralogy may play a role in Pb-releasing at gastrointestinal conditions. Soil information about mineralogical characteristics from this study may help to reduce exposure to lead from urban sources if data are incorporated into urban planning.
Collapse
Affiliation(s)
- Belem González-Grijalva
- Earth Sciences Graduate Program, Institute of Geology, National University of Mexico, Colosio y Madrid, Hermosillo, Sonora 83240, Mexico
| | - Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico.
| | - Francisco M Romero
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico
| | - Agustín Robles-Morúa
- Department of Natural Resources, Technological Institute of Sonora, Cd. Obregón, Sonora, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico
| | - Mercedes Meza-Montenegro
- Department of Natural Resources, Technological Institute of Sonora, Cd. Obregón, Sonora, Mexico; National Laboratory of Geochemistry and Mineralogy - LANGEM, Mexico
| | - Leticia García-Rico
- Center of Research in Food and Development, A.C., Carretera a la Victoria km 0.6, 83304 Hermosillo, Sonora, Mexico
| | - Roberto Ochoa-Contreras
- Center of Research in Food and Development, A.C., Carretera a la Victoria km 0.6, 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
27
|
Turner A, Taylor A. On site determination of trace metals in estuarine sediments by field-portable-XRF. Talanta 2018; 190:498-506. [PMID: 30172540 DOI: 10.1016/j.talanta.2018.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
A portable x-ray fluorescence (XRF) spectrometer and mobile test stand have been employed to examine the feasibility of on site measurements of trace metals in estuarine sediment. In the laboratory, the instrument was able to detect the trace metals: As, Cr, Cu, Pb, Sn and Zn; and the geochemical proxy metals: Ca, Fe, K and Rb; in both fresh and freeze-dried surficial samples from the Tamar and Tavy estuaries, southwest England, that had been emplaced in polyethylene bags over the detector window. The presence of interstitial water in fresh samples acted as both a diluent of sediment mass and an attenuator of incident and fluorescent x-rays, resulting in measured (fresh weight) metal concentrations that were significantly lower than corresponding (dry weight) concentrations derived from dry analyses. Gravimetric correction for fractional water content (fw ~ 0.2-0.6) gave rise to results that were within 20% of those derived from dry analyses with the exception of K, whose relatively low energy fluorescent x-rays were subject to significant attenuation from the aqueous medium; further x-ray attenuation was observed for both K and Ca through the sample bag, thereby limiting the usefulness of the approach for these metals. A relationship between the concentration of Rb and fw in fresh samples suggests that Rb may be used as a proxy for interstitial water content through its covariance with sediment grain size. Accordingly, on site measurements of trace metals of sufficient fluorescent x-ray energies may be corrected empirically with respect to Rb in order to simultaneously account for variations in granulometry and mass contribution of water. On this basis, results from an axial transect of the Tamar and an intertidal transect in the Tavy were able to detect variations in trace metal concentrations that were consistent with known sources and geochemical behaviours.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | - Alex Taylor
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
28
|
Xie T, Wang M, Su C, Chen W. Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:222-229. [PMID: 29558656 DOI: 10.1016/j.envpol.2018.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Soils provide the service of attenuating and detoxifying pollutants. Such ability, natural attenuation capacity (NAC), is one of the most important ecosystem services for urban soils. We improved the ecosystem-service performance index (EPX) model by integrating with entropy weight determination method to evaluate the NAC of residential soils in Beijing. Eleven parameters related to the soil process of pollutants fate and transport were selected and 115 residential soil samples were collected. The results showed that bulk density, microbial functional diversity and soil organic matter had high weights in the NAC evaluation. Urban socio-economic indicators of residential communities such as construction age, population density and property & management fee could be employed in kinetic fittings of NAC. It could be concluded urbanization had significant impacts on NAC in residential soils. The improved method revealed reasonable and practical results, and it could be served as a potential measure for application to other quantitative assessment.
Collapse
Affiliation(s)
- Tian Xie
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Beijing, China; University of Chinese Academy of Sciences, China
| | - Meie Wang
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Beijing, China.
| | - Chao Su
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Beijing, China; University of Chinese Academy of Sciences, China
| | - Weiping Chen
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Beijing, China.
| |
Collapse
|